Bioinformatics Toolbox™

Reference

R2014b

MATLAB

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Bioinformatics Toolbox™ Reference

© COPYRIGHT 2003—2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 2005
September 2005
November 2005
March 2006
May 2006
September 2006
March 2007
April 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 2.1 (Release 14SP2+)
Revised for Version 2.1.1 (Release 14SP3)
Revised for Version 2.2 (Release 14SP3+)
Revised for Version 2.2.1 (Release 2006a)
Revised for Version 2.3 (Release 2006a+)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 2.6 (Release 2007a+)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 3.6 (Release 2010b)
Revised for Version 3.7 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.2 (Release 2012b)
Revised for Version 4.3 (Release 2013a)
Revised for Version 4.3.1 (Release 2013b)
Revised for Version 4.4 (Release 2014a)
Revised for Version 4.5 (Release 2014b)

Alphabetical List

1

Alphabetical List

1 Alphabetical List

1-2

aa2int

Convert amino acid sequence from letter to integer representation

Syntax

SeqInt = aa2int(SeqChar)

Input Arguments

SeqChar One of the following:

String of single-letter codes specifying an amino acid sequence. For
valid letter codes, see the table Mapping Amino Acid Letter Codes
to Integers. Unknown characters are mapped to 0. Integers are
arbitrarily assigned to IUB/IUPAC letters.

MATLAB® structure containing a Sequence field that contains an
amino acid sequence, such as returned by fastaread, getgenpept,
genpeptread, getpdb, or pdbread.

Output Arguments

‘Squ nt ‘Amino acid sequence specified by a row vector of integers.

Description

SeqInt = aaint(SeqgChar) converts SeqChar, a character string of single-letter
codes specifying an amino acid sequence, to SeqInt, a row vector of integers specifying
the same amino acid sequence. For valid letter codes, see the table Mapping Amino Acid
Letter Codes to Integers.

Mapping Amino Acid Letter Codes to Integers

aa2int

Amino Acid Code Integer

Alanine A 1
Arginine R 2
Asparagine N 3
Aspartic acid (Aspartate) D 4
Cysteine © 5
Glutamine Q 6
Glutamic acid (Glutamate) E 7
Glycine G 8
Histidine H 9
Isoleucine | 10
Leucine L 11
Lysine K 12
Methionine M 13
Phenylalanine F 14
Proline P 15
Serine S 16
Threonine T 17
Tryptophan W 18
Tyrosine Y 19
Valine \Y 20
Asparagine or Aspartic acid (Aspartate) B 21
Glutamine or Glutamic acid (Glutamate) Z 22
Unknown amino acid (any amino acid) X 23
Translation stop * 24
Gap of indeterminate length - 25
Unknown character (any character or ? 0

symbol not in table)

1-3

1 Alphabetical List

Examples

Converting a Simple Sequence
Convert the sequence of letters MATLAB to integers.

Seqlnt = aa2int("MATLAB™)

Seqint
13 1 17 11 1 21

Converting a Random Sequence

1 Create a random string to represent an amino acid sequence.

SegChar = randseq(20, "alphabet®, "amino®)

SeqChar

dwcztecakfuecvifchds

2 Convert the amino acid sequence from letter to integer representation.

Seglnt = aa2int(SeqChar)

Seqlint

Columns 1 through 13
4 18 5 22 17 7 5 1 12 14 0 7 5

Columns 14 through 20
20 10 14 5 9 4 16

See Also

aminolookup | int2aa | int2nt | nt2int

getStop

getStop
Class: BioMap

Compute stop positions of aligned read sequences from BioMap object

Syntax
Stop = getStop(Bio0bj)
Stop = getStop(BioObj, Subset)

Description
Stop = getStop(Bio0Obj) returns Stop, a vector of integers specifying the stop
position of aligned read sequences with respect to the position numbers in the reference

sequence from a BioMap object.

Stop = getStop(BioObj, Subset) returns a stop position for only read sequences
specified by Subset.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Subset

One of the following to specify a subset of the elements in BioObj:

* Vector of positive integers
* Logical vector

+ Cell array of strings containing valid sequence headers

1-5

1 Alphabetical List

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Stop

Vector of integers specifying the stop position of aligned read sequences with respect to
the position numbers in the reference sequence. Stop includes the stop positions for only
read sequences specified by Subset.

Examples

Construct a BioMap object, and then compute the stop position for different sequences in
the object:

% Construct a BioMap object from a SAM file
BMObj1l = BioMap("exl.sam");
% Compute the stop position of the second sequence in the object
Stop_2 = getStop(BMObj1l, 2)
Stop 2 =
37
% Compute the stop positions of the first and third sequences in
% the object
Stop_1_3 = getStop(BMObj1l, [1 3])
Stop_1_3 =

36
39

% Compute the stop positions of all sequences in the object
Stop_All = getStop(BMObj1);

getStop

See Also
getStart | BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-7

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-8

filterByFlag

Class: BioMap

Filter sequence reads by SAM flag

Syntax

Indices = filterByFlag(BioObj, FlagName, FlagValue)

Indices = filterByFlag(BioObj, Subset, FlagName, FlagValue)
Indices = TilterByFlag(..., FlagNamel, FlagValuel, FlagNameZ2,

FlagValue2, ...)

Description

Indices = TilterByFlag(BioObj, FlagName, FlagValue) returns Indices, a
vector of logical indices, indicating the read sequences in B100bj, a BioMap object, with
FlagName set to FlagValue.

Indices = TilterByFlag(BioObj, Subset, FlagName, FlagValue) returns
Indices, a vector of logical indices, indicating the read sequences that meet the specified
criteria from a subset of entries in a BioMap object.

Indices = filterByFlag(..., FlagName1, FlagValuel, FlagName2,
FlagValue2, ...) applies multiple flag filters in a single statement.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Subset

Either of the following to specify a subset of the elements in Bio0Obj:

filterByFlag

+ Vector of positive integers

* Logical vector

Default:

FlagName

String specifying one of the following flags to filter by:

+ "pairedInSeq" — The read is paired in sequencing, regardless if it is mapped as a
pair.

+ T"pairedInMap®™ — The read is mapped in a proper pair.

* "unmappedQuery” — The read is unmapped.

* "unmappedMate® — The mate is unmapped.

+ "strandQuery" — Strand direction of the read (0 = forward, 1 = reverse).

+ "strandMate® — Strand direction of the mate (O = forward, 1 = reverse).

* "readlsFirst® — The read is first in a pair.

* "readlsSecond” — The read is second in a pair.

+ T"alnNotPrimary®" — The read's alignment is not primary.

+ "failedQualCheck®™ — The read fails platform or vendor quality checks.

* "duplicate®™ — The read is a PCR or optical duplicate.

Default:
Flagvalue

Logical value indicating the status of a flag. A O indicates false or forward, and a 1
indicates true or reverse.

Default:

Output Arguments

Indices

Vector of logical indices, indicating the read sequences in B1o0bj with F1agName set to
FlagValue.

1-9

1 Alphabetical List

1-10

Examples

Construct a BioMap object, and then determine the read sequences that are both mapped
in a proper pair and first in a pair:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam®);

% Filter the elements using "pairedlnMap® and “readlsFirst® flags

Indices = fTilterByFlag(BMObjl, "pairedlnMap®, true,...
"readlsFirst®, true);

% Return the headers of the filtered elements

filtered_Headers = BMObjl.Header(Indices);

See Also
BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getAlignment

getAlignment

Class: BioMap

Construct alignment represented in BioMap object

Syntax

Alignment = getAlignment(BioObj, StartPos, EndPos)

Alignment = getAlignment(BioObj, StartPos, EndPos, R)
Alignment = getAlignment(..., “ParameterName®, ParameterValue)

[Alignment, Indices] = getAlignment(...)

Description

Alignment = getAlignment(BioObj, StartPos, EndPos) returns Alignment,
a character array containing the aligned read sequences from BioObj, a BioMap object.
The read sequences must align within a specific region of the reference sequence, which
is defined by StartPos and EndPos, two positive integers such that StartPos is less
than EndPos, and both are smaller than the length of the reference sequence.

Alignment = getAlignment(BioObj, StartPos, EndPos, R) selects the
reference where getAlignment reconstructs the alignment.

Alignment = getAlignment(..., “ParameterName®, ParameterValue) accepts
one or more comma-separated parameter name/value pairs. Specify ParameterName
inside single quotes.

[Alignment, Indices] = getAlignment(...) returns Indices, a vector of
indices specifying the read sequences that align within a specific region of the reference
sequence.

Input Arguments
BioObj

Object of the BioMap class.

1-11

1 Alphabetical List

1-12

Default:
StartPos

Positive integer that defines the start of a region of the reference sequence. StartPos
must be less than EndPos, and smaller than the total length of the reference sequence.

Default:
EndPos

Positive integer that defines the end of a region of the reference sequence. EndP0s must
be greater than StartPos, and smaller than the total length of the reference sequence.

Default:
R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Parameter Name/Value Pairs

"OffsetPad*®

Specifies if padding blanks are added at the beginning of each aligned sequence to
represent the offset of the start position of each aligned sequence with respect to the

reference. Choices are true or false (default).

Default:

Output Arguments

Alignment

Character array containing the aligned read sequences from BioObj that align within
a specific region of the reference sequence. Each row of the character array contains one
aligned sequence, that is, the sequence positions that fall within the specified region of
the reference sequence. Each aligned sequence can include gaps.

getAlignment

Indices

Vector of indices specifying the read sequences from BioObj that align within a specific

region of the reference sequence.

Examples

Construct a BioMap object, and then reconstruct the alignment between positions 10 and

25 of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam");

% Construct the alignment between positions 10 and 25 of the
% reference sequence.

Alignment = getAlignment(BMObj1l, 10, 25)

Alignment

CTCATTGTAAATGTGT
CTCATTGTAAATGTGT
CTCATTGTAAATGTGT
CTCATTGTAATTTTTT
CTCATTGTAAATGTGT
ATTGTAAATGTGT
ATTGTAAATGTGT
TGTAAATGTGT
AAATGTGT

GTGT

GTGT

GT

Algorithms

getAlignment assumes the reference sequence has no gaps. Therefore, positions in

reads corresponding to insertions (I) and padding (P) do not appear in the alignment.

Because soft clipped positions (S) are not associated with positions that align to the
reference sequence, they do not appear in the alignment.

A skipped position (N) appears as a . (period) in the alignment.

1-13

1 Alphabetical List

Hard clipped positions (H) do not appear in the sequences or the alignment.

See Also

BioMap | getBaseCoverage | getCompactAlignment | align2cigar |
cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive
. SAM format specification

1-14

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getBaseCoverage

getBaseCoverage

Class: BioMap

Return base-by-base alignment coverage of reference sequence in BioMap object

Syntax

Cov = getBaseCoverage(BioObj, StartPos, EndPos)
Cov = getBaseCoverage(BioObj, StartPos, EndPos, R)
Cov = getBaseCoverage(..., Name,Value)

[Cov, BinStart] = getBaseCoverage(.-..)

Description

Cov = getBaseCoverage(BioObj, StartPos, EndPos) returns Cov, a row vector
of nonnegative integers. This vector indicates the base-by-base alignment coverage of a
range or set of ranges in the reference sequence in B1o0bj, a BioMap object. The range
or set of ranges are defined by StartPos and EndPos. StartPos and EndPos can be
two nonnegative integers such that StartPos is less than EndPos, and both integers
are smaller than the length of the reference sequence. StartPos and EndPos can also
be two column vectors representing a set of ranges (overlapping or segmented). When
StartPos and EndPos specify a segmented range, Cov contains NaN values for base
positions between segments.

Cov = getBaseCoverage(BioObj, StartPos, EndPos, R) selects the reference
where getBaseCoverage calculates the coverage.

Cov = getBaseCoverage(..., Name,Value) returns alignment coverage
information with additional options specified by one or more Name,Value pair

arguments.

[Cov, BinStart] = getBaseCoverage(...) returns BinStart, a row vector of
positive integers specifying the start position of each bin (when binning occurs).

1-15

1 Alphabetical List

1-16

Input Arguments
BioObj

Object of the BioMap class.
Default:

StartPos

Either of the following:

* Nonnegative integer that defines the start of a range in the reference sequence.
StartPos must be less than EndPos and smaller than the total length of the
reference sequence.

* Column vector of nonnegative integers, each defining the start of a range in the
reference sequence.

Default:
EndPos
Either of the following:

+ Nonnegative integer that defines the end of a range in the reference sequence.
EndPos must be greater than StartPos and smaller than the total length of the
reference sequence.

+ Column vector of nonnegative integers, each defining the end of a range in the
reference sequence.

Default:

R

Positive integer indexing the SequenceDictionary property of BIoObj, or a string
specifying the actual name of the reference.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

getBaseCoverage

"binWidth*

Positive integer specifying the bin width, in number of base pairs (bp). Bins are
centered within min(StartPos) and max(EndPos). Thus, the first and last bins span
approximately equally outside the range from min(StartPos) to max (EndPos).

Note: You cannot specify both binWidth and numberOfBins.

Default:
"numberOfBins”

Positive integer specifying the number of equal-width bins to use to span the requested
region. Bins are centered within min(StartPos) and max(EndPos). Thus, the first and
last bins span approximately equally outside the range from min(StartPos) to max
(EndPos).

Note: You cannot specify both binWidth and numberOfBins.

Default:
"binType*
String specifying the binning algorithm. Choices are:

* "max” — From the bin, getBaseCoverage selects the base position with the most
reads aligned to it, then uses its alignment coverage value for the bin.

* "min" — From the bin, getBaseCoverage selects the base position with the least
reads aligned to it, then uses its alignment coverage value for the bin.

+ "mean” — Uses the average alignment coverage, computed from all base positions
within the bin.

Default: "max*”
"complementRanges”

Specifies whether to return the alignment coverage for the base positions
between segments, instead of within segments. If true, the length of Cov is

1-17

1 Alphabetical List

1-18

numel (min(StartPos) :max(EndPos)), and Cov contains NaN values for base
positions within segments.

Default: false
"Spliced”

Logical specifying whether short reads are spliced during mapping (as in mRNA-to-
genome mapping). N symbols in the Signature property of the object are not counted.

Default: false

Output Arguments

Cov

Row vector of nonnegative integers. This vector specifies the number of read sequences
that align with each base position or bin in the requested regions. A set of ranges can be
overlapping or segmented. For a range, the length of Cov is numel (StartPos:EndPos).
For a segmented range, the length of Cov is numel (min(StartPos) :max(EndPos)).
Cov contains NaN values for base positions between segments. When binning occurs, the
number of elements in Cov equals the number of bins.

BinStart

Row vector of positive integers specifying the start position of each bin.
BinStart is the same length as Cov. If no binning occurs, then BinStart equals
min(StartPos) :max(EndPos).

Examples

Construct a BioMap object, and then return the alignment coverage of each of the first 12
base positions of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam");

% Return the number of reads that align to each of

% the first 12 base positions of the reference sequence
cov = getBaseCoverage(BMObj1, 1, 12)

getBaseCoverage

Cov =
1 1 2 2 3 4 4 4 5 5 5 5

Construct a BioMap object, and then return the alignment coverage of the range between
1 and 1000, on a bin-by-bin basis, using bins with a width of 100 bp:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam®);

% Return the number of reads that align to each 100-bp bin

% in the 1:1000 range of the reference sequence. Also return the

% start position of each bin
[cov, bin_starts] = getBaseCoverage(BMObjl, 1, 1000, *binWidth®, 100)

Cov =

17 20 41 44 45 48 48 45 46 42

bin_starts =
1 101 201 301 401 501 601 701 801 901

See Also

getCounts | getAlignment | BioMap | getlndex | getCompactAlignment |
align2cigar | cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-19

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-20

getCompactAlignment

Class: BioMap

Construct compact alignment represented in BioMap object

Syntax

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos)

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos, R)
CompAlignment = getCompactAlignment(..., “ParameterName-,
ParameterValue)

[CompAlignment, Indices] = getCompactAlignment(...)
[CompAlignment, Indices, Rows] = getCompactAlignment(...)

Description

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPoS) returns
CompAlignment, a character array containing the aligned read sequences from BioObj,
a BioMap object, in a compact format. The read sequences must align within a specific
region of the reference sequence, which is defined by StartPos and EndPos, two positive
integers such that StartPos is less than EndPos, and both are smaller than the length
of the reference sequence.

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos, R)
selects the reference where getCompactAl ignment reconstructs the alignment.

CompAlignment = getCompactAlignment(..., “ParameterName-,
ParameterValue) accepts one or more comma-separated parameter name/value pairs.
Specify ParameterName inside single quotes.

[CompAlignment, Indices] = getCompactAlignment(...) returns Indices, a
vector of indices specifying the read sequences that align within a specific region of the
reference sequence.

[CompAlignment, Indices, Rows] = getCompactAlignment(...) returns Rows,
a vector of positive numbers specifying the row in CompAlignment where each read
sequence is best displayed.

getCompactAlignment

Input Arguments
BioObj

Object of the BioMap class.
Default:

StartPos

Positive integer that defines the start of a region of the reference sequence. StartPos
must be less than EndPos, and smaller than the total length of the reference sequence.

Default:
EndPos

Positive integer that defines the end of a region of the reference sequence. EndP0s must
be greater than StartPos, and smaller than the total length of the reference sequence.

Default:

R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Parameter Name/Value Pairs

“"Full*

Specifies whether or not to include only the read sequences that fully align with the
defined region of the reference sequence, that is, they are completely contained within
the region, and do not extend beyond the region. Choices are true or false (default).

Default: false
"TrimAlignment*

Specifies whether or not to trim empty leading and trailing columns from the alignment.
Choices are true or false. Default is false, which does not trim the alignment, but
includes any empty leading or trailing columns, and returns an alignhment always of
length EndPos — StartPos + 1.

1-21

1 Alphabetical List

1-22

Default: false

Output Arguments

CompAlignment

Character array containing the aligned read sequences from BioObj that align within
the requested region. The character array represents a compact alignment, that is each
row of the character array contains one or more aligned sequences, such that the number
of rows in the character array is minimized. Each aligned sequence includes only the
sequence positions that fall within the requested region, and each aligned sequence can
include gaps.

Indices

Vector of indices specifying the read sequences from BioObj that align within the
requested region.

Rows

Vector of positive numbers specifying the row in CompAlignment where each read
sequence is best displayed.

Examples

Construct a BioMap object, and then construct the compact alignment between positions
30 and 59 of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam");

% Construct the compact alignment between positions 30 and 59 of

% the reference sequence, and return the indices of the reads in the
% compact alignment, as well as the row each read is in.
[CompAlignment, Ind, Row] = getCompactAlignment(BMObjl, 30, 59)

CompAlignment =

TAACTCG GCCCAGCATTAGGGAGC
TAACTCGT CATTAGGGAGC
TAACTCGTCC ATTAGGGAGC
TAACTCTTCTCT TTAGGGAGC
TAACTCGTCCATGG TAGGGAGC

getCompactAlignment

TAACTCGTCCCTGGCCCA C
TAACTCGTCCATGGCCCAG
TAACTCGTCCATTGCCCAGC
TAACTCGTCCATGGCCCAGCATT
TAACTCGTCCATGGCCCAGCATTTGGG
TAACTCGTCCATGGCCCAGCATTAGGG
TAACTCGTCCATGGCCCAGCATTAGGGAGC
TAACTCGTCCATGGCCCAGCATTAGGGATC
TAACTCGTCCATGGCCCAGCATTAGGGAGC
AACTCGTCCATGGCCCAGCATTAGGGAGC
GTACATGGCCCAGCATTAGGGAGC
TCCATGGCCCAGCATTAGGGCGC

Ind =

O©CO~NOUITA WNBE

NNNVNNRRRRRRRERRRR
WNROOONOUNMWNERO

Row =

1-23

1 Alphabetical List

1-24

©CO~NOUPA~WN

10

12
13
14
15
16

O wWN

Algorithms

getCompactAlignment assumes the reference sequence has no gaps. Therefore,
positions in reads corresponding to insertions (I) and padding (P) do not appear in the
alignment.

Because soft clipped positions (S) are not associated with positions that align to the
reference sequence, they do not appear in the alignment.

A skipped position (N) appears as a — (hyphen) in the alignment.
Hard clipped positions (H) do not appear in the sequences or the alignment.

See Also

getAlignment | BioMap | getBaseCoverage | align2cigar | cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

getCompactAlignment

Related Links

. Sequence Read Archive

. SAM format specification

1-25

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-26

getCounts

Class: BioMap

Return count of read sequences aligned to reference sequence in BioMap object

Syntax

Count = getCounts(BioObj, StartPos, EndPos)

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups)
GroupCount = getCounts(BioObj, StartPos, EndPos, Groups, R)
... = getCounts(..., Name,Value)

Description

Count = getCounts(BioObj, StartPos, EndPos) returns Count, a nonnegative
integer specifying the number of read sequences in BioObj, a BioMap object, that align
to a specific range or set of ranges in the reference sequence. The range or set of ranges
are defined by StartPos and EndPos. StartPos and EndPos can be two nonnegative
integers such that StartPos is less than EndPos, and both integers are smaller than the
length of the reference sequence. StartPos and EndPos can also be two column vectors
representing a set of ranges (overlapping or segmented).

By default, getCounts counts each read only once. Therefore, if a read spans multiple
ranges, that read instance is counted only once. When StartPos and EndPos specify
overlapping ranges, the overlapping ranges are considered as one range.

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups) specifies
Groups, a row vector of integers or strings, the same size as StartPos and EndPos. This
vector indicates the group to which each range belongs. GroupCount is a column vector
containing a number of elements equal to the number of unique elements in Groups.
GroupCount specifies the number of reads that align to each group, in the ascending
order of unique groups in Groups.

Each group is treated independently. Therefore, a read can be counted in more than one
group.

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups, R) specifiesa
reference for each of the segmented ranges defined by StartPos, EndPos, and Groups.

getCounts

... = getCounts(..., Name,Value) returns counts with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
BioObj

Object of the BioMap class.
Default:

StartPos

Either of the following:

* Nonnegative integer that defines the start of a range in the reference sequence.
StartPos must be less than EndPos, and smaller than the total length of the
reference sequence.

* Column vector of nonnegative integers, each defining the start of a range in the
reference sequence.

Default:
EndPos
Either of the following:

* Nonnegative integer that defines the end of a range in the reference sequence.
EndPos must be greater than StartPos, and smaller than the total length of the
reference sequence.

* Column vector of nonnegative integers, each defining the end of a range in the
reference sequence.

Default:
Groups

Row vector of integers or strings, the same size as StartPos and EndPos. This vector
indicates the group to which each range belongs.

Default:

1-27

1 Alphabetical List

R

Vector of positive integers indexing the SequenceDictionary property of BioObj,

or a cell array of strings specifying the actual names of references. R must be ordered
and have the same number of elements as the unique elements in Groups. If R has the
same number of elements as Groups, then all of the entries in R for each unique value in
Groups must be the same.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

" Independent*

Logical that specifies whether to treat the ranges defined by StartPos and EndPos
independently. If true, Count is a column vector containing the same number of
elements as StartPos and EndPos. In this case, a read that spans multiple ranges, is
counted once in each range.

Note: This name-value pair argument is ignored when using the Groups input
argument, because getCounts assumes that each group of ranges is independent.

Default: false
"Overlap”

Specifies the minimum number of base positions that a read must overlap in a range or
set of ranges, to be counted. This value can be any of the following:

+ Positive integer
+ "Ffull™ — A read must be fully contained in a range or set of ranges to be counted.

+ "start®” — A read's start position must lie within a range or set of ranges to be
counted.

Default: 1

1-28

getCounts

"Spliced”

Logical specifying whether short reads are spliced during mapping (as in mRNA-to-
genome mapping). N symbols in the Signature property of the object are not counted.

Default: false
"Method™

String specifying the method to measure the abundance of reads. Choices are:

* "raw" — Raw counts

+ "rpkm® — Counts of reads per kilobase pairs per million aligned reads
* "mean" — Average coverage depth computed base-by-base

* "max" — Maximum coverage depth computed base-by-base

* "min® — Minimum coverage depth computed base-by-base

* "sum®" — Sum of all aligned bases in all the reads

Default: "raw”

Output Arguments
Count
Either of the following:

* When Independent is False, this value is a nonnegative integer. The integer
specifies the number of reads that align to a range or set of ranges (overlapping
or segmented) of the reference sequence in Bio0Obj, a BioMap object. Each read is
counted only once, even if the read spans multiple ranges.

* When Independent is true, this value is a column vector of nonnegative integers.
This vector indicates the number of reads that align to the independent ranges
specified by StartPos and EndPos. This vector contains the same number of
elements as StartPos and EndPos.

GroupCount

Column vector containing a number of elements equal to the number of unique elements
in Groups. The vector specifies the number of reads that align to each group, in the order

1-29

1 Alphabetical List

of unique groups in Groups. The groups of ranges are treated independently. Therefore,
a single read can be counted in more than one group.

Examples

Construct a BioMap object, and then return the number of reads that align to at least one
base position in two ranges of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam®);

% Return the number of reads that align to the segmented range 1:50 and 71:100
counts_1 = getCounts(BMObj1,[1;71],[50;100])

counts_1 =
37

Construct a BioMap object, and then return the number of reads that align to at least one
base position in two independent ranges of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam®);

% Return the number of reads that align to each of the ranges,
% 1:50 and 71:100, independent of each other

counts_2 = getCounts(BMObj1,[1;71],[50;100], "independent”,true)

counts_2 =

20
21

Notice that the total number of reads reported in counts_2 is greater than the number
of reads reported in counts_1. This difference occurs because there are four reads that
span the two ranges, and are counted twice in the second example.

Construct a BioMap object, and then return the number of reads that align to two
separate groups of ranges of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam");

% Return the number of reads that align to a group containing range 30:60,
% and also the number of reads that align to a group containing range 1:10
% and range 50:60

1-30

getCounts

counts_3 = getCounts(BMObj1,[1;30;50],[10;60;60],[2 1 2])

counts_3

25
22

Construct a BioMap object, and then return the total number of reads aligned to the
reference sequence:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam");

% Return the number of sequences that align to the entire reference sequence
getCounts(BMObj1l,min(getStart(BMObj1l)) ,max(getStop(BMObj1)))

ans =
1482

See Also

getindex | getAlignment | BioMap | getBaseCoverage | getCompactAlignment
| align2cigar | cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-31

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-32

getCoverage

Class: BioMap

Compute read coverage in BioMap object

Note: getCoverage has been removed. Use getBaseCoverage, getCounts, or
getlndex instead.

Syntax

Cov = getCoverage(BioObj, StartPos, EndPos)

[Cov, Indices] = getCoverage(BioObj, StartPos, EndPos)

[Cov, Indices, Seqs] = getCoverage(BioObj, StartPos, EndPos)
... = getCoverage(BioObj, StartPos, EndPos, “ParameterName",
ParameterValue)

Description

Cov = getCoverage(BioObj, StartPos, EndPos) returns Cov, a nonnegative
integer indicating the number of read sequences that cover (align within) a specific
region of the reference sequence in BioObj, a BioMap object. The specific region of the
reference sequence is defined by StartPos and EndPos. StartPos and EndPos can be
two nonnegative integers such that StartPos is less than EndPos, and both are smaller
than the length of the reference sequence. StartPos and EndPos can also be two column
vectors representing a collection of regions of the reference sequence. In this case, Cov

1s a column vector of nonnegative integers indicating the number of read sequences that
cover each region.

[Cov, Indices] = getCoverage(BioObj, StartPos, EndPos) also returns
Indices, a vector of indices specifying the read sequences that align within a specific
region of the reference sequence.

[Cov, Indices, Seqs] = getCoverage(BioObj, StartPos, EndPos) also
returns Seqs, a cell array of strings containing the read sequences that align within a
specific region of the reference sequence.

getCoverage

... = getCoverage(BioObj, StartPos, EndPos, "ParameterName",
ParameterValue) accepts one or more comma-separated parameter name/value pairs.
Specify ParameterName inside single quotes.

Tips
Use the Indices output from the getCoverage method as input to other BioMap

methods. Doing so lets you determine other information about the read sequences in the
coverage region, such as header, start position, mapping quality, etc.

Input Arguments

BioObj

Object of the BioMap class.

Default:

StartPos

Either of the following:

+ Nonnegative integer that defines the start of a region of the reference sequence.

StartPos must be less than EndPos, and smaller than the total length of the
reference sequence.

* Column vector of nonnegative integers, each defining the start of a region of the
reference sequence.

Default:
EndPos

Either of the following:
* Nonnegative integer that defines the end of a region of the reference sequence.

EndPos must be greater than StartPos, and smaller than the total length of the
reference sequence.

1-33

1 Alphabetical List

1-34

+ Column vector of nonnegative integers, each defining the end of a region of the
reference sequence.

Default:

Parameter Name/Value Pairs

"Base*

Specifies if the output Cov is computed base-by-base, that is determining the number

of nongap symbols that align with each position in the specified region of the reference
sequence. If true, Cov is a vector of positive integers corresponding to the base positions
in the specified region of the reference sequence.

Default: false
"Full-

Specifies to include only the read sequences that fully align with the defined region of the
reference sequence, that is, they are completely contained within the region, and do not
extend beyond the region.

Default: false

Output Arguments

Cov
Either of the following:

* Nonnegative integer indicating the number of read sequences that cover (align
within) a specific region of the reference sequence in Bio0Obj.

* Column vector of nonnegative integers indicating the number of read sequences that
cover each region specified by StartPos and EndPos, when they are both column
vectors. In this case, Cov is the same length as StartPos and EndPos.

Indices

Vector of indices specifying the read sequences from Bio0bj that align within a specific
region of the reference sequence.

getCoverage

Seqgs

Cell array of strings containing the read sequences from Bi00bj that align within
a specific region of the reference sequence. Each string is a sequence read without
alignment information.

Examples

Construct a BioMap object, and then retrieve the coverage of the first 50 positions of the
reference sequence:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam®);

% Retrieve the number of sequences that cover the first 50
% positions of the reference sequence

cov = getCoverage(BMObj1, 1, 50)

cov =
20

Construct a BioMap object, and then retrieve the starting positions for the read
sequences that cover the first 50 positions of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam®);

% Retrieve the number of sequences that cover the first 50

% positions of the reference sequence

% Also retrieve the indices of these sequences

[cov, idx] = getCoverage(BMObjl, 1, 50);

% Use the indices for these sequences to determine their start
% positions

startPositions = getStart(BMObj1l, idx);

Construct a BioMap object, and then retrieve the coverage of the first 50 positions of the
reference sequence, considering only read sequences that align fully within the region:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam");

% Retrieve the number of sequences that cover the first 50

% positions of the reference sequence

% Consider only read sequences that align fully within the region
fullCov = getCoverage(BMObj1l, 1, 50, "full®, true)

1-35

1 Alphabetical List

1-36

FfullCov =
8

Construct a BioMap object, and then retrieve the coverage for the first 10 positions of the
reference sequence, on a base-by-base basis:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam®);

% Retrieve the number of sequences that cover each base position of
% the first 10 positions of the reference sequence

baseCov = getCoverage(BMObjl, 1, 10, "base®, true)

baseCov =

GQabDBDBWNNRERPRE

See Also

getAlignment | BioMap | getCompactAlignment | align2cigar | cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getFlag

getFlag

Class: BioMap

Retrieve read sequence flags from BioMap object

Syntax
Flag = getFlag(Bio0Obj)
Flag = getFlag(BioObj, Subset)

Description

Flag = getFlag(BioObj) returns Flag, a vector of nonnegative integers indicating
the bit-wise information that specifies the status of the 11 flags described by the SAM
format specification. Each integer corresponds to one read sequence from a BioMap

object.

Flag = getFlag(BioObj, Subset) returns flag integers for only object elements
specified by Subset.

Tips
After using the getFlag method to return the integer specifying the bit-wise information

for the SAM flags, use the bitget function to determine the status of a specific SAM
flag. For more information, see “Examples” on page 1-38.

Input Arguments
BioObj
Object of the BioMap class.

Default:

1-37

http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-38

Subset
One of the following to specify a subset of the elements in Bi00bj:

* Vector of positive integers
* Logical vector

* Cell array of strings containing valid sequence headers

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Flag

Vector of nonnegative integers. Each integer corresponds to one read sequence and
indicates the bit-wise information that specifies the status of the 11 flags described by
the SAM format specification. These flags describe different sequencing and alignment
aspects of a read sequence. F1ag includes flag integers for only read sequences specified
by Subset.

Examples

Construct a BioMap object, and then retrieve the SAM flag values for different elements
in the object:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap("exl.sam");

% Retrieve integer specifying bit-wise information for 11
% SAM flags of the second element

flagvalue = getFlag(BMObj1, 2)

flagvalue =

73

http://samtools.sourceforge.net/SAM1.pdf

getFlag

% Retrieve integers specifying bit-wise information for 11
% SAM flags of the first and third elements
flagvalues = getFlag(BMObj1, [1 3])

flagvalues =

73
137

% Retrieve integers specifying bit-wise information for 11
% SAM flags of all elements

allFlagvalues = getFlag(BMObj1);

% Determine the status of the fourth flag (mate is unmapped)
% for the second element, which has a flag value of 73
bitget(73, 4)

ans =

Alternatives

An alternative to using the getFlag method is to use dot indexing with the Flag
property:

BioObj .Flag(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
setFlag | bitget | BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

1-39

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

. SAM format specification

1-40

http://samtools.sourceforge.net/SAM1.pdf

getindex

getindex

Class: BioMap

Return indices of read sequences aligned to reference sequence in BioMap object

Syntax

Indices = getlndex(BioObj, StartPos, EndPos)

Indices = getlndex(BioObj, StartPos, EndPos, R)
Indices = getlndex(..., Name,Value)
Description

Indices = getlndex(BioObj, StartPos, EndPos) returns Indices, a column
vector of indices specifying the read sequences that align to a range or set of ranges

in the reference sequence in B100bj, a BioMap object. The range or set of ranges are
defined by StartPos and EndPos. StartPos and EndPos can be two nonnegative
integers such that StartPos is less than EndPos, and both integers are smaller than the
length of the reference sequence. StartPos and EndPos can also be two column vectors
representing a set of ranges (overlapping or segmented).

getlndex includes each read only once. Therefore, if a read spans multiple ranges, the
index for that read appears only once.

Indices = getlndex(BioObj, StartPos, EndPos, R) selects the reference
associated with the range specified by StartPos and EndPos.

Indices = getlndex(..., Name,Value) returns indices with additional options
specified by one or more Name,Value pair arguments.

Tips
Use the Indices output from the getlndex method as input to other BioMap methods.

Doing so lets you retrieve other information about the reads in the range, such as header,
start position, mapping quality, sequences, etc.

141

1 Alphabetical List

Input Arguments
BioObj

Object of the BioMap class.
Default:

StartPos

Either of the following:

* Nonnegative integer that defines the start of a range in the reference sequence.
StartPos must be less than EndPos, and smaller than the total length of the
reference sequence.

+ Column vector of nonnegative integers, each defining the start of a range in the
reference sequence.

Default:
EndPos
Either of the following:

+ Nonnegative integer that defines the end of a range in the reference sequence.
EndPos must be greater than StartPos, and smaller than the total length of the
reference sequence.

+ Column vector of nonnegative integers, each defining the end of a range in the
reference sequence.

Default:
R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-42

getindex

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Overlap”

Specifies the minimum number of base positions that a read must overlap in a range or
set of ranges, to be included. This value can be any of the following:

* Positive integer
+ "full®™ — A read must be fully contained in a range or set of ranges to be counted.

+ "start®” — A read's start position must lie within a range or set of ranges to be
counted.

Default: 1
"Depth*

Specifies to decimate the output indices. The coverage depth at any base position is less
than or equal to Depth, a positive integer.

Default: Inf
"Spliced”

Logical specifying whether short reads are spliced during mapping (as in mRNA-to-
genome mapping). N symbols in the Signature property of the object are not counted.

Default: false

Output Arguments
Indices

Column vector of indices specifying the reads that align to a range or set of ranges in the
specified reference sequence in BioObj, a BioMap object.

Examples

Construct a BioMap object, and then use the indices of the reads to retrieve the start
and stop positions for the reads that are fully contained in the first 50 positions of the
reference sequence:

1-43

1 Alphabetical List

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam");

% Return the indices of reads that are fully contained in the
% First 50 positions of the reference sequence

indices = getindex(BMObj1l, 1, 50, "overlap®, "full®);

% Use these indices to return the start and stop positions of
% the reads

starts = getStart(BMObjl, indices)

stops = getStop(BMObjl, indices)

starts =

oCouUweEk

13
15
stops =

36
37
39
41
43
47
48
49

Construct a BioMap object, and then use the indices of the reads to retrieve the
sequences for the reads whose alignments overlap a segmented range by at least one base
pair:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap("exl.sam");

% Return the indices of the reads that overlap the

% segmented range 98:100 and 198:200, by at least 1 base pair
indices = getIndex(BMObj1l, [98;198], [100;200], "overlap™, 1);
% Use these indices to return the sequences of the reads
sequences = getSequence(BMObj1l, indices);

1-44

getindex

See Also

getStart | getSequence | getAlignment | BioMap | getStop | getCounts |
getBaseCoverage | getCompactAlignment | align2cigar | cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive
. SAM format specification

1-45

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

getinfo

Class: BioMap

Retrieve information for single element of BioMap object

Syntax

Info = getInfo(BioObj, Element)

Description

Info = getInfo(BioObj, Element) returns Info, a tab-delimited string containing
information about a single element in BioObj, a BioMap object.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Element

One of the following to specify one element in BioObj:

Scalar specifying an element index
Logical vector

String containing a valid sequence header

Default:

1-46

getinfo

Output Arguments
Info

Tab-delimited string containing information about a single element in Bio0Obj, a BioMap
object. The string contains the information from the following properties in order:

* Header

* Flag

- Start

* MappingQuality

+ Signature

+ Sequence

* Quality

Examples

Construct a BioMap object, and then retrieve information for the second element in the
object:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam");

% Retrieve information for the second element in the object

element2Info = getinfo(BMObjl, 2)

element2Info =
EAS54_65:7:152:368:113 73 3 99 35M

CTAGTGGCTCATTGTAAATGTGTGGTTTAACTCGT
<<LLLLLLLLP<<<<B55<<7<<<:19<<3/:<6):

See Also
BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

1-47

1 Alphabetical List

Related Links

Sequence Read Archive
SAM format specification

1-48

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getMappingQuality

getMappingQuality
Class: BioMap

Retrieve sequence mapping quality scores from BioMap object

Syntax

MappingQuality = getMappingQuality(BioObj)
MappingQuality = getMappingQuality(BioObj, Subset)
Description

MappingQuality = getMappingQuality(BioObj) returns MappingQuality, a
vector of integers specifying mapping quality scores for each read sequence in BioObj, a
BioMap object.

MappingQuality = getMappingQuality(BioObj, Subset) returns mapping
quality scores for only object elements specified by Subset.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Subset

One of the following to specify a subset of the elements in B100bj:

Vector of positive integers
Logical vector

Cell array of strings containing valid sequence headers

1-49

1 Alphabetical List

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments
MappingQuality

MappingQual ity property of a subset of elements in Bio0Obj. MappingQuality is a
vector of integers specifying the mapping quality scores for read sequences specified by
Subset.

Examples

Construct a BioMap object, and then retrieve the mapping quality scores for different
elements in the object:

% Construct a BioMap object from a SAM File

BMObj1l = BioMap(“exl.sam®);

% Retrieve the mapping quality property of the second element in
% the object

MQ_2 = getMappingQuality(BMObjl, 2)

MQ_2 =
99

% Retrieve the mapping quality properties of the first and third
% elements in the object
MQ_1 3 = getMappingQuality(BMObj1l, [1 3])

MQ 1 3 =

99
99

% Retrieve the mapping quality properties of all elements in the

% object
MQ_AIl = getMappingQuality(BMObj1);

1-50

getMappingQuality

Alternatives

An alternative to using the getMappingQual ity method is to use dot indexing with the
MappingQual ity property:

BioObj .MappingQuality(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
BioMap | setMappingQuality

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-51

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-52

getMatePosition
Class: BioMap

Retrieve mate positions of read sequences from BioMap object

Syntax

MatePos = getMatePosition(BioObj)
MatePos = getMatePosition(BioObj,Subset)

Description
MatePos = getMatePosition(BioObj) returns MatePos, a vector of nonnegative
integers specifying the mate positions of read sequences with respect to the position

numbers in the reference sequence from a BioMap object.

MatePos = getMatePosition(BioObj,Subset) returns mate positions for only read
sequences specified by Subset.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Subset

One of the following to specify a subset of the elements in BioObj:

* Vector of positive integers
* Logical vector

+ Cell array of strings containing valid sequence headers

getMatePosition

Note: If you use a cell array of header strings to specify Subset, be aware that a repeated
header specifies all elements with that header.

Default:

Output Arguments

MatePos

MatePosition property of all or a subset of elements in BioObj. MatePos is a vector of
nonnegative integers specifying the mate positions of read sequences with respect to the
position numbers in the reference sequence. MatePos includes the mate positions for only
read sequences specified by Subset.

Not all values in the MatePosition vector represent valid mate positions, for example,
mates that map to a different reference sequence or mates that do not map. To determine
if a mate position is valid, use the Fi lterByFlag method with the "pairedInMap” flag.

Examples

Construct a BioMap object, and then retrieve the mate position for different sequences in
the object:

% Construct a BioMap object from a SAM file and determine the header for the 17th eleme
BMObj1l = BioMap("exl.sam");

BMObj1.Header(17)

ans =

"EAS114_32:5:78:583:499"

% Retrieve the MatePosition property of the 17th element in the object using the headel
MatePos_17 = getMatePosition(BMObj1,{"EAS114 32:5:78:583:499"})

MatePos_17

229
37

1-53

1 Alphabetical List

Notice the previous example returned two mate positions. This is because the

header EAS114 32:5:78:583:499 is a repeated header in the BMObj 1 object. The
getMatePosition method returns mate positions for all elements in the object with
that header.

% Retrieve the MatePosition properties of the 37th and 47th elements in
% the object
MatePos_37_47 = getMatePosition(BMObjl, [37 47])

MatePos_37_47

95
283

% Retrieve the MatePosition properties of all elements in the object
MatePos_All = getMatePosition(BMObj1l);

Alternatives

An alternative to using the getMatePosition method is to use dot indexing with the
MatePosition property:

BioObj .MatePosition(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also

FfilterByFlag | BioMap | setMatePosition

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive
. SAM format specification

1-54

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getReference

getReference

Class: BioMap

Retrieve reference sequence from BioMap object

Syntax

Ref = getReference(BioObj)

Description

Ref = getReference(Bio0bj) returns the name of the reference sequence from a
BioMap object. This is the Reference property of the object.

Input Arguments
BioObj
Object of the BioRead or BioMap class.

Default:

Output Arguments
Ref

Reference property of BioObj, the BioMap object. It is a string specifying the name of
the reference sequence.

Examples

Construct a BioMap object, and then retrieve the reference sequence from the object:

1-55

1 Alphabetical List

% Construct a BioMap object from a SAM file
BMObj1 = BioMap(“exl.sam");

% Retrieve the reference sequence from the object
refSeq = getReference(BMObj1l)

refSeq =

seql

Alternatives

An alternative to using the getReference method is to use dot indexing with the
Reference property:

BioObj .Reference

See Also

setReference | BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-56

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getSignature

getSignature

Class: BioMap

Retrieve signature (alignment information) from BioMap object

Syntax

Signature = getSignature(Bio0Obj)
Signature = getSignature(BioObj, Subset)
Description

Signature = getSignature(BioObj) returns Signature, a cell array of CIGAR-
formatted strings, each representing how a read sequence in a BioMap object aligns to
the reference sequence.

Signature = getSignature(BioObj, Subset) returns signature strings for only
object elements specified by Subset.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Subset

One of the following to specify a subset of the elements in BioObj:

Vector of positive integers
Logical vector

Cell array of strings containing valid sequence headers

1-57

1 Alphabetical List

1-58

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Signature

Signature property of a subset of elements in BioObj. Signature is a cell array of
CIGAR-formatted strings, each representing how read sequences, specified by Subset,
align to the reference sequence.

Examples

Construct a BioMap object, and then retrieve the signatures for different elements in the
object:

% Construct a BioMap object from a SAM file

BMObj1l = BioMap(“exl.sam®);

% Retrieve the signature property of the second element in
% the object

Sig_2 = getSignature(BMObj1, 2)

% Retrieve the signature properties of the first and third
% elements in the object
Sig_1 3 = getSignature(BMObj1l, [1 3]

Sig_1 3 =

"36M*"
"35M*"

% Retrieve the signature properties of all elements in the object
Sig_All = getSignature(BMObj1l);

getSignature

Alternatives

An alternative to using the getSignature method is to use dot indexing with the
Signature property:

BioObj .Sgnature(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also

setSignature | BioMap | getAlignment

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-59

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-60

getStart
Class: BioMap

Retrieve start positions of aligned read sequences from BioMap object

Syntax
Start = getStart(Bio0Obj)
Start = getStart(BioObj, Subset)

Description
Start = getStart(Bio0Obj) returns Start, a vector of integers specifying the start
position of aligned read sequences with respect to the position numbers in the reference

sequence from a BioMap object.

Start = getStart(BioObj, Subset) returns a start position for only read sequences
specified by Subset.

Input Arguments
BioObj

Object of the BioMap class.
Default:

Subset

One of the following to specify a subset of the elements in BioObj:

* Vector of positive integers
* Logical vector

+ Cell array of strings containing valid sequence headers

getStart

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Start

Start property of a subset of elements in BioObj. It is a vector of integers specifying
the start position of aligned read sequences with respect to the position numbers in the
reference sequence. It includes the start positions for only read sequences specified by
Subset.

Examples

Construct a BioMap object, and then retrieve the start position for different sequences in
the object:

% Construct a BioMap object from a SAM file
BMObj1l = BioMap("exl.sam");
% Retrieve the start property of the second element in the object
Start_2 = getStart(BMObjl, 2)
Start 2 =
3
% Retrieve the start properties of the first and third elements in
% the object
Start_1_3 = getStart(BMObj1, [1 31)
Start_1 3 =

1
5

% Retrieve the start properties of all elements in the object
Start_All = getStart(BMObj1);

1-61

1 Alphabetical List

Alternatives

An alternative to using the getStart method is to use dot indexing with the Start
property:

BioObj .Start(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
setStart | BioMap | getStop

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-62

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

getSummary

getSummary

Class: BioMap

Print summary of BioMap object

Syntax

getSummary(BioObj)
ds = getSummary(BioObj)

Description

getSummary(BioObj) prints a summary of a BioMap object. The summary includes the
names of references, the number of sequences mapped to each reference, and the genomic
range that the sequences cover in each reference.

ds = getSummary(BioObj) returns the summary information in a dataset array.

Input Arguments
BioObj

Object of the BioMap class.

Output Arguments
ds

dataset array containing the summary of the BioMap object, BioObj. The dataset array
has an observation (row) for each reference in BioObj, and two variables (columns): the
number of sequences mapped to each reference and the genomic range that the sequences
cover in each reference.

getSummary stores additional metadata for the BioMap object in the UserData property
of ds, which you can access using ds.Properties.UserData.

1-63

1 Alphabetical List

Examples

Construct a BioMap object, and then display a summary of the object:

% Construct a BioMap object from a SAM file
BMObj2 = BioMap(“ex2.sam®);
getSummary(BMObj2)

BioMap summary:
Name: *=*
Container_Type: "Data is file indexed."
Total_Number_of_Sequences: 3307

Number_of_References_in_Dictionary: 2

Number_of_Sequences Genomic_Range
seql 1501 1 1569
seq2 1806 1 1567
See Also
BioMap
How To

. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-64

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

setFlag

setFlag

Class: BioMap

Set read sequence flags for BioMap object

Syntax

NewObj
NewObj

setFlag(Bio0Obj, Flag)
setFlag(BioObj, MappingQuality, Subset)

Description

NewObj = setFlag(BioObj, Flag) returns NewObj, a new BioMap object,
constructed from BioObj, an existing BioMap object, with the Flag property set to F1ag,
a vector of nonnegative integers indicating the bit-wise information that specifies the
status of each of the 11 flags described by the SAM format specification.

NewObj = setFlag(BioObj, MappingQuality, Subset) returns NewObj, a

new BioMap object, constructed from BioObj, an existing BioMap object, with the
Flag property of a subset of the elements set to F1ag, a vector of nonnegative integers
indicating the bit-wise information that specifies the status of each of the 11 flags
described by the SAM format specification. It sets the Flag property for only the object
elements specified by Subset.

Tips

To update the Flag property in an existing BioMap object, use the same object as the
input BioObj and the output NewObj.

Input Arguments
BioObj

Object of the BioMap class.

1-65

http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-66

Note: If BioObj was constructed from a BiolndexedFi le object, you cannot set its
Flag property.

Default:
Flag

Vector of nonnegative integers. Each integer corresponds to one read sequence and
indicates the bit-wise information that specifies the status of each of the 11 flags
described by the SAM format specification. These flags describe different sequencing and
alignment aspects of a read sequence.

Default:
Subset
One of the following to specify a subset of the elements in B100bj:

+ Vector of positive integers
* Logical vector

* Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Flag and Subset. If you use a cell array of header strings to specify Subset, be aware
that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewOb j

Object of the BioMap class.

Examples

Construct a BioMap object, and then set a subset of the flags:

http://samtools.sourceforge.net/SAM1.pdf

setFlag

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam");

% Set the Flag property of the second element to a new value
BMObj1l = setFlag(BMObjl, 75, 2);

Alternatives

An alternative to using the setFlag method to update an existing object is to use dot
indexing with the Flag property:

BioObj .Flag(Indices) = NewFlag

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewFlag is a
vector of nonnegative integers indicating the bit-wise information that specifies the
status of each of the 11 flags described by the SAM format specification. Each integer
corresponds to one read sequence in a BioMap object. Indices and NewFlag must have
the same number and order of elements.

See Also
getFlag | BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive
. SAM format specification

1-67

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-68

setMappingQuality

Class: BioMap

Set sequence mapping quality scores for BioMap object

Syntax

NewObj
NewObj

setMappingQuality(BioObj, MappingQuality)
setMappingQuality(BioObj, MappingQuality, Subset)

Description

NewObj = setMappingQuality(BioObj, MappingQuality) returns NewObj,

a new BioMap object, constructed from BioObj, an existing BioMap object, with the
MappingQual ity property set to MappingQuality, a vector of integers specifying the
mapping quality scores for read sequences.

NewObj = setMappingQuality(BioObj, MappingQuality, Subset) returns
NewObj, a new BioMap object, constructed from BioObj, an existing BioMap object, with
the MappingQual ity property of a subset of the elements set to MappingQuality, a

vector of integers specifying the mapping quality scores for read sequences. It sets the
mapping quality scores for only the object elements specified by Subset.

Tips

To update mapping quality scores in an existing BioMap object, use the same object as
the input BioObj and the output NewObj.

Input Arguments
BioObj

Object of the BioMap class.

setMappingQuality

Note: If BioObj was constructed from a BiolndexedFi le object, you cannot set its
MappingQual ity property.

Default:

MappingQuality

Vector of integers specifying the mapping quality scores for read sequences.
Default:

Subset

One of the following to specify a subset of the elements in Bio0bj:

+ Vector of positive integers
* Logical vector

* Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements
in MappingQuality and Subset. If you use a cell array of header strings to specify
Subset, be aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewOb j

Object of the BioMap class.

Examples

Construct a BioMap object, and then set a subset of the mapping quality scores:

% Construct a BioMap object from a SAM file

1-69

1 Alphabetical List

BMObj1 = BioMap(“exl.sam");

% Set the Mapping Quality property of the second element to a new
% value

BMObj1l = setMappingQuality(BMObjl, 74, 2);

Alternatives

An alternative to using the setMappingQual ity method to update an existing object is
to use dot indexing with the MappingQual ity property:

BioObj -MappingQuality(Indices) = NewMappingQuality

In the previous syntax, Indices is a vector of positive integers or a logical

vector. Indices cannot be a cell array of strings containing sequence headers.
NewMappingQuality is a vector of integers specifying the mapping quality scores for
read sequences. Indices and NewQuality must have the same number and order of
elements.

See Also
BioMap | getMappingQuality

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-70

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

setMatePosition

setMatePosition

Class: BioMap

Set mate positions of read sequences in BioMap object

Syntax

NewObj = setMatePosition(BioObj,MatePos)
NewOb j setMatePosition(BioObj ,MatePos, Subset)

Description

NewObj = setMatePosition(BioObj,MatePos) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the MatePosition
property set to MatePos, a vector of nonnegative integers specifying the mate positions of
the read sequences with respect to the position numbers in the reference sequence.

NewObj = setMatePosition(BioObj,MatePos,Subset) returns NewObj, a

new BioMap object, constructed from BioObj, an existing BioMap object, with the
MatePosition property of a subset of the elements set to MatePos, a vector of
nonnegative integers specifying the mate positions of the read sequences with respect to
the position numbers in the reference sequence. The setMatePosition method sets the
mate positions for only the object elements specified by Subset.

Tips
* To update mate positions in an existing BioMap object, use the same object as the

input BioObj and the output NewObj.

Input Arguments
BioObj

Object of the BioMap class.

1-71

1 Alphabetical List

1-72

Note: If BioObj was constructed from a BiolndexedFi le object, you cannot set its
MatePosition property.

Default:
MatePos

Vector of nonnegative integers specifying the mate positions of the read sequences with
respect to the position numbers in the reference sequence.

Default:
Subset
One of the following to specify a subset of the elements in BioObj:

* Vector of positive integers
* Logical vector

* Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
MatePos and Subset. If you use a cell array of header strings to specify Subset, be aware
that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewOb j

Object of the BioMap class.

Examples

Construct a BioMap object, and then set a subset of the sequence mate position values:

setMatePosition

% Construct a BioMap object from a SAM file and determine the header for the second el
BMObj1 = BioMap(“exl.sam");
BMObj1.Header(2)

ans =

"EAS54_65:7:152:368:113"

% Set the MatePosition property of the second element to a new value of 5
BMObj1l = setMatePosition(BMObjl, 5, {"EAS54_65:7:152:368:113"});

% Set the MatePosition properties of the first and third elements in
% the object to 6 and 7 respectively
BMObj1l = setMatePosition(BMObjl, [6 7], [1 3D):

% Set the MatePosition property of all elements in the object to zero

y = zeros(1,BMObj1._NSeqs);
BMObj1l = setMatePosition(BMObj1l,y);

Alternatives

An alternative to using the setMatePosition method to update an existing object is to
use dot indexing with the MatePosition property:

BioObj -MatePosition(Indices) = NewMatePos

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewMatePos is a
vector of integers specifying the mate positions of the read sequences with respect to the
position numbers in the reference sequence. Indices and NewMatePos must have the
same number and order of elements.

See Also

BioMap | getMatePosition

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

1-73

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

. SAM format specification

1-74

http://samtools.sourceforge.net/SAM1.pdf

setReference

setReference

Class: BioMap

Set name of reference sequence for BioMap object

Syntax

NewObj = setReference(BioObj, Reference)

Description
NewObj = setReference(BioObj, Reference) returns NewObj, a new BioMap

object, constructed from BioObj, an existing BioMap object, with the Reference
property set to Reference, a string specifying the name of the reference sequence.

Tips

Rename the reference sequence of an existing BioMap object, by using the same object as
the input BioObj and the output NewObj.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Reference

String specifying the name of the reference sequence.

Default:

1-75

1 Alphabetical List

1-76

Output Arguments

NewOb j

Object of the BioMap class.

Examples

Construct a BioMap object, and then set the reference sequence to a new sequence:

% Construct a BioMap object from a SAM file
BMObj1 = BioMap(“exl.sam®);

% Create a random reference sequence
newRefSeq = randseq(50);

% Set the Reference property of the object
BMObj1l = setReference(BMObjl, newRefSeq);

Alternatives

An alternative to using the setReference method to update an existing object is to use
dot indexing with the Reference property:

BioObj .Reference = NewReference

In the previous syntax, NewReference is a string of single-letter codes specifying a
reference sequence.

See Also

getReference | BioMap

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

setSignature

setSignature

Class: BioMap

Set signature (alignment information) for BioMap object

Syntax

NewObj = setSignature(BioObj, Signature)
NewObj setSignature(BioObj, Signature, Subset)

Description

NewObj = setSignature(BioObj, Signature) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the Signature
property set to Signature, a cell array of CIGAR-formatted strings, each representing
how a read sequence aligns to the reference sequence.

NewObj = setSignature(BioObj, Signature, Subset) returns NewObj, a
new BioMap object, constructed from Bio0Obj, an existing BioMap object, with the
Signature property of a subset of the elements set to Signature, a cell array of
CIGAR-formatted strings, each representing how read sequences, specified by Subset,
align to the reference sequence. It sets the signature for only the object elements
specified by Subset.

Tips
+ To update signatures in an existing BioMap object, use the same object as the input
BioObj and the output NewObj.

+ If you modify sequences or start positions in an object, you may need to use the
setSignature method to modify the Signature property of modified sequences
accordingly.

1-77

1 Alphabetical List

1-78

Input Arguments
BioObj

Object of the BioMap class.

Note: If BioObj was constructed from a BiolndexedFi le object, you cannot set its
Signature property.

Default:
Signature

Cell array of CIGAR-formatted strings, each representing how a read sequence aligns to
the reference sequence. Signature strings can be empty.

Default:
Subset
One of the following to specify a subset of the elements in Bio0Obj:

* Vector of positive integers
* Logical vector

* Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Signature and Subset. If you use a cell array of header strings to specify Subset, be
aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewOb j

Object of the BioMap class.

setSignature

Examples

Construct a BioMap object, and then set a subset of the signatures:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam®);

% Set the Signature property of the second element to a new value
BMObj1l = setSignature(BMObjl, {"36M"}, 2);

Alternatives

An alternative to using the setSignature method to update an existing object is to use
dot indexing with the Signature property:

BioObj .Signature(Indices) = NewSignature

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewSignature
is a string or a cell array of CIGAR-formatted strings, each representing how a read
sequence aligns to the reference sequence. Signature strings can be empty. Indices and
NewSignature must have the same number and order of elements.

See Also

getSignature | setStart | BioMap | setSequence | getAlignment

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive
. SAM format specification

1-79

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-80

setStart

Class: BioMap

Set start positions of aligned read sequences in BioMap object

Syntax

NewObj = setStart(BioObj, Start)
NewObj setStart(BioObj, Start, Subset)

Description

NewObj = setStart(BioObj, Start) returns NewObj, a new BioMap object,
constructed from Bio0bj, an existing BioMap object, with the Start property set to
Start, a vector of positive integers specifying the start positions of the aligned read
sequences with respect to the position numbers in the reference sequence. Modifying the
Start property shifts the aligned sequences.

NewObj = setStart(BioObj, Start, Subset) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the Start property
of a subset of the elements set to Start, a vector of positive integers specifying the
start positions of the aligned read sequences with respect to the position numbers in the
reference sequence. It sets the start positions for only the object elements specified by
Subset.

Tips

+ To update start positions in an existing BioMap object, use the same object as the
input BioObj and the output NewObj.

+ If you modify sequences or signatures in an object, you may need to use the setStart
method to modify the Start property to shift the alignment of modified sequences
accordingly.

setStart

Input Arguments
BioObj

Object of the BioMap class.

Note: If BioObj was constructed from a BiolndexedFi le object, you cannot set its
Start property.

Default:
Start

Vector of positive integers specifying the start positions of the aligned read sequences
with respect to the position numbers in the reference sequence.

Default:
Subset
One of the following to specify a subset of the elements in Bio0Obj:

* Vector of positive integers
* Logical vector

* Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Start and Subset. If you use a cell array of header strings to specify Subset, be aware
that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewOb j

Object of the BioMap class.

1-81

1 Alphabetical List

1-82

Examples

Construct a BioMap object, and then set a subset of the sequence start values:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap(“exl.sam®);

% Set the Start property of the second element to a new value
BMObj1l = setStart(BMObjl, 5, 2);

Alternatives

An alternative to using the setStart method to update an existing object is to use dot
indexing with the Start property:

BioObj .Start(Indices) = NewStart

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewStart is a
vector of integers specifying the start positions of the aligned read sequences with respect
to the position numbers in the reference sequence. Indices and NewStart must have
the same number and order of elements.

See Also

getStart | setSignature | BioMap | setSequence

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

BioMap class

BioMap class

Superclasses: BioRead

Contain sequence, quality, alignment, and mapping data

Description

The BioMap class contains data from short-read sequences, including sequence headers,
read sequences, quality scores for the sequences, and data about how each sequence
aligns to a given reference. This data is typically obtained from a high-throughput
sequencing instrument.

Construct a BioMap object from short-read sequence data. Each element in the object has
a sequence, header, quality score, and alignment/mapping information associated with it.
Use the object properties and methods to explore, access, filter, and manipulate all or a
subset of the data, before analyzing or viewing the data.

Construction
BioMapobj = BioMap constructs BioMapobj, which is an empty BioMap object.

BioMapobj = BioMap(File) constructs BioMapobj, a BioMap object, from File, a
SAM- or BAM-formatted file whose reads are ordered by start position in the reference
sequence. The data remains in the source file, and the BioMap object accesses it using
one or two auxiliary index files. For a SAM-formatted file, MATLAB uses or creates one
index file that must have the same name as the source file, but with an . 1dx extension.
For a BAM-formatted file, MATLAB uses or creates two index files that must have the
same name as the source file, but with *.bai and *. I inearindex extensions. If the
index files are not found in the same folder as the source file, the BioMap constructor
function creates the index files in that folder.

When you pass in an unordered BAM-formatted file, the constructor automatically orders
the file and writes the data to an ordered file using the same base name and extension
with an added string “.ordered” before the extension. The new file is indexed and used to
instantiate the new BioMap object.

1-83

1 Alphabetical List

1-84

Note: Because the data remains in the source file and is accessed using the index files:

* Do not delete the source file (SAM or BAM).

* Do not delete the index files (*. idx,*.bai, or *. linearindex).
* You cannot modify BioMapobj properties.

Tip To determine the number of reference sequences included in your source file, use the
saminfo or baminfo function. Use SAMtools to check if the reads in your source file are
ordered by position in the reference sequence, and also to reorder them, if needed.

BioMapobj = BioMap(Struct) constructs BioMapobj, a BioMap object, from Struct, a
MATLAB structure containing sequence and alignment information, such as returned by
the samread or bamread function. The data from Struct remains in memory, which lets
you modify the BioMapobj properties.

BioMapobj = BioMap(, "Name " ,Value) constructs the BioMap object using
any of previous input arguments and additional options, specified as name-value pair
arguments as follows.

BioMapobj = BioMap(___ ,"SelectReference”,SelectRefValue) selects one

or more references when the source data contains sequences mapped to more than

one reference. By default, the constructor includes all of the references in the header
dictionary of the source file. When the header dictionary is not available, the constructor
defaults to including all reference names found in the source data. SelectRefValue is
either a string of a cell array of strings. By using this option, you can prevent the BioMap
constructor from creating auxiliary index files for references that you will not use in your
analysis.

BioMapobj = BioMap(File, "InMemory" , InMemoryValue) specifies whether to
place the data in memory or leave the data in the source file. Leaving the data in the
source file and accessing via an index file is more memory efficient, but does not let you
modify properties of BioMapobj. Choices are true or false (default). If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Tip Set the 'InMemory' name-value pair argument to true if you want to modify the
properties of BioMapobj.

http://samtools.sourceforge.net/

BioMap class

BioMapobj = BioMap(, "IndexDir", IndexDirValue) specifies the path to the
folder where the index files (*. 1dx,*.bai, or *. linearindex) either exist or will be
created.

Tip Use the 'IndexDir' name-value pair argument if you do not have write access to the
folder where the source file is located.

BioMapobj = BioMap(__ ,"Sequence”,SequenceValue) constructs BioMapobj,
a BioMap object, from SequenceValue, a cell array of strings containing the letter
representations of nucleotide sequences. This name-value pair works only if the data is
read into memory.

BioMapobj = BioMap(, "Header " ,HeaderValue) constructs BioMapobj, a
BioMap object, from HeaderValue, a cell array of strings containing header text for
nucleotide sequences. This name-value pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,"Quality”,QualityValue) constructs BioMapobj,

a BioMap object, from QualityValue, a cell array of strings containing the ASCII
representation of per-base quality scores for nucleotide sequences. This name-value pair
works only if the data is read into memory.

BioMapobj = BioMap(___ ,"Reference”,ReferenceValue) constructs BioMapobj,
a BioMap object, and sets the Reference property to ReferenceValue, a cell array of
strings containing the name of the reference sequences. This name-value pair works only
if the data is read into memory.

BioMapobj = BioMap(___ ,"Signature”,SignatureValue) constructs BioMapobj,
a BioMap object, from SignatureValue, a cell array of strings containing information
describing the alignment of each read sequence with the reference sequence. This name-
value pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,"Start”,StartValue) constructs BioMapobj, a BioMap
object, from StartValue, a vector of positive integers specifying the position in the
reference sequence where the alignment of each read sequence starts. This name-value
pair works only if the data is read into memory.

BioMapobj = BioMap(, "Flag” ,FlagValue) constructs BioMapobj, a BioMap
object, from FlagValue, a vector of positive integers indicating the bit-wise information
for the status of the 11 flags specified by the SAM format specification. These flags

1-85

1 Alphabetical List

1-86

describe different sequencing and alignment aspects of the read sequences. This name-
value pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,"MappingQuality” ,MappingQualityValue)
constructs BioMapobj, a BioMap object, from MappingQualityValue, a vector of positive
integers specifying the mapping quality for each read sequence. This name-value pair
works only if the data is read into memory.

BioMapobj = BioMap(, "MatePosition" ,MatePositionValue) constructs
BioMapobj, a BioMap object, from MatePositionValue, a vector of nonnegative integers
specifying the mate position for each read sequence. This name-value pair works only if
the data is read into memory.

Input Arguments

File

String specifying a SAM- or BAM-formatted file that contains only one reference
sequence and whose reads are ordered by start position in the reference sequence.

Default:
Struct

MATLAB structure containing sequence and alignment information, such as returned by
the samread or bamread function. The structure must have a one-based start position.

Default:
SelectRefValue

String or cell array of strings specifying the name of the reference sequences in File or
Struct. Use saminfo or baminfo to see a complete list of reference sequences in File.

InMemoryValue

Logical specifying whether to place the data in memory or leave the data in the source
file. Leaving the data in the source file and accessing it via an index file is more memory
efficient, but does not let you modify properties of the BioMap object. If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Default: false

BioMap class

IndexDirValue

String specifying the path to the folder where the index file either exists or will be
created.

Default: Folder where File is located
SequenceValue

Cell array of strings containing the letter representations of nucleotide sequences.
This information populates the BioMap object's Sequence property. The samread and
bamread functions return this information in the Sequence field of the output structure.

Default:
Qualityvalue

Cell array of strings containing the ASCII representation of per-base quality scores for
nucleotide sequences. This information populates the BioMap object's Qual ity property.
The samread and bamread functions return this information in the Qual ity field of the
output structure.

Default:
HeaderValue

Cell array of strings containing header text for nucleotide sequences. This information
populates the BioMap object's Header property. The samread and bamread functions
return this information in the QueryName field of the return structure.

Default:
NameValue

String describing the BioMap object. This information populates the object's Name
property.

Default: * ", an empty string
ReferenceValue

Cell array of strings containing the names of the reference sequences. This information
populates the object's Reference property. The samread function returns this

1-87

1 Alphabetical List

1-88

information in the ReferenceName field of the SAMStruct output argument. The
bamread function returns this information in the Reference field of the HeaderStruct
output structure.

Default:
SignatureValue

Cell array of strings containing information describing the alignment of each read
sequence with the reference sequence. The samread and bamread functions return
this information in the CigarString field of the return structure. This information
populates the object's Signature property.

Default:
StartvValue

Vector of positive integers specifying the position in the reference sequence where the
alignment of each read sequence starts. This information populates the object's Start
property. The samread and bamread functions return this information in the Position
field of the output structure.

Default:
Flagvalue

Vector of positive integers indicating the bit-wise information for the status of the 11
flags specified by the SAM format specification. These flags describe different sequencing
and alignment aspects of the read sequences. This information populates the object's
Flag property. The samread and bamread functions return this information in the Flag
field of the output structure.

Default:
MappingQualityValue

Vector of positive integers specifying the mapping quality for each read sequence.

This information populates the object's MappingQual ity property. The samread and
bamread functions return this information in the MappingQual ity field of the output
structure.

Default:

BioMap class

MatePositionValue

Vector of nonnegative integers specifying the mate position for each read sequence. This
information populates the object's MatePosition property. The samread and bamread
functions return this information in the MatePosition field of the output structure.

Default:

Properties

Flag
Flags associated with all read sequences represented in the BioMap object.

Vector of positive integers such that there is an integer for each read sequence in the
object. Each integer indicates the bit-wise information that specifies the status of the
11 flags described by the SAM format specification. These flags describe different
sequencing and alignment aspects of a read sequence. A one-to-one relationship exists
between the number and order of elements in Flag and Sequence, unless Flag is an
empty vector.

Header
Headers associated with all read sequences represented in the BioMap object.

Cell array of strings, such that there is a header for each read sequence in the object.
Header strings can be empty. A one-to-one relationship exists between the number and
order of elements in Header and Sequence, unless Header is an empty cell array.

MatePosition
Positions of the mates for all read sequences represented in the BioMap object.

Vector of nonnegative integers such that there is an integer for each read sequence in the
object. Each integer indicates the position of the corresponding mate sequence, relative to
the reference sequence. A one-to-one relationship exists between the number and order of
elements in MatePosition and Sequence, unless MatePosition is an empty vector.

Not all values in the MatePosition vector represent valid mate positions, for example,
mates that map to a different reference sequence or mates that do not map. To determine
if a mate position is valid, use the Fi lterByFlag method with the "pairedInMap” flag.

1-89

http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-90

MappingQuality

Mapping quality scores associated with all read sequences represented in the BioMap
object.

Vector of integers, such that there is a mapping quality score for each read sequence in
the object. A one-to-one relationship exists between the number and order of elements in
MappingQual ity and Sequence, unless MappingQual ity is an empty vector.

Name

Description of the BioMap object.

Single string describing the BioMap object.
Default: * ", an empty string

NSeqgs

Number of sequences in the BioMap object.
This information is read only.

Quality

Per-base quality scores associated with all read sequences represented in the BioMap
object.

Cell array of strings, such that there is a quality string for each read sequence in the
object. Each quality string is an ASCII representation of per-base quality scores for a
read sequence. Quality strings can be empty. A one-to-one relationship exists between
the number and order of elements in Qual i1ty and Sequence, unless Qual ity is an
empty cell array.

Reference
Reference sequences in the BioMap object.

BioMapobj .NSeqs-by-1 cell array of strings specifying the names of the reference
sequences.

The reference sequences are the sequences against which the read sequences are aligned.
Sequence

Read sequences in the BioMap object.

BioMap class

Cell array of strings containing the letter representations of the read sequences.
SequenceDictionary

Cell array of strings that catalogs the names of the references available in the BioMap
object.

This information is read only.
Signature

Alignment information associated with all read sequences represented in the BioMap
object.

Cell array of CIGAR strings, such that there is alignment information for each read
sequence in the object. Each string represents how a read sequence aligns to the
reference sequence. Signature strings can be empty. A one-to-one relationship exists
between the number and order of elements in Signature and Sequence, unless
Signature is an empty cell array.

Start

Start positions of all aligned read sequences represented in the BioMap object.

Vector of integers, such that there is a start position for each read sequence in the object.
Each integer specifies the start position of the aligned read sequence with respect to the

position numbers in the reference sequence. A one-to-one relationship exists between the
number and order of elements in Start and Sequence, unless Start is an empty vector.

Methods

getStop

Compute stop positions of aligned read

sequences from BioMap object
filterByFlag

Filter sequence reads by SAM flag
getAlignment

Construct alignment represented in
BioMap object

1-91

1 Alphabetical List

1-92

getBaseCoverage

getCompactAlignment

getCounts

getFlag

getIndex

getInfo

getMappingQuality

getMatePosition

getReference

getSignature

getStart

getSummary

Return base-by-base alignment coverage of
reference sequence in BioMap object

Construct compact alignment represented
in BioMap object

Return count of read sequences aligned to
reference sequence in BioMap object

Retrieve read sequence flags from BioMap
object

Return indices of read sequences aligned to
reference sequence in BioMap object

Retrieve information for single element of
BioMap object

Retrieve sequence mapping quality scores
from BioMap object

Retrieve mate positions of read sequences
from BioMap object

Retrieve reference sequence from BioMap
object

Retrieve signature (alignment information)
from BioMap object

Retrieve start positions of aligned read
sequences from BioMap object

Print summary of BioMap object

BioMap class

setFlag

setMappingQuality

setMatePosition

setReference

setSignature

setStart

Inherited Methods

combine
get
getHeader

getQuality

getSequence

getSubsequence

Set read sequence flags for BioMap object

Set sequence mapping quality scores for
BioMap object

Set mate positions of read sequences in
BioMap object

Set name of reference sequence for BioMap
object

Set signature (alignment information) for
BioMap object

Set start positions of aligned read
sequences in BioMap object

Combine two objects
Retrieve property of object
Retrieve sequence headers from object

Retrieve sequence quality scores from
object

Retrieve sequences from object

Retrieve partial sequences from object

1-93

1 Alphabetical List

getSubset

plotSummary
set

setHeader
setQuality
setSequence
setSubsequence
setSubset

write

Copy Semantics

Create object containing subset of elements
from object

Plot summary statistics of BioRead object
Set property of object

Set sequence headers for object

Set sequence quality scores for object

Set sequences for object

Set partial sequences for object

Set elements for object

Write contents of BioRead or BioMap object
to file

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

BioMap objects support dot . indexing to extract, assign, and delete data.

1-94

BioMap class

Examples

Construct a BioMap object

This example shows how to construct a BioMap object from a SAM file and from a

structure

Construct a BioMap object from a SAM-formatted file that is provided with

Bioinformatics Toolbox™ and set the Name property.

BMObj 1

BMObj 1

BioMap

Sequ

BioMap(“exl.sam", “Name",

with properties:

enceDictionary: "seql”
Reference: [1501x1
Signature: [1501x1
Start: [1501x1
MappingQuality: [1501x1
Flag: [1501x1
MatePosition: [1501x1
Quality: [1501x1
Sequence: [1501x1
Header: [1501x1

NSeqs: 1501

File
File
File
File
File
File
File
File
File

Name: “MyObject”

indexed
indexed
indexed
indexed
indexed
indexed
indexed
indexed
indexed

"MyObject™)

property]
property]
property]
property]
property]
property]
property]
property]
property]

Construct a structure containing information from a SAM file.

SAMStruc

t = samread("exl.sam");

Construct a BioMap object from this structure.

BMObj 2

BMObj 2

BioMap

BioMap(SAMStruct)

with properties:

1-95

1 Alphabetical List

SequenceDictionary: {"seql"}
Reference: {1501x1 cell}
Signature: {1501x1 cell}

Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]
Flag: [1501x1 uintl6]
MatePosition: [1501x1 uint32]
Quality: {1501x1 cell}
Sequence: {1501x1 cell}
Header: {1501x1 cell}
NSeqs: 1501
Name: **

See Also

BiolndexedFile | BioRead | saminfo | samread | baminfo | bamread |
bamindexread | align2cigar | cigar2align

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive
. SAM format specification
. SAMtools

1-96

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/

aa2nt

aa2nt

Convert amino acid sequence to nucleotide sequence

Syntax

SegNT = aa2nt(SeqAA)
SegNT = aa2nt(SegAA, ... GeneticCode", GeneticCodeValue, ...)
SegNT = aaz2nt(SeqAA, ..."Alphabet" AlphabetValue, ...)

Input Arguments

SegAA One of the following:

+ String of single-letter codes specifying an amino
acid sequence. For valid letter codes, see the table
Mapping Amino Acid Letter Codes to Integers. Unknown
characters are mapped to O.

+ Row vector of integers specifying an amino acid sequence.
For valid integers, see the table Mapping Amino Acid
Integers to Letter Codes.

+ MATLAB structure containing a Sequence field that
contains an amino acid sequence, such as returned by
fastaread, getgenpept, genpeptread, getpdb, or
pdbread.

Examples: "ARN" or [1 2 3]

GeneticCodeValue Integer or string specifying a genetic code number or
code name from the table Genetic Code. Default is 1 or
"Standard".

Tip If you use a code name, you can truncate the name to the
first two letters of the name.

AlphabetValue String specifying a nucleotide alphabet. Choices are:

1-97

1 Alphabetical List

1-98

* "DNAT (default) — Uses the symbols A, C, G, and T.
* "RNA" — Uses the symbols A, C, G, and U.

Output Arguments

SeqNT Nucleotide sequence specified by a character string of letter
codes.

Description

SeqNT = aa2nt(SeqAA) converts an amino acid sequence, specified by SegAA, to a
nucleotide sequence, returned in SegNT, using the standard genetic code.

In general, the mapping from an amino acid to a nucleotide codon is not a one-to-

one mapping. For amino acids with multiple possible nucleotide codons, this function
randomly selects a codon corresponding to that particular amino acid. For the ambiguous
characters B and Z, one of the amino acids corresponding to the letter is selected
randomly, and then a codon sequence is selected randomly. For the ambiguous character
X, a codon sequence is selected randomly from all possibilities.

SegNT = aaz2nt(SeqAA, ..."PropertyName®, PropertyValue, ...) callsaa2nt
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

SegNT = aaz2nt(SeqAA, ..."GeneticCode", GeneticCodeValue, ...) specifies
a genetic code to use when converting an amino acid sequence to a nucleotide sequence.
GeneticCodeValue can be an integer or string specifying a code number or code name
from the table Genetic Code. Default is 1 or "Standard”. The amino acid to nucleotide

codon mapping for the Standard genetic code is shown in the table Standard Genetic
Code.

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

aa2nt

SeqNT = aa2nt(SeqAA, ..."Alphabet”™ AlphabetValue, ...) specifiesa

nucleotide alphabet. AlphabetValue can be "DNA*", which uses the symbols A, C, G, and
T, or "RNA*", which uses the symbols A, C, G, and U. Default is "DNA".

Genetic Code

Code Number Code Name
Standard
2 Vertebrate Mitochondrial
3 Yeast Mitochondrial
4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma
Invertebrate Mitochondrial
Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial
10 Euplotid Nuclear
11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear
13 Ascidian Mitochondrial
14 Flatworm Mitochondrial
15 Blepharisma Nuclear
16 Chlorophycean Mitochondrial
21 Trematode Mitochondrial
22 Scenedesmus Obliquus Mitochondrial
23 Thraustochytrium Mitochondrial

Standard Genetic Code

Amino Acid Name Amino Acid Code Nucleotide Codon

Alanine A GCT GCC GCA GCG

Arginine R CGT CGC CGA CGG AGA AGG
Asparagine N ATT AAC

1-99

1 Alphabetical List

1-100

Amino Acid Name Amino Acid Code Nucleotide Codon

Aspartic acid D GAT GAC

(Aspartate)

Cysteine C TGT TGC

Glutamine Q CAA CAG

Glutamic acid E GAA GAG

(Glutamate)

Glycine G GGT GGC GGA GGG
Histidine H CAT CAC

Isoleucine | ATT ATC ATA

Leucine L TTA TTG CTT CTC CTA CTG
Lysine K AAA AAG

Methionine M ATG

Phenylalanine F TTT TTC

Proline P CCT CCC CCA CCG

Serine S TCT TCC TCA TCG AGT AGC
Threonine T ACT ACC ACA ACG
Tryptophan W TGG

Tyrosine Y TAT, TAC

Valine \Y GTT GTC GTA GTG
Asparagine or Aspartic B Random codon from D and N

acid (Aspartate)

Glutamine or V4 Random codon from E and Q
Glutamic acid

(Glutamate)

Unknown amino acid X Random codon

(any amino acid)

Translation stop

TAA TAG TGA

Gap of indeterminate
length

aa2nt

Amino Acid Name Amino Acid Code Nucleotide Codon

Unknown character ? ???
(any character or
symbol not in table)

Examples

+ Convert an amino acid sequence to a nucleotide sequence using the standard genetic
code.

aa2nt("MATLAP")
ans =

ATGGCGACGTTAGCGCCG

+ Convert an amino acid sequence to a nucleotide sequence using the Vertebrate
Mitochondrial genetic code.

aa2nt("MATLAP®, "GeneticCode®, 2)
ans =

ATGGCAACTCTAGCGCCT

+ Convert an amino acid sequence to a nucleotide sequence using the Echinoderm
Mitochondrial genetic code and the RNA alphabet.

aa2nt("MATLAP*" , "GeneticCode”, "ec”, "Alphabet”, "RNA")
ans =

AUGGCCACAUUGGCACCU

+ Convert an amino acid sequence with the ambiguous character B.
aa2nt("abcd®)
Warning: The sequence contains ambiguous characters.
ans =

GCCACATGCGAC

1-101

1 Alphabetical List

See Also

aminolookup | baselookup | geneticcode | nt2aa | revgeneticcode |
seqgviewer | rand

1-102

aacount

aacount

Count amino acids in sequence

Syntax

AAStruct = aacount(SeqAA)

AAStruct = aacount(SeqAA, ..."Ambiguous®, AmbiguousValue, ...)
AAStruct = aacount(SeqAA, ..."Gaps", GapsValue, ...)

AAStruct = aacount(SeqAA, ..."Chart®, ChartValue, ...)

Input Arguments

SeqAA One of the following:

* String of single-letter codes specifying an amino acid
sequence. For valid letter codes, see the table Mapping
Amino Acid Letter Codes to Integers. Unknown characters
are mapped to O.

* Row vector of integers specifying an amino acid sequence.
For valid integers, see the table Mapping Amino Acid
Integers to Letter Codes.

* MATLAB structure containing a Sequence field that
contains an amino acid sequence, such as returned by
fastaread, getgenpept, genpeptread, getpdb, or
pdbread.

Examples: "ARN" or [1 2 3]

AmbiguousValue String specifying how to treat ambiguous amino acid characters
(B, Z, or X). Choices are:

* "ignore"” (default) — Skips ambiguous characters

* "bundle®” — Counts ambiguous characters and reports the
total count in the Ambiguous field.

* "prorate” — Counts ambiguous characters and distributes
them proportionately in the appropriate fields. For example,

1-103

1 Alphabetical List

the counts for the character B are distributed evenly between
the D and N fields.

* "individual " — Counts ambiguous characters and reports
them in individual fields.

* "warn® — Skips ambiguous characters symbols and displays
a warning.

GapsValue Specifies whether gaps, indicated by a hyphen (-), are counted
or ignored. Choices are true or Ffalse (default).

ChartValue String specifying a chart type. Choices are "pie” or "bar”.

Output Arguments

AAStruct 1-by-1 MATLAB structure containing fields for the standard
20 amino acids (A,R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y,
and V).

Description

AAStruct = aacount(SegAA) counts the number of each type of amino acid in

SegAA, an amino acid sequence, and returns the counts in AAStruct, a 1-by-1 MATLAB
structure containing fields for the standard 20 amino acids (A, R, N, D, C,Q, E, G, H, I, L, K,
M, F,P,S, T,W,Y, and V).

* Ambiguous amino acid characters (B, Z, or X), gaps, indicated by a hyphen (-), and
end terminators (*) are ignored by default.

* Unrecognized characters are ignored and cause the following warning message.

Warning: Unknown symbols appear in the sequence. These will be ignored.

AAStruct = aacount(SeqAA, ..."PropertyName®, PropertyValue, ...) calls
aacount with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

1-104

aacount

AAStruct = aacount(SeqAA, ..."Ambiguous®, AmbiguousValue, ...)
specifies how to treat ambiguous amino acid characters (B, Z, or X). Choices are:

+ T"ignore” (default)

* "bundle*

* "prorate”

* "individual”

- "warn®

AAStruct = aacount(SeqAA, ..."Gaps", GapsValue, ...) specifies whether

gaps, indicated by a hyphen (-), are counted or ignored. Choices are true or false
(default).

AAStruct = aacount(SeqAA, ..."Chart", ChartValue, ...) createsa chart
showing the relative proportions of the amino acids. ChartValue can be "pie” or
"bar-.

Examples

1 Create an amino acid sequence.

Seq = "MATLAB-;
2 Count the amino acids in the sequence and return the results in a structure.
AA = aacount(Seq)

AA =

VTMETARAM=TOMOOOTZ2T>
OO0OFrRPROFRPROOOOOOOOON

1-105

1 Alphabetical List

<<=4HW»m
[eNeoNeN Ne]

3 Get the count for alanine (A) residues.
AA_A
ans =

2

4 Use the fastaread function to read the sequence for the human p53 tumor protein
into a MATLAB structure.

p53 = fastaread("p53aa.txt")

p53

Header: "gi|8400738]ref|NP_000537.2] tumor protein p53 [Homo sapiens]”
Sequence: [1x393 char]

5 Count the amino acids in the sequence, return the results in a structure, and display
the results in a pie chart.

AA = aacount(p53, “chart", "pie”);

1-106

aacount

i

File Edit View Insert Tools Desktop Window Help b

Ddde | RROUDEL-|C|0E|a

See Also

aminolookup | atomiccomp | basecount | codoncount | dimercount |
isoelectric | molweight | proteinplot | proteinpropplot | seqviewer

1-107

1 Alphabetical List

1-108

abstract

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set abstract describing experiment in ExpressionSet object

Syntax

Abstract = abstract(ESObj)

NewESObj = abstract(ESObj, NewAbstract)
Description

Abstract = abstract(ESObj) returns a string containing the abstract information
describing the experiment from a MIAME object in an ExpressionSet object.

NewESObj = abstract(ESObj, NewAbstract) replaces the abstract information
in the MIAME object in ESObj, an ExpressionSet object, with NewAbstract, a string

containing new abstract information, and returns NewESObj, a new ExpressionSet
object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.
Default:

NewAbstract

String containing new abstract information.

Default:

abstract

Output Arguments

Abstract

String containing the abstract information describing the experiment from a MIAME
object in an ExpressionSet object.

NewESOb j

Object of the bioma.ExpressionSet class, returned after replacing the abstract
information.

Examples

Construct an ExpressionSet object, ESObJ, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
abstract information stored in the MIAME object stored in the ExpressionSet object:

% Retrieve abstract text from the MIAME object
Abstract = abstract(ESObj)

See Also

bioma.ExpressionSet | bioma.data.MIAME

How To

. “Managing Gene Expression Data in Objects”

1-109

1 Alphabetical List

1-110

addTitle (clustergram)

Add title to clustergram

Syntax

addTitle(CGObject, Title)

addTitle(CGObject, Title, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...)

H = addTitle(CGObject)

Input Arguments

CGObject Clustergram object created with the function clustergram.

Title String used as the title in the Clustergram window.

Output Arguments

H Handle to a MATLAB text object used as the title for the
clustergram.

Description

addTitle(CGObject, Title) adds a title above the clustergram displayed in the
Clustergram window.

addTitle(CGObject, Title, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...) specifies text object properties for the
title. For more information on the property name/property value pairs you can use to
modify the text, see Text Properties.

H = addTitle(CGObject) returns the handle to the text object used as the title for the
clustergram.

addTitle (clustergram)

Examples

Supply a title for the clustergram object created in the first two steps of the “Examples”
on page 1-446 section of the clustergram function reference page. Use 14-point, italic
text for the title.

addTitle(cgo, "Expression Levels During Diauxic Shift*",
"FontSize", 14, "FontAngle®, "ltalic")

Return a handle to the title text object, then use the set function to change the font size
to 16 points.

h = addTitle(cgo)
set(h, "FontSize", 16)

More About

. “clustergram object”

See Also
clustergram | addYLabel | plot | set | addXLabel | get | view

1-111

1 Alphabetical List

addTitle (HeatMap)

Add title to heat map

Syntax

addTitle(HMObject, Title)

addTitle(HMObject, Title, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...)

H = addTitle(HMObject)

Input Arguments

HMObject HeatMap object created with the function HeatMap.

Title String used as the title in the HeatMap window.

Output Arguments

‘H |Handle to a MATLAB text object used as the title for the heat map.

Description

addTitle(HMObject, Title) adds a title above the heat map displayed in the
HeatMap window.

addTitle(HMObject, Title, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...) specifies text object properties for the
title. For more information on the property name/property value pairs you can use to
modify the text, see Text Properties.

H = addTitle(HMObject) returns the handle to the text object used as the title for the
heat map.

1-112

addTitle (HeatMap)

Examples

Supply a title for the HeatMap object created in the “Examples” on page 1- section
of the HeatMap function reference page. Use 14-point, italic text for the title.

addTitle(hmo, “Example Heat Map®, “FontSize®, 14,
"FontAngle®,"l1talic™)

Return a handle to the title text object, then use the set function to change the font size
to 16 points.

h = addTitle(hmo)
set(h, "FontSize", 16)

More About

. “HeatMap object”

See Also
HeatMap | addYLabel | view | addXLabel | plot

1-113

1 Alphabetical List

1-114

addXLabel (clustergram)

Label x-axis of clustergram

Syntax

addXLabel (CGObject, Label)

addXLabel (CGObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...)

H = addXLabel (CGObject)

Input Arguments

CGObject Clustergram object created with the function clustergram.

Label String used as the x-axis label in the Clustergram window.

Output Arguments

H Handle to a MATLAB text object used as the x-axis label for the
clustergram.

Description

addXLabel (CGObject, Label) adds a label below the x-axis of a clustergram
displayed in the Clustergram window.

addXLabel (CGObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...) specifies text object properties for the x-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addXLabel (CGObject) returns the handle to the text object used as the x-axis
label for the clustergram.

addXLabel (clustergram)

Examples

Supply an x-axis label for the clustergram object created in the first two steps of the
“Examples” on page 1-446 section of the clustergram function reference page. Use
12-point, italic text for the label.

addXLabel(cgo, "Diauxic Shift Times", “FontSize", 12,
"FontAngle®, "ltalic")

Return a handle to the x-axis label text object, then use the set function to change the
font size to 14 points.

h = addXLabel (cgo)
set(h, "FontSize", 14)

More About

. “clustergram object”

See Also

clustergram | addYLabel | plot | set | addTitle | get | view

1-115

1 Alphabetical List

1-116

addXLabel (HeatMap)

Label x-axis of heat map

Syntax

addXLabel (HMObject, Label)

addXLabel (HMObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...)

H = addXLabel (HMObject)

Input Arguments

HMObject HeatMap object created with the function HeatMap.

Label String used as the x-axis label in the HeatMap window.

Output Arguments

H Handle to a MATLAB text object used as the x-axis label for the
heat map.

Description

addXLabel (HMObject, Label) adds a label below the x-axis of a heat map displayed
in the HeatMap window.

addXLabel (HMObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...) specifies text object properties for the x-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addXLabel (HMObject) returns the handle to the text object used as the x-axis
label for the heat map.

addXLabel (HeatMap)

Examples

Supply an x-axis label for the HeatMap object created in the “Examples” on page 1-
section of the HeatMap function reference page. Use 12-point, italic text for the label.

addXLabel(hmo, "Times®", “FontSize®, 12, “"FontAngle®, "ltalic")

Return a handle to the x-axis label text object, then use the set function to change the
font size to 14 points.

h = addXLabel (hmo)
set(h, "FontSize", 14)

More About

. “HeatMap object”

See Also
HeatMap | addYLabel | view | addTitle | plot

1-117

1 Alphabetical List

1-118

addYLabel (clustergram)

Label y-axis of clustergram

Syntax

addYLabel (CGObject, Label)

addYLabel (CGObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...)

H = addYLabel (CGObject)

Input Arguments

CGObject Clustergram object created with the function clustergram.

Label String used as the y-axis label in the Clustergram window.

Output Arguments

H Handle to a MATLAB text object used as the y-axis label for the
clustergram.

Description

addYLabel (CGObject, Label) adds a label to the left of the y-axis of a clustergram
displayed in the Clustergram window.

addYLabel (CGObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...) specifies text object properties for the y-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addYLabel (CGObject) returns the handle to the text object used as the y-axis
label for the clustergram.

addYLabel (clustergram)

Examples

Supply a y-axis label for the clustergram object created in the first two steps of the
“Examples” on page 1-446 section of the clustergram function reference page. Use
12-point, italic text for the label.

addYLabel(cgo, "Genes®", “FontSize®, 12, “"FontAngle®, "ltalic")

Return a handle to the y-axis label text object, then use the set function to change the
font size to 14 points.

h = addYLabel (cgo)
set(h, "FontSize", 14)

More About

. “clustergram object”

See Also

clustergram | addXLabel | plot | set | addTitle | get | view

1-119

1 Alphabetical List

1-120

addYLabel (HeatMap)

Label y-axis of heat map

Syntax

addYLabel (HMObject, Label)

addYLabel (HMObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...)

H = addYLabel (HMObject)

Input Arguments

HMObject HeatMap object created with the function HeatMap.

Label String used as the y-axis label in the HeatMap window.

Output Arguments

H Handle to a MATLAB text object used as the y-axis label for the
heat map.

Description

addYLabel (HMObject, Label) adds a label to the left of the y-axis of a heat map
displayed in the HeatMap window.

addYLabel (HMObject, Label, "PropertylName®, PropertyiValue,
"Property2Name®, Property2Value, ...) specifies text object properties for the y-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addYLabel (HMObject) returns the handle to the text object used as the y-axis
label for the heat map.

addYLabel (HeatMap)

Examples

Supply a y-axis label for the HeatMap object created in the “Examples” on page 1-
section of the HeatMap function reference page. Use 12-point, italic text for the label.

addYLabel (hmo, "Samples®, "FontSize", 12, "FontAngle®, “ltalic")

Return a handle to the y-axis label text object, then use the set function to change the
font size to 14 points.

h = addYLabel (hmo)
set(h, "FontSize", 14)

More About

. “HeatMap object”

See Also
HeatMap | addXLabel | view | addTitle | plot

1-121

1 Alphabetical List

affygcrma

Perform GC Robust Multi-array Average (GCRMA) procedure on Affymetrix microarray
probe-level data

Syntax

Expression = affygcrma(CELFiles, CDFFile, SeqFile)

Expression = affygcrma(ProbeStructure, Seq)

Expression = affygcrma(CELFiles, CDFFile, SeqgFile, ..."CELPath-,
CELPathValue, ...)

Expression = affygcrma(CELFiles, CDFFile, SegFile, ..."CDFPath-,
CDFPathValue, ...)

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ..."SegPath”,
SeqPathValue, ...)

Expression = affygcrma(..., "Chiplndex®, ChipIndexValue, ...)
Expression = affygcrma(..., "OpticalCorr®, OpticalCorrValue, ...)
Expression = affygcrma(..., "CorrConst®, CorrConstValue, ...)
Expression = affygcrma(..., "Method", MethodValue, ...)
Expression = affygcrma(..., "TuningParam®, TuningParamValue, ...)
Expression = affygcrma(..., "GSBCorr*, GSBCorrValue, ...)
Expression = affygcrma(..., "Median®, MedianValue, ...)
Expression = affygcrma(..., "Output®, OutputValue, ...)
Expression = affygcrma(..., "Showplot®, ShowplotValue, ...)
Expression = affygcrma(..., "Verbose", VerboseValue, ...)

Input Arguments

CELFiles Any of the following:

String specifying a single CEL file name.

"** which reads all CEL files in the current folder.

" ", which opens the Select CEL Files dialog box from
which you select the CEL files. From this dialog box, you

can press and hold Ctrl or Shift while clicking to select
multiple CEL files.

1-122

affygerma

Cell array of CEL file names.

CDFFile

Either of the following:

String specifying a CDF file name.

" ", which opens the Select CDF File dialog box from
which you select the CDF file.

SeqFile

Either of the following:

String specifying a file name of a sequence file (tab-
separated or FASTA) that contains the following

information for a specific type of Affymetrix” GeneChip®
array:
* Probe set IDs
Probe x-coordinates
* Probe y-coordinates
* Probe sequences in each probe set
Affymetrix GeneChip array type (FASTA file only)

The sequence file (tab-separated or FASTA) must be on
the MATLAB search path or in the Current Folder (unless
you use the SeqPath property). In a tab-separated file,
each row represents a probe; in a FASTA file, each header
represents a probe.

An N-by-25 matrix of sequence information, such as
returned by affyprobeseqgread.

Seq

An N-by-25 matrix of sequence information, such as returned
by affyprobeseqread.

ProbeStructure

MATLAB structure containing information from the CEL
files, including probe intensities, probe indices, and probe set
IDs, returned by the celintensityread function.

CELPathValue

String specifying the path and folder where the files specified
in CELFiles are stored.

CDFPathValue

String specifying the path and folder where the file specified
in CDFFile is stored.

1-123

1 Alphabetical List

SeqPathValue

String specifying a folder or path and folder where SeqFile
is stored.

ChipIndexValue

Positive integer specifying a chip. This chip's sequence
information and mismatch probe intensity data is used to
compute probe affinities. Default is 1.

OpticalCorrValue

Controls the use of optical background correction on the
input probe intensity values. Choices are true (default) or
false.

CorrConstValue

Value that specifies the correlation constant, rho, for log
background intensity for each PM/MM probe pair. Choices
are any value # 0 and # 1. Defaultis 0.7.

MethodValue

String that specifies the method to estimate the signal.
Choices are "MLE", a faster, ad hoc Maximum Likelihood
Estimate method, or "EB", a slower, more formal, empirical
Bayes method. Default is "MLE".

TuningParamValue

Value that specifies the tuning parameter used by the
estimate method. This tuning parameter sets the lower
bound of signal values with positive probability. Choices are
a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this
parameter, see Wu et al., 2004.

GSBCorrValue

Specifies whether to perform gene-specific binding (GSB)
correction using probe affinity data. Choices are true
(default) or False. If there is no probe affinity information,
this property is ignored.

MedianValue

Specifies the use of the median of the ranked values instead
of the mean for normalization. Choices are true or false
(default).

1-124

affygerma

OutputValue

Specifies the scale of the returned gene expression values.
Choices are:

“log"
"log2*
*logl0~
"linear”
@functionname

In the last instance, the data is transformed as defined by the
function functionname. Default is "1og2".

ShowplotValue

Controls the display of a plot showing the log, of mismatch
(MM) probe intensity values from a specified chip (CEL file),
versus that chip's MM probe affinities. The plot also shows
the LOWESS fit for computing NSB data of the specified
chip. Choices are true, false, or I, an integer specifying a
chip. If set to true, the first chip is plotted. Default 1s:

false — When return values are specified.

true — When return values are not specified.

VerboseValue

Controls the display of the status of the reading of files and
GCRMA processing. Choices are true (default) or false.

Output Arguments

Expression

DataMatrix object containing the logs gene expression
values that have been background adjusted, normalized,

and summarized using the GC Robust Multi-array Average
(GCRMA) procedure.

Each row in Expression corresponds to a gene (probe set),
and each column corresponds to an Affymetrix CEL file.

1-125

1 Alphabetical List

1-126

Description

Expression = affygcrma(CELFiles, CDFFile, SeqFile) reads the specified
Affymetrix CEL files, the associated CDF library file (created from Affymetrix GeneChip
arrays for expression or genotyping assays), and the associated sequence file or matrix.
It then processes the probe intensity values using GCRMA background adjustment,
quantile normalization, and median-polish summarization procedures, then returns
Expression, a DataMatrix object containing the logs based gene expression values in

a matrix, the probe set IDs as row names, and the CEL file names as column names.
Note that each row in Expression corresponds to a gene (probe set), and each column
corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip.
All chips should be of the same type.)

CELFiles is a string or cell array of CEL file names. CDFFile is a string specifying a
CDF file name. If you set CELFiles to "*", then it reads all CEL files in the current
folder. If you set CELFiles or CDFFile to " ", then it opens the Select Files dialog box
from which you select the CEL files or CDF file. From this dialog box, you can press and
hold Ctrl or Shift while clicking to select multiple CEL files. SeqFile is a file or matrix
containing sequence information for probes on a specific type of Affymetrix GeneChip
array.

Note: For details on the reading of files and GCRMA processing, see
celintensityread, affyprobeseqread, affyprobeaffinities, gcrma,
gcrmabackad]j, quantilenorm, and rmasummary.

Expression = affygcrma(ProbeStructure, Seq) uses GCRMA background
adjustment, quantile normalization, and median-polish summarization procedures to
process the probe intensity values in ProbeStructure. ProbeStructure is a MATLAB
structure containing information from the CEL files, including probe intensities, probe
indices, and probe set IDs, returned by the cel intensityread function. Seq is a matrix
containing sequence information for probes on a specific type of Affymetrix GeneChip
array.

Expression = affygcrma(..., “PropertyName®, PropertyValue, ...) calls
affygcrma with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

affygerma

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ..."CELPath®,
CELPathValue, ...) specifies a path and folder where the files specified by CELFiles
are stored.

Expression = affygcrma(CELFiles, CDFFile, SegFile, ..."CDFPath-,
CDFPathValue, ...) specifies a path and folder where the file specified by CDFFile is
stored.

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ..."SegPath®,
SeqPathValue, ...) specifies a path and folder where the file specified by SeqFile is
stored.

Expression = affygcrma(..., "Chiplndex®, ChipIndexValue, ...)
computes probe affinities from MM probe intensity data using sequence information and
mismatch probe intensity values from the chip specified by ChipIndexValue. Default
ChipIndexValue is 1.

Expression = affygcrma(..., "OpticalCorr®, OpticalCorrValue, ...)
controls the use of optical background correction on the input probe intensity values.
Choices are true (default) or false.

Expression = affygcrma(..., "CorrConst®, CorrConstValue, ...) specifies
the correlation constant, rho, for background intensity for each PM/MM probe pair.
Choices are any value# O and # 1. Defaultis0.7.

Expression = affygcrma(..., "Method", MethodValue, ...) specifiesthe
method to estimate the signal. Choices are "MLE", a faster, ad hoc Maximum Likelihood

Estimate method, or "EB", a slower, more formal, empirical Bayes method. Default is
"MLE".

Expression = affygcrma(..., "TuningParam®, TuningParamValue, ...)
specifies the tuning parameter used by the estimate method. This tuning parameter sets
the lower bound of signal values with positive probability. Choices are a positive value.

Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see Wu et al., 2004.

Expression = affygcrma(..., "GSBCorr®, GSBCorrValue, ...) specifies
whether to perform gene-specific binding (GSB) correction using probe affinity data.

1-127

1 Alphabetical List

1-128

Choices are true (default) or False. If there is no probe affinity information, this
property is ignored.

Expression = affygcrma(..., "Median", MedianValue, ...) specifies the use
of the median of the ranked values instead of the mean for normalization. Choices are
true or false (default).

Expression = affygcrma(..., "Output®, OutputValue, ...) specifiesthe
scale of the returned gene expression values. OutputValue can be:

+ "log-
+ "log2*
+ "logl0*®

* "linear-”
*+ @functionname

In the last instance, the data is transformed as defined by the function functionname.
Default is "log2*-.

Expression = affygcrma(..., “Showplot®, ShowplotValue, ...) controls
the display of a plot showing the logs of mismatch (MM) probe intensity values from a
specified chip (CEL file), versus that chip's MM probe affinities. The plot also shows the
LOWESS fit for computing NSB data of the specified chip. Choices are true, false, or I,
an integer specifying a chip. If set to true, the first chip is plotted. Default is:

+ false — When return values are specified.

+ true — When return values are not specified.

Expression = affygcrma(..., "Verbose®, VerboseValue, ...) controlsthe
display of the status of the reading of files and GCRMA processing. Choices are true
(default) or False.

Examples

The following example assumes that you have the HG_U95Av2 . CDF library file stored
at D:\ATffymetrix\LibFiles\HGGenome, and that your current folder points to a
location containing CEL files and a sequence file associated with this CDF library file.
In this example, the aFfygcrma function reads all the CEL files and the sequence

affygerma

file in the current folder and a CDF file in a specified folder. It also performs GCRMA
background adjustment, quantile normalization, and summarization procedures on the
PM probe intensity values, and returns a DataMatrix object, containing the metadata
and processed data.

Expression = affygcrma("*", "HG_U95Av2_CDF","HG-U95Av2_probe_tab“",...
“"CDFPath®, "D:\Affymetrix\LibFiles\HGGenome");

References

[1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the Bright Mismatches:
Labeling and Effective Binding in Oligonucleotide Arrays. Physical Review E 68,
011906.

[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of
the American Statistical Association 99(468), 909-917.

[3] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory
for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol.
12(6), 882—-93.

[4] W, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of
Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working
Papers 73.

[6] Wu, Z., and Irizarry, R.A. (2003). A Model Based Background Adjustment for
Oligonucleotide Expression Arrays. RSS Workshop on Gene Expression, Wye,
England, http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf.

[6] Speed, T. (2006). Background models and GCRMA. Lecture 10, Statistics 246,
University of California Berkeley. http://www.stat.berkeley.edu/users/terry/
Classes/s246.2006/Week10/Week10L1.pdf.

[7] Abd Rabbo, N.A., and Barakat, H.M. (1979). Estimation Problems in Bivariate
Lognormal Distribution. Indian J. Pure Appl. Math 10(7), 815-825.

[8] Best, C.J.M., Gillespie, J.W., Y1, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary

1-129

http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf
http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf
http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf

1 Alphabetical List

1-130

prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823-6834.

[9] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.,
Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics. 4, 249-264.

[10] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading,
Massachusetts: Addison-Wesley Publishing Company), pp. 165—202.

See Also
affyprobeaffinities | affyprobeseqread | affyrma | celintensityread |
gcrma | gcrmabackadj | mafdr | mattest | quantilenorm | rmasummary

affyinvarsetnorm

affyinvarsetnorm

Perform rank invariant set normalization on probe intensities from multiple Affymetrix
CEL or DAT files

Syntax

NormData = affyinvarsetnorm(Data)

[NormData, MedStructure] = affyinvarsetnorm(Data)

... affyinvarsetnorm(..., "Baseline®, BaselineValue, ...)

... affyinvarsetnorm(..., "Thresholds", ThresholdsValue, ...)
... affyinvarsetnorm(..., "StopPercentile”,
StopPercentileValue, ...)

... affyinvarsetnorm(..., "RayPercentile”, RayPercentileValue, ...)
... affyinvarsetnorm(..., "Method", MethodValue, ...)

... affyinvarsetnorm(..., "Showplot®, ShowplotValue, ...)
Arguments

Data Matrix of intensity values where each row corresponds to a

perfect match (PM) probe and each column corresponds to
an Affymetrix CEL or DAT file. (Each CEL or DAT file is

generated from a separate chip. All chips should be of the
same type.)

MedStructure Structure of each column's intensity median before and
after normalization, and the index of the column chosen as
the baseline.

BaselineValue Property to control the selection of the column index N
from Data to be used as the baseline column. Default is the
column index whose median intensity is the median of all
the columns.

ThresholdsValue Property to set the thresholds for the lowest average rank
and the highest average rank, which are used to determine
the invariant set. The rank invariant set is a set of data
points whose proportional rank difference is smaller than
a given threshold. The threshold for each data point is

1-131

1 Alphabetical List

1-132

determined by interpolating between the threshold for

the lowest average rank and the threshold for the highest
average rank. Select these two thresholds empirically to
limit the spread of the invariant set, but allow enough data
points to determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT] where
LT is the threshold for the lowest average rank and HT is

threshold for the highest average rank. Values must be
between O and 1. Default is [0.05, 0.005].

StopPercentileValue

Property to stop the iteration process when the number of
data points in the invariant set reaches N percent of the
total number of data points. Default is 1.

Note: If you do not use this property, the iteration process
continues until no more data points are eliminated.

RayPercentileValue

Property to select the N percentage of the highest ranked
invariant set of data points to fit a straight line through,
while the remaining data points are fitted to a running
median curve. The final running median curve is a
piecewise linear curve. Default is 1.5.

MethodValue

Property to select the smoothing method used to normalize
the data. Enter " lowess" or "runmedian”. Default is
"lowess*®.

affyinvarsetnorm

ShowplotValue

Property to control the plotting of two pairs of scatter

plots (before and after normalization). The first pair plots
baseline data versus data from a specified column (chip)
from the matrix Data. The second is a pair of M-A scatter
plots, which plots M (ratio between baseline and sample)
versus A (the average of the baseline and sample). Enter
either "all " (plot a pair of scatter plots for each column or
chip) or specify a subset of columns (chips) by entering the
column number(s) or a range of numbers.

For example:
* ..., "Showplot®, 3, ...) plotsdata from column

3.

* ..., "Showplot®, [3,5,7], ---.) plotsdata from
columns 3, 5, and 7.

---, "Showplot®, 3:9, ...) plots data from
columns 3 to 9.

Description

NormData = affyinvarsetnorm(Data) normalizes the values in each column (chip)
of probe intensities in Data to a baseline reference, using the invariant set method.
NormData is a matrix of normalized probe intensities from Data.

Specifically, affyinvarsetnorm:

+ Selects a baseline index, typically the column whose median intensity is the median of

all the columns.

+ For each column, determines the proportional rank difference (prd) for each pair of
ranks, RankX and RankY, from the sample column and the baseline reference.
prd = abs(RankX - RankY)

* For each column, determines the invariant set of data points by selecting data
points whose proportional rank differences (prd) are below threshold, which is a
predetermined threshold for a given data point (defined by the ThresholdsValue
property). It repeats the process until either no more data points are eliminated, or a
predetermined percentage of data points is reached.

1-133

1 Alphabetical List

1-134

The invariant set is data points with a prd < threshold.

* For each column, uses the invariant set of data points to calculate the lowess or
running median smoothing curve, which is used to normalize the data in that column.

[NormData, MedStructure] = affyinvarsetnorm(Data) also returns a structure
of the index of the column chosen as the baseline and each column's intensity median
before and after normalization.

Note: If Data contains NaN values, then NormData will also contain NaN values at the
corresponding positions.

... affyinvarsetnorm(..., “PropertyName*®, PropertyValue, ...) calls
affyinvarsetnorm with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... affyinvarsetnorm(..., "Baseline®, BaselineValue, ...) letsyou select
the column index N from Data to be the baseline column. Default is the index of the
column whose median intensity is the median of all the columns.

... affyinvarsetnorm(..., "Thresholds", ThresholdsValue, ...) sets

the thresholds for the lowest average rank and the highest average rank, which are

used to determine the invariant set. The rank invariant set is a set of data points

whose proportional rank difference is smaller than a given threshold. The threshold

for each data point is determined by interpolating between the threshold for the lowest
average rank and the threshold for the highest average rank. Select these two thresholds
empirically to limit the spread of the invariant set, but allow enough data points to
determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold for the lowest
average rank and HT is threshold for the highest average rank. Values must be between
0 and 1. Default is [0.05, 0.005].

... affyinvarsetnorm(..., "StopPercentile”,

StopPercentileValue, ...) stops the iteration process when the number of data
points in the invariant set reaches N percent of the total number of data points. Default is
1.

affyinvarsetnorm

Note: If you do not use this property, the iteration process continues until no more data
points are eliminated.

... affyinvarsetnorm(..., "RayPercentile®, RayPercentileValue, ...)
selects the N percentage of the highest ranked invariant set of data points to fit a straight
line through, while the remaining data points are fitted to a running median curve. The
final running median curve is a piecewise linear curve. Default is 1.5.

... affyinvarsetnorm(..., "Method", MethodValue, ...) selectsthe
smoothing method for normalizing the data. When MethodValue is " lowess”,
affyinvarsetnorm uses the lowess method. When MethodValue is "runmedian”,
affyinvarsetnorm uses the running median method. Default is " lowess*®.

... affyinvarsetnorm(..., "Showplot®, ShowplotValue, ...) plotstwo pairs
of scatter plots (before and after normalization). The first pair plots baseline data versus
data from a specified column (chip) from the matrix Data. The second is a pair of M-A
scatter plots, which plots M (ratio between baseline and sample) versus A (the average

of the baseline and sample). When ShowplotValue is "all”, affyinvarsetnorm plots
a pair of scatter plots for each column or chip. When ShowplotValue is a number(s)

or range of numbers, afFfyinvarsetnorm plots a pair of scatter plots for the indicated
column numbers (chips).

For example:

* ..., "Showplot®, 3) plots the data from column 3 of Data.
* ..., "Showplot®, [3,5,7]) plots the data from columns 3, 5, and 7 of Data.
* ..., "Showplot®, 3:9) plots the data from columns 3 to 9 of Data.

1-135

1 Alphabetical List

J Figure 1 o |
File Edit Yiew Insert Tools Desktop Window Help £
DEE&E aaM® ¢ |08 D
Before normalization After normalization
Qg @ [
g
30000 30000
Be - ae/
25000 23000
20000 20000
A #3 data
Y- 42 baseling 15000 s
10000 10000
soon | Invariant set =000
Smoath curve o Invariant et
S000 15000 25000 2000 15000 25000
5] B
M-A plots
BOA
LA
B) 5
5] EE] 10 12 14 4 5] g 1a 12 14

Normalize Affymetrix data

This example shows how to normalize affymetrix data. The

prostatecancerrawdata.mat file used in the example contains data from Best et al.,

2005.

1-136

affyinvarsetnorm

Load a MAT-file, included with the Bioinformatics Toolbox™ software, which contains
Affymetrix data variables, including pmMatrix , a matrix of PM probe intensity values
from multiple CEL files.

load prostatecancerrawdata

Normalize the data in pmMatrix and plot data from columns (chips) 2 and 3. Column 1 is
the baseline.

NormMatrix = affyinvarsetnorm(pmMatrix, "“Showplot®,[2 3]);

Before normalization After normalization
35000 ogr” 1 35000 oy’
K 2
30000 30000 P
. -
25000 25000 - . M _
20000 Caey :

X #2 data
Y #1 baseline 15000

10000 b .
. Invariant set
5000 & Smooth curve Invariant set
10000 20000 30000 10000 20000 30000
6 [] E 1

M-A plots
XA
M

1-137

1 Alphabetical List

35000
30000
25000

20000
X:#3 data

¥: #1 baseline 15000

10000 |

5000

M-A plots

XA
¥ M

References

[1] Li, C., and Wong, W.H. (2001). Model-based analysis of oligonucleotide arrays: model

Before normalization

+ .« Invariant set
Smooth curve

35000
30000
25000
20000
15000

10000 | ° ¢

5000

After normalization

validation, design issues and standard error application. Genome Biology 2(8):

research00

32.1-0032.11.

[2] http://www.hsph.harvard.edu/cli/complab/dchip/manual.htm

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,

1-138

http://www.hsph.harvard.edu/cli/complab/dchip/manual.htm

affyinvarsetnorm

Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823—6834.

See Also

affyread | celintensityread | mainvarsetnorm | malowess | manorm |
quantilenorm | rmabackadj | rmasummary

1-139

1 Alphabetical List

affyprobeaffinities

Compute Affymetrix probe affinities from their sequences and MM probe intensities

Syntax

[AffinPM, AffinMM] = afFyprobeaffinities(SequenceMatrix,
MMIntensity)

[AffinPM, AffinMM, BaseProf] = affyprobeaffinities(SequenceMatrix,
MMIntensity)

[AffinPM, AffinMM, BaseProf, Stats] =
affyprobeaffinities(SequenceMatrix, MMIntensity)
... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ..."Probelndices®, ProbeIndicesValue, ...)

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ..."Showplot®, ShowplotValue, ...)

Input Arguments

SequenceMatrix An N-by-25 matrix of sequence information for the perfect

match (PM) probes on an Affymetrix GeneChip array,

where N is the number of probes on the array. Each row
corresponds to a probe, and each column corresponds to one
of the 25 sequence positions. Nucleotides in the sequences are
represented by one of the following integers:

* 0— None
- 1—A
+ 2—C
+ 3—G
c 4—T

Tip You can use the affyprobeseqgread function to
generate this matrix. If you have this sequence information

1-140

affyprobeaffinities

in letter representation, you can convert it to integer
representation using the nt2int function.

MMIntensity

Column vector containing mismatch (MM) probe intensities
from a CEL file, generated from a single Affymetrix
GeneChip array. Each row corresponds to a probe.

Tip You can extract this column vector from
the MMIntensities matrix returned by the
celintensityread function.

ProbeIndicesValue

Column vector containing probe indexing information. Probes
within a probe set are numbered 0 through N - 1, where N is
the number of probes in the probe set.

Tip You can use the affyprobeseqgread function to
generate this column vector.

ShowplotValue

Controls the display of a plot showing the affinity values

of each of the four bases (A, C, G, and T) for each of the 25
sequence positions, for all probes on the Affymetrix GeneChip
array. Choices are true or false (default).

Output Arguments

AffinPM

Column vector of PM probe affinities, computed from their
probe sequences and MM probe intensities.

AffinMm

Column vector of MM probe affinities, computed from their
probe sequences and MM probe intensities.

BaseProf

4-by-4 matrix containing the four parameters for a
polynomial of degree 3, for each base, A, C, G, and T. Each
row corresponds to a base, and each column corresponds
to a parameter. These values are estimated from the probe
sequences and intensities, and represent all probes on an
Affymetrix GeneChip array.

Stats

Row vector containing four statistics in the following order:

* R-square statistic

1-141

1 Alphabetical List

1-142

+ F statistic
* p-value

* Error variance

Description

[AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix,
MMIntensity) returns a column vector of PM probe affinities and a column vector of
MM probe affinities, computed from their probe sequences and MM probe intensities.
Each row in AffinPM and AffinMM corresponds to a probe. NaN is returned for probes
with no sequence information. Each probe affinity is the sum of position-dependent base

affinities. For a given base type, the positional effect is modeled as a polynomial of degree
3.

[AffinPM, AffinMM, BaseProf] = affyprobeaffinities(SequenceMatrix,
MMIntensity) also estimates affinity coefficients using multiple linear regression. It
returns BaseProf, a 4-by-4 matrix containing the four parameters for a polynomial of
degree 3, for each base, A, C, G, and T. Each row corresponds to a base, and each column
corresponds to a parameter. These values are estimated from the probe sequences and
intensities, and represent all probes on an Affymetrix GeneChip array.

[AffinPM, AffinMM, BaseProf, Stats] =
affyprobeaffinities(SequenceMatrix, MMIntensity) also returns Stats, a row
vector containing four statistics in the following order:

* R-square statistic
+ F statistic
* p-value

* Error variance

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ..."PropertyName®, PropertyValue, ...) calls
affyprobeaffinities with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

affyprobeaffinities

... = affyprobeaffinities(SequenceMatrix,
MMIntensity, ..."Probelndices”™, ProbelIndicesValue, ...) uses probe
indices to normalize the probe intensities with the median of their probe set intensities.

Tip Use of the Probelndices property is recommended only if your MM Intensity data
are not from a nonspecific binding experiment.

... = affyprobeaffinities(SequenceMatrix,
MMIntensity, ..."Showplot®, ShowplotValue, ...) controlsthe display of a
plot of the probe affinity base profile. Choices are true or false (default).

Examples

Calculate Affymetrix probe affinities

This example shows how to calculate Affymetrix PM and MM probe affinities from their
sequences and MM probe intensities.

Load the MAT-file, included with the Bioinformatics Toolbox™ software, that contains
Affymetrix data from a prostate cancer study. The variables in the MAT-file include
segMatrix, a matrix containing sequence information for PM probes, mmMatrix, a
matrix containing MM probe intensity values, and probelndices, a column vector
containing probe indexing information.

load prostatecancerrawdata

Compute the Affymetrix PM and MM probe affinities from their sequences and MM
probe intensities, and also plot the affinity values of each of the four bases (A, C, G, and
T) for each of the 25 sequence positions, for all probes on the Affymetrix GeneChip array.

[apm, amm] = affyprobeaffinities(segMatrix, mmMatrix(:,1),...
"Probelndices”, probelndices, "showplot®, true);

1-143

1 Alphabetical List

1-144

Position-dependent Affinity Base Profile

0.2}F c Cec
C C
C C
C CC
0.1}
C
C
E‘ I_GI' IEE (= G |_I __________G_-A
£ of¢ 7T T®S N
E: TTT N E
< Gg, A g C
.l‘:l\ = a3 G .ﬂ'r la
01t A
A A
A ﬁﬂ
02} ’ﬂ‘p\ NG
:"3'.1&' Jﬂ‘ﬂ
Ap AA
_D':}- 1 L i i 1
0 5 10 15 20 25

Position

The prostatecancerrawdata.mat file used in this example contains data from Best et al.,
2005.

References

[1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the Bright Mismatches:
Labeling and Effective Binding in Oligonucleotide Arrays. Physical Review E 68,
011906.

[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M. and Spencer, F. (2004). A Model
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of
the American Statistical Association 99(468), 909-917.

affyprobeaffinities

[3] Best, C.J.M., Gillespie, J.W., Y1, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823—6834.

See Also

affygcrma | afFfyprobeseqread | affyread | celintensityread |
probelibraryinfo

1-145

1 Alphabetical List

affyprobeseqread

Read data file containing probe sequence information for Affymetrix GeneChip array

Syntax

Struct
Struct
SeqPathValue, ...)

Struct = affyprobeseqread(SeqFile, CDFFile,

CDFPathValue, ...)

Struct = affyprobeseqread(SeqFile, CDFFile,

SeqOnlyValue, ...)

Input Arguments

affyprobeseqread(SeqFile, CDFFile)
affyprobeseqread(SeqFile, CDFFile,

-"SeqgPath",
. "CDFPath",

-"SeqOnly",

SeqFile

String specifying a file name of a sequence file (tab-separated or
FASTA) that contains the following information for a specific type
of Affymetrix GeneChip array:

Probe set IDs

Probe x-coordinates

Probe y-coordinates

Probe sequences in each probe set

Affymetrix GeneChip array type (FASTA file only)
The sequence file (tab-separated or FASTA) must be on the
MATLAB search path or in the Current Folder (unless you use the

SegPath property). In a tab-separated file, each row represents a
probe; in a FASTA file, each header represents a probe.

CDFFile

1-146

Either of the following:

String specifying a file name of an Affymetrix CDF library

file, which contains information that specifies which probe set
each probe belongs to on a specific type of Affymetrix GeneChip
array. The CDF library file must be on the MATLAB search

affyprobeseqread

path or in the MATLAB Current Folder (unless you use the
CDFPath property).

* CDF structure, such as returned by the affyread function,
which contains information that specifies which probe set each
probe belongs to on a specific type of Affymetrix GeneChip
array.

Caution Make sure that SeqFile and CDFFile contain information
for the same type of Affymetrix GeneChip array.

SeqPathValue String specifying a folder or path and folder where SeqFile is
stored.

CDFPathValue String specifying a folder or path and folder where CDFFile is
stored.

SeqOnlyValue Controls the return of a structure, Struct, with only one field,
SequenceMatrix. Choices are true or false (default).

Output Arguments

Struct MATLAB structure containing the following fields:
* ProbeSetlIDs
* Probelndices
* SequenceMatrix

Description

Struct = affyprobeseqread(SeqFile, CDFFile) reads the data from files
SeqFile and CDFFile, and stores the data in the MATLAB structure Struct, which
contains the following fields.

Field

Description

ProbeSetlDs

Cell array containing the probe set IDs from the Affymetrix CDF
library file.

1-147

1 Alphabetical List

1-148

Field Description

Probelndices Column vector containing probe indexing information. Probes
within a probe set are numbered O through NNV - 1, where N is the
number of probes in the probe set.

SequenceMatrix An N-by-25 matrix of sequence information for the perfect match
(PM) probes on the Affymetrix GeneChip array, where N is

the number of probes on the array. Each row corresponds to a
probe, and each column corresponds to one of the 25 sequence
positions. Nucleotides in the sequences are represented by one of
the following integers:

* 0— None
- 1—A
- 2—C
+ 3—G
c 4—T

Note: Probes without sequence information are represented in
SequenceMatrix as a row containing all Os.

Tip You can use the int2nt function to convert the nucleotide
sequences in SequenceMatrix to letter representation.

Struct = affyprobeseqread(SeqfFile, CDFFile, ..."PropertyName-®,
PropertyValue, ...) calls affyprobeseqread with optional properties that use
property name/property value pairs. You can specify one or more properties in any order.
Each PropertyName must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

Struct = affyprobeseqread(SeqfFile, CDFFile, ..."SegPath®,
SeqPathValue, ...) letsyou specify a path and folder where SeqFile is stored.

Struct = affyprobeseqread(SeqFile, CDFFile, ..."CDFPath®,
CDFPathValue, ...) letsyou specify a path and folder where CDFFile is stored.

affyprobeseqread

Struct = affyprobeseqread(SeqFile, CDFFile, ..."SeqOnly",
SeqOnlyValue, ...) controls the return of a structure, Struct, with only one field,
SequenceMatrix. Choices are true or false (default).

Examples

1

Read the data from a FASTA file and associated CDF library file, assuming both are
located on the MATLAB search path or in the Current Folder.
S1 = affyprobeseqread("HG-U95A probe_fasta®, "HG_U95A.CDF");

Read the data from a tab-separated file and associated CDF structure, assuming the

tab-separated file is located in the specified folder and the CDF structure is in your
MATLAB Workspace.

S2 = affyprobeseqread("HG-U95A probe_tab® ,hgu95aCDFStruct, ...
"segpath”, "C:\Affymetrix\SequenceFiles\HGGenome");

Access the nucleotide sequences of the first probe set (rows 1 through 20) in the
SequenceMatrix field of the S2 structure.

seq = int2nt(S2.SequenceMatrix(1:20,:))

See Also

affygcrma | affyinvarsetnorm | affyread | celintensityread | int2nt
| probelibraryinfo | probesetlink | probesetlookup | probesetplot |
probesetvalues

1-149

1 Alphabetical List

1-150

affyread

Read microarray data from Affymetrix GeneChip file

Syntax

AffyStruct = affyread(File)
AffyStruct = affyread(File, LibraryPath)
Description

AffyStruct = affyread(File) reads an Affymetrix file and creates a MATLAB
structure. The afFfyread function can read Affymetrix EXP, DAT, CEL, CLF, BGP, CDF,
and GIN files associated with Affymetrix GeneChip arrays for expression, genotyping
(SNP), or resequencing assays. It can read Affymetrix CHP files associated with
Affymetrix GeneChip arrays for expression assays only.

AffyStruct = affyread(File, LibraryPath) specifies the path and folder of a
CDF or GIN library file.

Input Arguments
File

String specifying a file name or a path and file name of one of the following Affymetrix
file types associated with Affymetrix GeneChip arrays for expression, genotyping (SNP),
or resequencing assays. However, if the file name is for a CHP file, it must be associated
with an Affymetrix GeneChip array for an expression assay.

+ EXP — Data file containing information about experimental conditions and protocols.

+ DAT — Data file containing raw image data (pixel intensity values).

+ CEL — Data file containing information about the intensity values of the individual
probes.

+ CHP — Data file containing summary information of the probe sets, including
Iintensity values.

affyread

+ CLF — Cell layout file that maps probe IDs to a location (x- and y-coordinates) in the
CEL file.

+ BGP — Background probe file that lists the probes to use for background correction.

* CDF — Library file containing information about which probes belong to which probe
set.

* GIN — Library file containing information about the probe sets, such as the gene
name associated with the probe set.

If you specify only a file name, put that file on the MATLAB search path or in the current
folder. If you specify only a file name of a CDF or GIN library file, you can specify the
path and folder in the LibraryPath input argument.

Tip You can learn more about the Affymetrix GeneChip files and download sample files
from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note: Some Affymetrix sample data files (DAT, EXP, CEL, and CHP) are combined in a
DTT or CAB file. Download and use the Affymetrix Data Transfer Tool to extract these
files from the DTT or CAB file. You can download the Data Transfer Tool from:

http://www.affymetrix.com/browse/products. jsp?productld=131431&navMode=34000&navAction:

You will have to register and log in at the Affymetrix Web site to download the Data
Transfer Tool.

Default:
LibraryPath
String specifying the path and folder of a:

* CDF library file associated with File when File is a CHP file
* CDF library file when File is a CDF file
* GIN library file when File is a GIN file

Note: If you do not specify LibraryPath when reading a CHP file, affyread looks
in the current folder for the CDF file. If it does not find the CDF file, it still reads the

1-151

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

1 Alphabetical List

1-152

CHP file. However, it omits the probe set names and types from the return value,

AffyStruct.

Output Arguments

AffyStruct

MATLAB structure containing information from an Affymetrix data or library file, for
expression, genotyping (SNP), or resequencing assay types.

The following tables describe the fields in AffyStruct for the different Affymetrix file

types.

EXP, DAT, CEL, CHP, CLF, BGP, CDF, and GIN Files

Field Description

Name File name.

DataPath Path and folder of the file.

LibPath Path and folder of the CDF and GIN library files associated
with the file you are reading.

Ful IPathName Path and folder of the file.

ChipType Name of the Affymetrix GeneChip array (for example,

DrosGenomel or HG-Focus).

Date or CreateDate

File creation date.

EXP File

Field

Description

ChipLot
Operator
SampleType
SampleDesc
Project
Comments
Reagents
ReagentLot

Protocol

Information about experimental conditions and protocols
captured by the Affymetrix software.

affyread

Field Description

Station

Module

HybridizeDate

ScanPixelSize

ScanFilter

ScanDate

ScannerlID

NumberOfScans

ScannerType

NumProtocolSteps

ProtocolSteps

DAT File

Field Description

NumPixelsPerRow Number of pixels per row in the image created from the
GeneChip array (number of columns).

NumRows Number of rows in the image created from the GeneChip array.

MinData Minimum intensity value in the image created from the
GeneChip array.

MaxData Maximum intensity value in the image created from the
GeneChip array.

PixelSize Size of one pixel in the image created from the GeneChip

array.

CellMargin

Size of gaps between cells in the image created from the
GeneChip array.

ScanSpeed

Speed of the scanner used to create the image.

ScanDate

Date the scan was performed.

ScannerliD

Name of the scanning device used.

UpperLeftX
UpperLeftY
UpperRightX
UpperRightY
LowerLeftX
LowerLeftY

Pixel coordinates of the scanned image.

1-153

1 Alphabetical List

1-154

Field Description

LowerRightX

LowerRightY

ServerName Not used

Image A NumRows-by-NumPixelsPerRow image of the scanned
GeneChip array.

CEL File

Field Description

FileVersion

Version of the CEL file format.

Algorithm Algorithm used in the image-processing step that converts
from DAT format to CEL format.

AlgParams String containing parameters used by the algorithm in the
image-processing step.

NumAlgParams Number of parameters in AlgParams.

CellMargin

Size of gaps between cells in the image created from the
GeneChip array, used for computing the intensity values of
the cells.

Rows Number of rows of probes.
Cols Number of columns of probes.
NumMasked Number of masked probes, which are not used in subsequent

processing.

NumOutliers

Number of cells identified as outliers (extremely high or
extremely low intensity) by the image-processing step.

NumProbes

Number of probes (Rows * Cols) on the GeneChip array.

UpperLeftX
UpperLeftY
UpperRightX
UpperRightY
LowerLeftX
LowerLeftY
LowerRightX

LowerRightY

Pixel coordinates of the scanned image.

affyread

Field Description

ProbeColumnNames Cell array containing the eight column names in the Probes
field:

* PosX — x-coordinate of the cell

* PosY — y-coordinate of the cell

* Intensity — Intensity value of the cell

+ StdDev — Standard deviation of intensity value

+ Pixels — Number of pixels in the cell

+ Outlier — True/false flag indicating if the cell was
marked as an outlier

+ Masked — True/false flag indicating if the cell was
masked

* ProbeType — Integer indicating the probe type (for
example, 1 = expression)

Probes NumProbes-by-8 array of information about the individual
probes, including intensity values. The ProbeColumnNames
field contains the column names of this array.

CHP File

Field Description

AssayType Type of assay associated with the GeneChip array (for example,
Expression, Genotyping, or Resequencing).

CellFile File name of the CEL file from which the CHP file was created.

Algorithm Algorithm used to convert from CEL format to CHP format.

AlgVersion Version of the algorithm used to create the CHP file.

NumAlgParams Number of parameters in AlgParams.

AlgParams String containing parameters used in steps required to create the CHP
file (for example, background correction).

NumChipSummary Number of entries in ChipSummary.

ChipSummary Summary information for the GeneChip array, including background
average, standard deviation, max, and min.

1-155

1 Alphabetical List

Field Description

BackgroundZones Structure containing information about the zones used in the
background adjustment step.

Rows Number of rows of probes.

Cols Number of columns of probes.

NumProbeSets Number of probe sets on the GeneChip array.

NumQCProbeSets Number of QC probe sets on the GeneChip array.

ProbeSets NumProbeSets-by-1 structure array containing information for each

(Expression GeneChip
array)

1-156

expression probe set, including the following fields:

Name — Name of the probe set.
ProbeSetType — Type of the probe set.

+ CompDataExists — True/false flag indicating if the probe set has
additional computed information.

* NumPairs — Number of probe pairs in the probe set.

NumPairsUsed — Number of probe pairs in the probe set used for
calculating the probe set signal (not masked).

+ Signal — Summary intensity value for the probe set.

+ Detection — Indicator of statistically significant difference
between the intensity value of the PM probes and the intensity
value of the MM probes in a single probe set (Present, Absent, or
Marginal).

DetectionPValue — P-value for the Detection indicator.

+ CommonPairs — When CompDataExists is true, contains the
number of common pairs between the experiment and the baseline
after the removal of outliers and masked probes.

+ SignalLogRatio — When CompDataExists is true, contains
the change in signal between the experiment and baseline.

SignalLogRatioLow — When CompDataExists is true,
contains the lowest ratios of probes between the experiment and
the baseline.

+ SignalLogRatioHigh — When CompDataExists is true,
contains the highest ratios of probes between the experiment and
the baseline.

affyread

Field

Description

Change — When CompDataExists is true, describes how
the probe changes versus a baseline experiment. Choices are
Increase, Marginal Increase, No Change, Decrease, or
Marginal Decrease.

ChangePValue — When CompDataExists is true, contains the
p-value associated with Change.

ProbeSets

(Genotyping GeneChip
array)

NumProbeSets-by-1 structure array containing information for each
genotyping probe set, including the following fields:

Name — Name of the probe set.

AlleleCall — Allele that is present for the probe set. Possibilities
are AA (homozygous for the major allele), AB (heterozygous for the
major and minor allele), BB (homozygous for the minor allele), or
NoCall (unable to determine allele).

Confidence — Measure of the accuracy of the allele call.

RAS1 — Relative Allele Signal 1 for the SNP site, which is
calculated using sense probes.

RAS2— Relative Allele Signal 2 for the SNP site, which is
calculated using antisense probes.

PValueAA — p-value for an AA call.
PValueAB — p-value for an AB call.
PValueBB — p-value for a BB call.
PValueNoCall — p-value for a NoCal I call.

ProbeSets

(Resequencing GeneChip
array)

NumProbeSets-by-1 structure array containing information for each
resequencing probe set, including the following fields:

CalledBases — 1-by-NumProbeSets character array containing
the bases called by the resequencing algorithm. Possible values are
a, c, g, t andn.

Scores — 1-by-NumProbeSets array containing the score
associated with each base call.

CLF File

1-157

1 Alphabetical List

Field

Description

LibSetName

Name of a collection of related library files for a given chip.
There is only one LibSetName for a CLF file. For example,
PGF and CLF files intended for use together must have the
same LibSetName.

LibSetVersion

Version of a collection of related library files for a given chip.
There is only one LibSetVersion for a CLF file. For example,
PGF and CLF files intended for use together must have the
same LibSetVersion.

GUID

Unique identifier for the CLF file.

CLFFormatVersion

Version of the CLF file format.

Rows

Number of rows in the CEL file.

Note: The CLF file is 1 base, which means the first row and
column are designated 1,1, not 0,0.

Cols

Number of columns in the CEL file.

Note: The CLF file is 1 base, which means the first row and
column are designated 1,1, not 0,0.

StartliD

Starting number for the numbering of elements in the CLF file.

Tip This information is useful when numbering does not start
with 1.

EndID

Ending number for the numbering of elements in the CLF file.

Tip This information is useful when numbering does not start
with 1 and/or there are gaps in the numbering.

Order

Order in which the probe IDs are numbered in the CEL file,
either "row_major"® or "col_major”.

DataColNames

Names of the columns in the CEL file that contain data.

1-158

affyread

Field Description
Data If the numbering of elements in the CLF file is sequential, this
field contains a function handle that calculates the x- and y-
coordinates of each element in the file from the probe ID.
If the numbering of elements in the CLF file is not sequential,
this field contains a matrix indicating the number value of
each element in the file.
BGP File
Field Description
LibSetName Name of a collection of related library files for a given chip. There
is only one LibSetName for a BGP file.
LibSetVersion Version of a collection of related library files for a given chip.
There is only one LibSetVersion for a BGP file.
GUID Unique identifier for a BGP file.
ExecGUID Information about the algorithm used to generate the BGP file.
ExecVersion
Cmd
Data Structure containing the following fields:

probe_id — ID of the probe to use for background correction.

probeset_id — ID of the probe set in the PGF file to which
the probe belongs.

type — Classification information for the probe.
gc_count — Combined number of G and C bases in the probe.
probe_length— Length of the probe in base pairs.

interrogation_position — Interrogation position of the
probe. It is typically 13 for 25-mer PM/MM probes.

probe_sequence — Sequence of the probe on the array,
going in the direction from array surface to solution. For most
standard Affymetrix arrays, this direction is from 3' to 5'. For
example, for a sense target (st) probe (see the probe_type
field), complement the sequence in this field before looking for

1-159

1 Alphabetical List

Field

Description

matches to transcript sequences. For an antisense target (at),
reverse this sequence.

atom_id — ID of the atom to which the probe belongs.
X — Column coordinate of the probe in the CEL file.
* Yy — Row coordinate of the probe in the CEL file.

+ probeset_type — Classification information for the probe
set, such as control, affx, or spike. This type information can
include multiple classifications and can also be nested.

probe_type — Classification information for the probe, such
as pm (perfect match), mm (mismatch), st (sense target), or at
(antisense target). This type information can include multiple
classifications and can also be nested.

CDF File

Field

Description

Rows

Number of rows of probes.

Cols

Number of columns of probes.

NumProbeSets

Number of probe sets on the GeneChip array.

NumQCProbeSets

Number of QC probe sets on the GeneChip array.

ProbeSetColumnNames

Cell array containing the six column names in the ProbePairs
field in the ProbeSets array:

* GroupNumber — Number identifying the group to which
the probe pair belongs. For expression arrays, this value is
always 1. For genotyping arrays, this value is typically 1
(allele A, sense), 2 (allele B, sense), 3 (allele A, antisense), or
4 (allele B, antisense).

* Direction — Number identifying the direction of the probe
pair. 1 = sense and 2 = antisense.

* PMPosX — x-coordinate of the perfect match probe.
* PMPosY — y-coordinate of the perfect match probe.
* MMPosX — x-coordinate of the mismatch probe.
* MMPoOSY — y-coordinate of the mismatch probe.

1-160

affyread

Field

Description

ProbeSets

NumProbeSets-by-1 structure array containing information for
each probe set, including the following fields:

* Name — Name of the probe set.

* ProbeSetType — Type of the probe set.

+ CompDataExists — True/false flag indicating if the probe
set has additional computed information.

* NumPairs — Number of probe pairs in the probe set.

* NumQCProbes — Number of QC probes in the probe set.

* QCType — Type of QC probes.

* GroupNames — Name of the group to which the probe set
belongs. For expression arrays, this field contains the name

of the probe set. For genotyping arrays, this field contains
the name of the alleles, for example {*A® "C" A" "C"}".

* ProbePairs — NumPairs-by-6 array of information
about the probe pairs. The column names of this array are
contained in the ProbeSetColumnNames field.

GIN File
Field Description
Version GIN file format version.
ProbeSetName Probe set ID/name.
ID Identifier for the probe set (gene ID).
Description Description of the probe set.
SourceNames Source or sources of the probe sets.
SourceURL Source URL or URLs for the probe sets.
SourcelD Vector of numbers specifying which SourceNames or
SourceURL each probe set is associated with.

1-161

1 Alphabetical List

Examples

The following example uses the sample data and CDF library file from the E. coli
Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After downloading the sample data, you need the Affymetrix Data Transfer Tool to
extract the CEL, DAT, and CHP files from a DTT file. You can download the Data
Transfer Tool from:

http://www.affymetrix.com/browse/products. jsp?productld=131431&navMode=34000&navAction:

The following example assumes that you have stored the files Ecoli-
antisense-121502.CEL, Ecoli-antisense-121502.dat, and Ecoli-
antisense-121502.chp on the MATLAB search path or in the current folder. It also
assumes that you have stored the associated CDF library file, Ecoli_ASv2.CDF, at D:
\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread("Ecoli-antisense-121502.CEL");
2 Display a spatial plot of the probe intensities.

maimage(celStruct, "Intensity")

1-162

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

affyread

[0l x]
Fle Edt “iew Insert Tools Desktop Window Help E
D&k *Radms | e|08 50

Intensity X104

3 Zoom in on a specific region of the plot.

axis([200 340 0 70])

1-163

1 Alphabetical List

il x|

Fle Edt “iew Insert Tools Desktop Window Help E
D&k *Radms | €|0E 50

Intensity X 10"'

4 Read the contents of a DAT file into a MATLAB structure. Display the raw image
data, and then use the axis image function to set the correct aspect ratio.

datStruct = affyread("Ecoli-antisense-121502.dat");

imagesc(datStruct. Image)
axis image

1-164

affyread

[0l x]
Fle Edt “iew Insert Tools Desktop Window Help E

DedaE K aade @ 08 0O

500

1000

1500

2000

2500

3000

3500

4000

4500

1000 2000 3000 4000

5 Zoom in on a specific region of the plot.

axis([1900 2800 160 650])

1-165

1 Alphabetical List

[0l x]
Fle Edt “iew Insert Tools Desktop Window Help E

DeEaE K aads @ 08 0O

200
250
300
350
400
450
500
550
600

650
1900 2000 2100 2200 2300 2400 2500 2600 2700 2800

6 Read the contents of a CHP file into a MATLAB structure, specifying the location of
the associated CDF library file. Then extract information for probe set 3315278.

chpStruct = affyread("Ecoli-antisense-121502.chp”, ...
"D:\Affymetrix\LibFiles\Ecoli®);
geneName = probesetlookup(chpStruct, "3315278%)

geneName

Identifier: "3315278"
ProbeSetName: "argG_b3172_at*
CDFIndex: 5213
GINIndex: 3074
Description: [1x82 char]

1-166

affyread

Source: "NCBI EColi Genome*
SourceURL: [1x74 char]

More About

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

http://www.affymetrix.com/products_services/software/specific/dtt.affx

See Also

affyrma | affygcrma | affysnpannotread | affysnpintensitysplit |
agferead | celintensityread | geoseriesread | gprread | i Imnbsread

| probelibraryinfo | probesetlink | probesetlookup | probesetplot |
probesetvalues | sptread

Tutorials
. Working with AffymetrixData
. Preprocessing AffymetrixMicroarray Data at the Probe Level

1-167

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products_services/software/specific/dtt.affx

1 Alphabetical List

1-168

affyrma

Perform Robust Multi-array Average (RMA) procedure on Affymetrix microarray probe-
level data

Syntax
Expression = affyrma(CELFiles, CDFFile)
Expression = affyrma(ProbeStructure)
Expression = affyrma(CELFiles, CDFFile, ..."CELPath",
CELPathValue, ...)
Expression = affyrma(CELFiles, CDFFile, ..."CDFPath”,
CDFPathValue, ...)
Expression = affyrma(..., "Method", MethodValue, ...)
Expression = affyrma(..., "Truncate", TruncateValue, ...)
Expression = affyrma(..., "Median®, MedianValue, ...)
Expression = affyrma(..., "Output®, OutputValue, ...)
Expression = affyrma(..., “Showplot®, ShowplotValue, ...)
Expression = affyrma(..., "Verbose®, VerboseValue, ...)
Input Arguments
CELFiles Any of the following:
String specifying a single CEL file name.
"**® which reads all CEL files in the current folder.
" ", which opens the Select CEL Files dialog box from
which you select the CEL files. From this dialog box, you
can press and hold Ctrl or Shift while clicking to select
multiple CEL files.
Cell array of CEL file names.
CDFFile Either of the following:
String specifying a CDF file name.
" ", which opens the Select CDF File dialog box from which
you select the CDF file.

affyrma

ProbeStructure

MATLAB structure containing information from the CEL files,
including probe intensities, probe indices, and probe set IDs,
returned by the celintensityread function.

CELPathValue

String specifying the path and folder where the files specified
in CELFiles are stored.

CDFPathValue

String specifying the path and folder where the file specified in
CDFFile is stored.

MethodValue

Specifies the estimation method for the background
adjustment model parameters. Choices are "RMA™ (to use
estimation method described by Bolstad, 2005) or *"MLE" (to
estimate the parameters using maximum likelihood). Default
is "RMA*.

TruncateValue

Specifies the background noise model. Choices are true (use a
truncated Gaussian distribution) or false (use a nontruncated
Gaussian distribution). Default is true.

MedianValue

Specifies the use of the median of the ranked values instead
of the mean for normalization. Choices are true or false
(default).

OutputValue

Specifies the scale of the returned gene expression values.
Choices are:

"log"

+ "log2-

+ "logl0*
"linear”

* @functionname

In the last instance, the data is transformed as defined by the
function functionname. Default is " log2*®.

1-169

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-170

ShowplotValue

Controls the plotting of a histogram showing the distribution
of PM probe intensity values (blue) and the convoluted
probability distribution function (red), with estimated
parameters mu, sigma and alpha. Enter either "all ™ (plot

a histogram for each column or chip) or specify a subset

of columns (chips) by entering the column number, list of
numbers, or range of numbers.

For example:

* (..., "Showplot®, 3, ...) plotsthe intensity values
in column 3.

* (.-., "Showplot®, [3,5,7], ---) plotsthe intensity
values in columns 3, 5, and 7.

(---., "Showplot®, 3:9, ...) plotsthe intensity
values in columns 3 to 9.

VerboseValue

Controls the display of the status of the reading of files and
RMA processing. Choices are true (default) or false.

Output Arguments

Expression

DataMatrix object containing the logs based gene expression
values that have been background adjusted, normalized, and
summarized using the Robust Multi-array Average (RMA)
procedure.

Each row in Expression corresponds to a gene (probe set),
and each column corresponds to an Affymetrix CEL file.

Description

Expression =

affyrma(CELFiles, CDFFile) reads the specified Affymetrix CEL

files and the associated CDF library file (created from Affymetrix GeneChip arrays
for expression or genotyping assays), processes the probe intensity values using RMA
background adjustment, quantile normalization, and summarization procedures, then

affyrma

returns Expression, a DataMatrix object containing the logs; based gene expression
values in a matrix, the probe set IDs as row names, and the CEL file names as column
names. Note that each row in Expression corresponds to a gene (probe set), and each
column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a
separate chip. All chips should be of the same type.)

CELFiles is a string or cell array of CEL file names. CDFFile is a string specifying a
CDF file name. If you set CELFiles to "*", then it reads all CEL files in the current
folder. If you set CELFiles to " ", then it opens the Select CEL Files dialog box from
which you select the CEL files.

Note: For details on the reading of files and RMA processing, see cel intensityread,
rmabackadj, quantilenorm, and rmasummary.

Expression = affyrma(ProbeStructure) uses RMA background adjustment,
quantile normalization, and summarization procedures to process the probe intensity
values in ProbeStructure, a MATLAB structure containing information from the
CEL files, including probe intensities, probe indices, and probe set IDs, returned by the
celintensityread function, and returns Expression.

Expression = affyrma(..., "PropertyName®, PropertyValue, ...) calls
affyrma with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

Expression = affyrma(CELFiles, CDFFile, ..."CELPath",
CELPathValue, ...) specifies a path and folder where the files specified by CELFiles
are stored.

Expression = affyrma(CELFiles, CDFFile, ..."CDFPath”,
CDFPathValue, ...) specifies a path and folder where the file specified by CDFFile is
stored.

Expression = affyrma(..., "Method", MethodValue, ...) specifies

the estimation method for the background adjustment model parameters. When
MethodValue is "RMA™", afFfyrma implements the estimation method described by
Bolstad, 2005. When MethodValue is "MLE", aFfyrma estimates the parameters using
maximum likelihood. Default is "RMA*".

1-171

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-172

Expression = affyrma(..., "Truncate®, TruncateValue, ...) specifies
the background noise model used. When TruncateValue is false, affyrma uses
nontruncated Gaussian as the background noise model. Default is true.

Expression = affyrma(..., "Median®, MedianValue, ...) specifies the use of
the median of the ranked values instead of the mean for normalization. Choices are true
or False (default).

Expression = affyrma(..., "Output®, OutputValue, ...) specifies the scale
of the returned gene expression values. OutputValue can be:

+ "log”
+ "log2*"
+ "logl0*®

* "linear”

* @functionname

In the last instance, the data is transformed as defined by the function functionname.
Default is "log2*-.

Expression = affyrma(..., “Showplot®, ShowplotValue, ...) letsyou
plot a histogram showing the distribution of PM probe intensity values (blue) and the
convoluted probability distribution function (red), with estimated parameters mu,
sigma and alpha. When ShowplotValue is "all”®, rmabackadj plots a histogram for
each column or chip. When ShowplotValue is a number, list of numbers, or range of
numbers, rmabackadj plots a histogram for the indicated column number (chip).

For example:

* (..., "Showplot®, 3,...) plots the intensity values in column 3.

* (..., "Showplot®, [3,5,7],--.) plots the intensity values in columns 3, 5, and
7.

* (..., "Showplot®, 3:9,...) plots the intensity values in columns 3 to 9.

Expression = affyrma(..., "Verbose®", VerboseValue, ...) controlsthe

display of the status of the reading of files and RMA processing. Choices are true
(default) or False.

affyrma

Examples

The following example assumes that you have the HG_U95Av2 . CDF library file stored at
D:\Affymetrix\LibFiles\HGGenome, and that your current folder points to a location
containing CEL files associated with this CDF library file. In this example, the affyrma
function reads all the CEL files in the current folder and a CDF file in a specified

folder. It also performs RMA background adjustment, quantile normalization, and
summarization procedures on the PM probe intensity values, and returns a DataMatrix
object, containing the metadata and processed data.

Expression = affyrma("*", "HG_U95Av2_CDF*",...
"CDFPath®, "D:\Affymetrix\LibFiles\HGGenome");

References

[1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.,
Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics. 4, 249-264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading,
Massachusetts: Addison-Wesley Publishing Company), pp. 165—202.

[3] Best, C.J.M., Gillespie, J.W., Y1, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823-6834.

[4] Bolstad, B. (2005). “affy: Built-in Processing Methods” http://www.bioconductor.org/
packages/2.1/bioc/vignettes/affy/ inst/doc/builtinMethods.pdf

See Also

affygcrma | gcrma | mafdr | celintensityread | mattest | quantilenorm |
rmabackadj | rmasummary

1-173

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf
http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-174

affysnpannotread

Read Affymetrix Mapping DNA array data from CSV-format annotation file

Syntax

AnnotStruct = affysnpannotread(File, PID)
AnnotStruct = affysnpannotread(File, PID, "LookUpField",
LookUpFieldValue)

Input Arguments

File String specifying a file name or a path and file name of an
Affymetrix CSV annotation file for a Mapping 10K array set,
Mapping 100K array set, or Mapping 500K array set.

If you specify only a file name, that file must be on the
MATLAB search path or in the current folder.

PID String or cell array of strings specifying one or more probe set
IDs on an Affymetrix mapping array.

LookUpFieldValue String or cell array of strings specifying one or more column
headers in an Affymetrix CSV annotation file. Default are the
fields shown in the following table.

Output Arguments

AnnotStruct MATLAB structure containing information for one or more
probe sets from File, an Affymetrix CSV annotation file.

AnnotStruct contains a subset of the fields in File. The
fields are described in the table below.

affysnpannotread

Description

AnnotStruct = affysnpannotread(File, PID) reads File, an Affymetrix CSV
annotation file for a Mapping 10K array set, Mapping 100K array set, or Mapping 500K
array set, and returns AnnotStruct, a MATLAB structure containing annotation
information for one or more probe sets specified by PID, a string or cell array of strings
specifying one or more probe set IDs. AnnotStruct contains a subset of the fields in
File. The fields are described in the following table.

Structure Created from an Affymetrix CSV Annotation File

Field Description

ProbeSetlIDs Cell array containing the unique probe set IDs specified by the
PID input.

Chromosome Cell array containing the chromosome number on which each
probe set is located.

ChromPosition Cell array containing the SNP genomic position on the
chromosome for each probe set.

Cytoband Cell array containing the cytogenetic banding region of the
chromosome on which each probe set is located.

Sequence Cell array containing the sequence of each probe set.

AlleleA Cell array containing the base that is allele A for each probe set.

AlleleB Cell array containing the base that is allele B for each probe set.

Accession Cell array containing the GenBank® accession number for each
probe set.

FragmentLength Cell array containing the length of each probe set.

AnnotStruct = affysnpannotread(File, PID, "LookUpField",
LookUpFieldValue) returns annotation information from only the field (column)
specified by LookUpFieldValue, a string or cell array of strings specifying one or more
column headers in an Affymetrix CSV annotation file. Default are the fields shown in the
previous table.

Note: You can download Affymetrix CSV annotation files such as
Mapping50K_Xba240.na25.annot.csv from:

http://www.affymetrix.com/support/technical/annotationfilesmain.affx

1-175

http://www.affymetrix.com/support/technical/annotationfilesmain.affx

1 Alphabetical List

Examples

The following example assumes that you have the Mapping50K_Xba240 . CDF file stored
at C:\AffyLibFiles\, and that your current folder points to a location containing the
Mapping50K_Xba240.na25.annot.csv annotation file.

1 Use the affyread function to create a structure containing information from the
Mapping50K_Xba240 .CDF library file.

cdf = affyread("C:\AffyLibFiles\Mapping50K_Xba240.CDF*");

2 Create a variable containing a cell array of the names of the probe sets, which are
stored in the Name field of the ProbeSets field of the cdT structure.

probesetlDs = {cdf.ProbeSets.Name}";

3 Return a structure containing annotation information for all the probe sets in the
Mapping50K_Xba240.na25.annot.csv annotation file.

snplnfo = affysnpannotread("Mapping50K_Xba240.na25.annot.csv" ,probesetlDs)
snplnfo =

ProbeSetlIDs: {59024x1 cell}
Chromosome: [59024x1 int8]
ChromPosition: [59024x1 double]
Cytoband: {59024x1 cell}
Sequence: {59024x1 cell}
AlleleA: {59024x1 cell}
AlleleB: {59024x1 cell}
Accession: {59024x1 cell}
FragmentLength: [59024x1 double]

See Also
affysnpintensitysplit | affyread

1-176

affysnpintensitysplit

affysnpintensitysplit

Split Affymetrix SNP probe intensity information for alleles A and B

Syntax

ProbeStructSplit = affysnpintensitysplit(ProbeStruct)

ProbeStructSplit = affysnpintensitysplit(ProbeStruct, "Controls”,

ControlsValue)

Input Arguments

ProbeStruct MATLAB structure containing probe intensity information
from an Affymetrix Mapping DNA array, such as returned by
celintensityread.

ControlsValue Controls the inclusion of control probes in
ProbeStructSplit. Choices are true or false (default).

Output Arguments

ProbeStructSplit MATLAB structure containing probe intensity information
from an Affymetrix Mapping DNA array, split into information
for alleles A and B.

Description

ProbeStructSplit = affysnpintensitysplit(ProbeStruct) splits
ProbeStruct, a structure containing probe intensity information from an Affymetrix
Mapping DNA array, into ProbeStructSplit, a structure containing probe intensity

information from an Affymetrix Mapping DNA array, split into information for alleles A
and B.

ProbeStructSplit contains the following fields.

1-177

1 Alphabetical List

Field

Description

CDFName

File name of the Affymetrix CDF library file.

CELNames

Cell array of names of the Affymetrix CEL files.

NumChips

Number of CEL files read into the input structure.

NumProbeSets

Number of probe sets in each CEL file.

NumProbes

Maximum number of probes for just one allele in each CEL
file.

Note: If the number of probes for allele A is not the same as
for allele B, the larger number is used.

ProbeSetlIDs

Cell array of the probe set IDs from the Affymetrix CDF
library file.

Probelndices

Column vector containing probe indexing information for
just one allele in each cell file. Probes within a probe set
are numbered O through N - 1, where N is the number of
probes for one allele in the probe set.

Note: Probelndices has the same number of elements as
NumProbes.

PMAIntensities

Matrix containing perfect match (PM) probe intensity
values for allele A. Each row corresponds to an allele A
probe, and each column corresponds to a CEL file. The rows
are ordered the same way as in Probelndices, and the
columns are ordered the same way as in the CELFiles
input argument to the celintensityread function.

PMBIntensities

Matrix containing perfect match (PM) probe intensity
values for allele B. Each row corresponds to an allele B
probe, and each column corresponds to a CEL file. The rows
are ordered the same way as in Probelndices, and the
columns are ordered the same way as in the CELFiles
input argument to the cel intensityread function.

1-178

affysnpintensitysplit

Field Description
MMAIntensities Matrix containing mismatch (MM) probe intensity values
(optional) for allele A. Each row corresponds to an allele A probe,
and each column corresponds to a CEL file. The rows
are ordered the same way as in Probelndices, and the
columns are ordered the same way as in the CELFiles
input argument to the cel intensityread function.
MMBIntensities Matrix containing mismatch (MM) probe intensity values
(optional) for allele B. Each row corresponds to an allele B probe,

and each column corresponds to a CEL file. The rows
are ordered the same way as in Probelndices, and the
columns are ordered the same way as in the CELFiles
input argument to the celintensityread function.

ProbeStructSplit = affysnpintensitysplit(ProbeStruct, "Controls”,
ControlsValue) controls the return of control probe intensities. Choices are true or

false (default).

Note: Control probes sometimes contain information for only one allele. In this case, the
value for the corresponding allele (A or B) that is not present is set to NaN.

Examples

The following example assumes that your current folder points to a location containing
the Mapping50K_Hind240.CDF library file and 18 CEL files associated with this CDF
library file. These files are associated with an Affymetrix Mapping DNA array.

1 Use the celintensityread function to read the Mapping50K_Hind240.CDF
library file and 18 CEL files associated with it into a MATLAB structure.

ps = celintensityread("*", "Mapping50K_Hind240.CDF*)

ps =

CDFName:
CELNames:
NumChips:

NumProbeSets:

"Mapping50K_Hind240.CDF*"
{18x1 cell}

18

57299

1-179

1 Alphabetical List

1-180

NumProbes: 1145780
ProbeSetlIDs: {57299x1 cell}
Probelndices: [1145780x1 uint8]
GroupNumbers: [1145780x1 uint8]
PMIntensities: [1145780x18 single]

2 Extract the PM probe intensities for allele A and allele B into another MATLAB
structure, without including intensity information for the control probes.

ps_split = affysnpintensitysplit(ps)

ps_split

CDFName: “Mapping50K_Hind240.CDF*
CELNames: {18x1 cell}
NumChips: 18
NumProbeSets: 57275
NumProbes: 572750
ProbeSetlIDs: {57275x1 cell}
Probelndices: [572750x1 uint8]
PMAIntensities: [572750x18 single]
PMBIntensities: [572750x18 single]

See Also

affysnpannotread | affyread | celintensityread

affysnpquartets

affysnpquartets

Create table of SNP probe quartet results for Affymetrix probe set

Syntax

SNPQStruct = affysnpquartets(CELStruct, CDFStruct, PS)

Input Arguments

CELStruct Structure created by the affyread function from an Affymetrix CEL
file, which contains information about the intensity values of the
individual probes.

CDFStruct Structure created by the afFfyread function from an Affymetrix CDF
library file associated with the CEL file. The CDF library file contains
information about which probes belong to which probe set.

PS Probe set index or the probe set ID/name.

Output Arguments

SNPQStruct Structure containing probe quartet results for a specific SNP probe set
from the data in a CEL file and associated CDF library file.

Description

SNPQStruct = affysnpquartets(CELStruct, CDFStruct, PS) creates
SNPQStruct, a structure containing probe quartet results for a specific SNP probe set,
specified by PS, from the probe-level data in a CEL file and associated CDF library file.
CELStruct is a structure created by the affyread function from an Affymetrix CEL
file. PS is a probe set index or probe set ID/name from CDFStruct, a structure created by
the affyread function from an Affymetrix CDF library file associated with the CEL file.
SNPQStruct is a structure containing the following fields.

1-181

1 Alphabetical List

1-182

Field Description

"ProbeSet” Identifier for the probe set.

"AlleleA” String specifying the base that is allele A for the probe
set.

"AlleleB" String specifying the base that is allele B for the probe
set.

"Quartet” Structure array containing intensity values for PM
(perfect match) and MM (mismatch) probe pairs,
including the sense and antisense probes for alleles A
and B. Each structure in the array corresponds to a
probe pair in the probe set.

Examples

The following example uses the NAO6985 Hind_B5 3005533.CEL file. You can
download this and other sample CEL files from:

http://www.affymetrix.com/support/technical/sample_data/hapmap_trio_data.affx

The NA06985_Hind_B5_3005533.CEL file is included in the 100K_trios.hind.1.zip

file.

The following example uses the CDF library file for the Mapping 50K Hind 240 array,

which you can download from:

http://www.affymetrix.com/support/technical/byproduct.affx?product=100k

The following example assumes that the NA0O6985 Hind_B5 3005533.CEL file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Mapping50K_Hind240.cdf, is stored at D:\Affymetrix\LibFiles\.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread("NA06985_ Hind_B5 3005533.CEL");
2 Read the contents of a CDF file into a MATLAB structure.
cdfStruct = affyread("D:\Affymetrix\LibFiles\Mapping50K_Hind240.cdf");
3 Create a structure containing SNP probe quartet results for the SNP_A-1684395

probe set.

http://www.affymetrix.com/support/technical/sample_data/hapmap_trio_data.affx
http://www.affymetrix.com/support/technical/byproduct.affx?product=100k

affysnpquartets

SNPQStruct = affysnpquartets(celStruct,cdfStruct, "SNP_A-1684395")

SNPQStruct

ProbeSet: "SNP_A-1684395*"

AlleleA: "A"
AlleleB: "G*

Quartet: [1x5 struct]

4 View the intensity values of the first probe pair in the probe set.

SNPQStruct.Quartet(l)

ans =

A_Sense_PM:
B_Sense_PM:
A_Sense_MM:
B_Sense_MM:
A_Antisense_PM:
B_Antisense_PM:
A_Antisense_MM:
B_Antisense_MM:

See Also

5013
1290
1485
686

3746
1406
1527
958

affyread | probesetvalues

1-183

1 Alphabetical List

1-184

agferead

Read Agilent Feature Extraction Software file

Syntax

AGFEData = agferead(File)

Arguments

File Microarray data file generated with the Agilent® Feature Extraction
Software.

Description

AGFEData = agferead(File) reads files generated with the Feature Extraction
Software from Agilent microarray scanners and creates a structure (AGFEData)
containing the following fields:

* Header

+ Stats

+ Columns

* Rows

* Names

+ IDs

+ Data

* ColumnNames
+ TextData

*+ TextColumnNames

The Feature Extraction Software takes an image from an Agilent microarray scanner
and generates raw intensity data for each spot on the plate.

agferead

Examples

1 Read in a sample Agilent Feature Extraction Software file. Note that the file
fe_sample.txt is not provided with the Bioinformatics Toolbox™ software.

agfeStruct = agferead("fe_sample.txt™)
2 Plot the median foreground.

maimage(agfeStruct, "gMedianSignal) ;
maboxplot(agfeStruct, "gMedianSignal ") ;

See Also

affyread | celintensityread | galread | geoseriesread | geosoftread |
gprread | ilmnbsread | imageneread | magetfield | sptread

1-185

1 Alphabetical List

1-186

align2cigar

Convert aligned sequences to corresponding Compact Idiosyncratic Gapped Alignment
Report (CIGAR) format strings

Syntax

[Cigars,Starts] = align2cigar(Alignment,Ref)
Description
[Cigars,Starts] = align2cigar(Alignment,Ref) converts aligned sequences

represented in Alignment, a cell array of aligned strings or a character array, into Cigars,
a cell array of corresponding CIGAR strings, using the reference sequence specified by
Ref, a string. It also returns Starts, a vector of integers indicating the start position of
each aligned sequence with respect to the ungapped reference sequence.

Input Arguments

Alignment

Cell array of aligned sequence strings or a character array representing aligned
sequences. Soft clippings are assumed to be represented by lowercase letters in the
aligned sequences. Skipped positions are assumed to be represented by . in the aligned
sequences.

Default:

Ref

String specifying an aligned reference sequence. The length of Ref must equal the
number of columns in Alignment.

Default:

align2cigar

Output Arguments

Cigars

Cell array of CIGAR strings corresponding to each aligned sequence in Alignment.
Starts

Vector of integers indicating the start position of each aligned sequence with respect to
the ungapped reference sequence.

Examples

Convert aligned sequences to CIGAR strings
This example shows how to convert aligned strings to CIGAR strings

Create a cell array of aligned strings, create a string specifying a reference sequence, and
then convert the alignment to CIGAR strings:

aln = ["ACG-ATGC"; "ACGT-TGC"; " GTAT-C"]

aln =
ACG-ATGC

ACGT-TGC
GTAT-C

ref = T“ACGTATGC";
[cigar, start] = align2cigar(aln, ref)

cigar =

"3M1D4M* "4M1D3M* "AM1DIM*

start =

1-187

1 Alphabetical List

1-188

More About

“Manage Short-Read Sequence Data in Objects”
Sequence Read Archive
SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078—2079.

See Also

getAlignment | cigar2align | multialign | getBaseCoverage |
getCompactAlignment | BioMap

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

allshortestpaths (biograph)

allshortestpaths (biograph)

Find all shortest paths in biograph object

Syntax

[dist] = allshortestpaths(BGObj)

[dist] = allshortestpaths(BGObj, ..."Directed”, DirectedValue, ...)

[dist] = allshortestpaths(BGObj, ... "Weights", WeightsValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).

DirectedValue |Property that indicates whether the graph is directed or undirected.
Enter false for an undirected graph. This results in the upper
triangle of the sparse matrix being ignored. Default is true.

WeightsValue Column vector that specifies custom weights for the edges in the N-
by-N adjacency matrix extracted from a biograph object, BGObj. It
must have one entry for every nonzero value (edge) in the matrix.
The order of the custom weights in the vector must match the order
of the nonzero values in the matrix when it is traversed column-
wise. This property lets you use zero-valued weights. By default,
al Ishortestpaths gets weight information from the nonzero
entries in the matrix.

Description

Tip For introductory information on graph theory functions, see “Graph Theory

Functions”.

[dist] = allshortestpaths(BGObj) finds the shortest paths between every pair of
nodes in a graph represented by an N-by-N adjacency matrix extracted from a biograph

1-189

1 Alphabetical List

1-190

object, BGObJ, using Johnson's algorithm. Nonzero entries in the matrix represent the
weights of the edges.

Output dist is an N-by-N matrix where dist(S,T) is the distance of the shortest
path from source node S to target node T. Elements in the diagonal of this matrix are
always 0, indicating the source node and target node are the same. A O not in the
diagonal indicates that the distance between the source node and target node is 0. An
Inf indicates there is no path between the source node and the target node.

Johnson's algorithm has a time complexity of O(N*1og(N)+N*E), where N and E are the
number of nodes and edges respectively.

[---1 = allshortestpaths (BGObj, "PropertyName®, PropertyValue, ...)
calls al Ishortestpaths with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each PropertyName
must be enclosed in single quotes and is case insensitive. These property name/property
value pairs are as follows:

[dist] = allshortestpaths(BGObj, ..."Directed”, DirectedValue, ...)
indicates whether the graph is directed or undirected. Set DirectedValue to false
for an undirected graph. This results in the upper triangle of the sparse matrix being
ignored. Default is true.

[dist] = allshortestpaths(BGObj, ... "Weights", WeightsValue, ...) lets
you specify custom weights for the edges. WeightsValue is a column vector having one
entry for every nonzero value (edge) in the N-by-N adjacency matrix extracted from a
biograph object, BGObj. The order of the custom weights in the vector must match the
order of the nonzero values in the N-by-N adjacency matrix when it is traversed column-
wise. This property lets you use zero-valued weights. By default, al Ishortestpaths
gets weight information from the nonzero entries in the N-by-N adjacency matrix.

More About

. “biograph object”

References

[1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM 24(1), 1-13.

allshortestpaths (biograph)

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also

biograph | conncomp | isomorphism | maxflow | shortestpath | traverse |
graphallshortestpaths | isdag | isspantree | minspantree | topoorder

1-191

1 Alphabetical List

1-192

aminolookup

Find amino acid codes, integers, abbreviations, names, and codons

Syntax

aminolookup

aminolookup(SeqAA)

aminolookup(“Code", CodeValue)

aminolookup(® Integer®, IntegerValue)
aminolookup(*"Abbreviation®, AbbreviationValue)
aminolookup(“Name®, NameValue)

Arguments

SegAA String of single-letter codes or three-letter abbreviations
representing an amino acid sequence. For valid codes and
abbreviations, see the table Amino Acid Lookup.

CodeValue String specifying a single-letter code representing an amino
acid. For valid single-letter codes, see the table Amino Acid
Lookup.

IntegerValue Single integer representing an amino acid. For valid
integers, see the table Amino Acid Lookup.

AbbreviationValue String specifying a three-letter abbreviation representing
an amino acid. For valid three-letter abbreviations, see the
table Amino Acid Lookup.

NameValue String specifying an amino acid name. For valid amino acid
names, see the table Amino Acid Lookup.

Description

aminolookup displays a table of amino acid codes, integers, abbreviations, names, and

codons.

aminolookup

Amino Acid Lookup

Code Integer Abbreviation Amino Acid Name |Codons
A 1 Ala Alanine GCU GCC GCA GCG
R 2 Arg Arginine CGU CGC CGA CGG
AGA AGG
N 3 Asn Asparagine AAU AAC
4 Asp Aspartic acid GAU GAC
(Aspartate)
C 5 Cys Cysteine UGU UGC
Q 6 GIn Glutamine CAA CAG
E 7 Glu Glutamic acid GAA GAG
(Glutamate)
Gly Glycine GGU GGC GGA GGG
His Histidine CAU CAC
| 10 Ile Isoleucine AUU AUC AUA
L 11 Leu Leucine UUA UUG CUU CuC
CUA CUG
K 12 Lys Lysine AAA AAG
M 13 Met Methionine AUG
F 14 Phe Phenylalanine Uuu uuC
P 15 Pro Proline CCU CCC CCA CCG
S 16 Ser Serine UCU UCC UCA UCG
AGU AGC
T 17 Thr Threonine ACU ACC ACA ACG
W 18 Trp Tryptophan UGG
Y 19 Tyr Tyrosine UAU UAC
\Y 20 Val Valine GUU GUC GUA GUG
B 21 Asx Asparagine or AAU AAC GAU GAC
Aspartic acid
(Aspartate)

1-193

1 Alphabetical List

1-194

Code Integer Abbreviation Amino Acid Name |Codons

Z 22 GIx Glutamine or CAA CAG GAA GAG
Glutamic acid
(Glutamate)

X 23 Xaa Any amino acid All codons

* 24 END Termination codon |[UAA UAG UGA
(translation stop)

- 25 GAP Gap of unknown NA
length

aminolookup(SeqAA) converts between single-letter codes and three-letter
abbreviations for an amino acid sequence. If the input is a string of single-letter codes,
then the output is a character string of three-letter abbreviations. If the input is a string
of three-letter abbreviations, then the output is a string of the corresponding single-letter
codes.

If you enter one of the ambiguous single-letter codes B, Z, or X, this function displays the
corresponding abbreviation for the ambiguous amino acid character.

aminolookup(*abc*)
ans =

AlaAsxCys

aminolookup(“Code®, CodeValue) displays the corresponding amino acid three-
letter abbreviation and name.

aminolookup(" Integer®, IntegerValue) displays the corresponding amino acid
single-letter code, three-letter abbreviation, and name.

aminolookup("Abbreviation®, AbbreviationValue) displays the corresponding
amino acid single-letter code and name.

aminolookup(®“Name*®, NameValue) displays the corresponding amino acid single-
letter code and three-letter abbreviation.

aminolookup

Examples

Convert an amino acid sequence in single-letter codes to the corresponding three-
letter abbreviations.

aminolookup("MWKQAEDIRDIYDF®)
ans =

MetTrpLysGInAlaGluAspl leArgAspl leTyrAspPhe

Convert an amino acid sequence in three-letter abbreviations to the corresponding
single-letter codes.

aminolookup("MetTrpLysGInAlaGluAsplleArgAspl leTyrAspPhe®)
ans =

MWKQAEDIRDI1YDF

Display the three-letter abbreviation and name for the amino acid corresponding to
the single-letter code R.

aminolookup(“Code®, "R%)
ans =

Arg Arginine

Display the single-letter code, three-letter abbreviation, and name for the amino acid
corresponding to the integer 1.

aminolookup("Integer®, 1)
ans =

A Ala Alanine

Display the single-letter code and name for the amino acid corresponding to the three-
letter abbreviation asn.

aminolookup(“Abbreviation®, "asn®)
ans =

N Asparagine

1-195

1 Alphabetical List

* Display the single-letter code and three-letter abbreviation for the amino acid proline.
aminolookup(“Name*®, "proline®)
ans =

P Pro

See Also
aazint | aa2nt | aacount | geneticcode | int2aa | isotopicdist | nt2aa |
revgeneticcode

1-196

atomiccomp

atomiccomp

Calculate atomic composition of protein

Syntax

NumberAtoms = atomiccomp(SeqAA)

Arguments

SegAA

Amino acid sequence. Enter a character string or vector of integers from
the table Mapping Amino Acid Letter Codes to Integers. You can also enter
a structure with the field Sequence.

Description

NumberAtoms = atomiccomp(SegAA) counts the type and number of atoms
in an amino acid sequence (SeqAA) and returns the counts in a 1-by-1 structure
(NumberAtoms) with fields C, H, N, O, and S.

Examples

1 Retrieve an amino acid sequence from the NCBI GenPept database.

rhodopsin = getgenpept(“NP_0005307);

2 Count the atoms in the sequence.

rhodopsinAC = atomiccomp(rhodopsin)

rhodopsinAC =
C: 1814
H: 2725
N: 423
0: 477

1-197

1 Alphabetical List

S: 25

3 Count the number of carbon atoms in the sequence.

rhodopsinAC.C
ans =

1814

See Also

aacount | molweight | proteinplot

1-198

bamindexread

bamindexread

Read Binary Sequence Alignment/Map Index (BAI) file

Syntax

Index = bamindexread(File)

Description

Index = bamindexread(File) reads File, a BAI file, and returns Index, a MATLAB
structure that specifies the offsets into the compressed Binary Sequence Alignment/
Map (BAM) file and decompressed data block for each reference sequence and range of
positions (bins) on each reference sequence.

Input Arguments
File

String specifying a file name, or a path and a file name, of a BAM file or a BAI file. If File
is a BAM file, bamindexread reads the corresponding BAI file, that is, the BAI file with
the same root name and stored in the same folder as the BAM file. If you specify only a
file name, that file must be on the MATLAB search path or in the Current Folder.

Default:

Output Arguments

Index

MATLAB array of structures that specifies the offsets into the compressed Binary
Sequence Alignment/Map (BAM) file and decompressed data block for each reference
sequence and range of positions (bins) on the reference sequence. Index contains the
following fields.

1-199

1 Alphabetical List

1-200

Field

Description

Filename

Name of the BAM file or BAI file used to create the Index
array of structures.

Index

A 1-by-N array of structures, where N is the number of
reference sequences in the corresponding BAM file. Each
structure contains the following fields:

BinID — Array of bin IDs for one reference sequence.

BGZFOffsetStart — Offset in the BAM file to the
start of the first BGZF block where alignment records
associated with the corresponding BinlID are stored.

BGZFOffsetEnd — Offset in the BAM file to the
start of the last BGZF block where alignment records
associated with the corresponding BinlID are stored.

DataOffsetStart — Offset in the decompressed data
block to the start of where alignment records associated
with the corresponding BinlID are stored.
DataOffsetEnd — Offset in the decompressed data
block to the end of where alignment records associated
with the corresponding BinlD are stored.

LinearBGZFOffset — Offset in the BAM file to the
first alignment in the corresponding 16384 bp interval.

LinearDataOffset — Offset in the decompressed

data file to the first alignment in the corresponding
16384 bp interval.

Examples

Generate an index structure from a BAM file

This example shows how to generate an index structure from a BAM index file.

ind = bamindexread("exl.bam®)

ind

bamindexread

Filename: "exl.bam.bai”
Index: [1x2 struct]

More About
Tips

* The bamread function uses the Index structure returned by bamindexread to index
into a BAM file to extract alignment records in a specified range of a specific reference
sequence. Passing the Index structure array to the bamread function improves
performance when reading from the same BAM file multiple times, for example, when
reading different ranges of a reference sequence.

. “Manage Short-Read Sequence Data in Objects”

. Sequence Read Archive

. SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078-2079.

See Also

baminfo | bamread

1-201

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-202

baminfo

Return information about Binary Sequence Alignment/Map (BAM) file

Syntax

InfoStruct baminfo(File)
InfoStruct = baminfo(File,Name,Value)

Description

InfoStruct = baminfo(File) returns a MATLAB structure containing summary
information about a BAM-formatted file.

InfoStruct = baminfo(File,Name,Value) returns a MATLAB structure with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
File

String specifying a file name or path and file name of a BAM-formatted file. If you specify
only a file name, that file must be on the MATLAB search path or in the Current Folder.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"ScanDictionary”

Logical that controls the scanning of the BAM-formatted file to determine the
reference names and the number of reads aligned to each reference. If true, the
ScannedDictionary and ScannedDictionaryCount fields contain this information.

baminfo

Default: false

*NumOfReads "

Logical that controls the scanning of a BAM-formatted file to determine the number of
alignment records in the file. If true, the NumReads field contains this information.

Default: false

Output Arguments

InfoStruct

MATLAB structure containing summary information about a BAM-formatted file. The

structure contains these fields.

Field Description

Filename Name of the BAM-formatted file.

FilePath Path to the file.

FileSize Size of the file in bytes.

FileModDate Modification date of the file.

Header** Structure containing the file format version,
sort order, and group order.

ReadGroup** Structure containing the:

* Read group identifier

+ Sample

* Library

+ Description

+ Platform unit

* Predicted median insert size
* Sequencing center

* Date

+ Platform

SequenceDictionary**

Structure containing the:

1-203

1 Alphabetical List

Field Description
+ Sequence name

* Sequence length
* Genome assembly identifier
+ MD5 checksum of sequence
+ URI of sequence

* Species

Program** Structure containing the:

* Program name
* Version

*+ Command line

NumReads Number of reference sequences in the BAM-
formatted file.

ScannedDictionary* Cell array of strings specifying the names of
the reference sequences in the BAM-formatted
file.

ScannedDictionaryCount® Cell array specifying the number of reads

aligned to each reference sequence.

* — The ScannedDictionary and ScannedDictionaryCount fields are empty if you
do not set the ScanDictionary name-value pair argument to true.

** __ These structures and their fields appear in the output structure only if they are
in the BAM file. The information in these structures depends on the information in the
BAM file.

Examples

Retrieve information about a BAM file

This example shows how to retrieve information about the ex1.bam file included with the
Bioinformatics Toolbox™.

info = baminfo("ex1.bam®","ScanDictionary”,true, "numofreads” ,true)

1-204

baminfo

info =

Filename: "exl.bam”
FilePath: "B:\matlab\toolbox\bioinfo\bioinfodata"
FileSize: 126692
FileModDate: "07-May-2010 16:12:04¢
Header: [1x1 struct]
ReadGroup: [1x2 struct]
SequenceDictionary: [1x2 struct]
NumReads: 3307
ScannedDictionary: {2x1 cell}
ScannedDictionaryCount: [2x1 uint64]

List the number of references found in the BAM file.

numel (info.ScannedDictionary)

ans =

Alternatively, you can use the available header information from a BAM file to find out
the number of references, thus avoiding the whole traversal of the source file.

info = baminfo("exl.bam");
NRefs = numel (info.SequenceDictionary)
NRefs =

2

More About

Tips

Use baminfo to investigate the size and content of a BAM-formatted file, including
reference sequence names, before using the bamread function to read the file contents
into a MATLAB structure.

1-205

1 Alphabetical List

“Manage Short-Read Sequence Data in Objects”
Sequence Read Archive
SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078—2079.

See Also

bamindexread | bamread

1-206

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

bamread

bamread

Read data from Binary Sequence Alignment/Map (BAM) file

Syntax

BAMStruct = bamread(File,RefSeq,Range)
[BAMStruct,HeaderStruct] = bamread(File,RefSeq,Range)
-.. = bamread(File,RefSeq,Range,Name,Value)

Description

BAMStruct = bamread(File,RefSeq,Range) reads the alignment records in File, a
BAM-formatted file, that align to RefSeq, a reference sequence, in the range specified by
Range. It returns the alignment data in BAMStruct, a MATLAB array of structures.

[BAMStruct,HeaderStruct] = bamread(File,RefSeq,Range) also returns the
header information in HeaderStruct, a MATLAB structure.

... = bamread(File,RefSeq,Range,Name,Value) reads the alignment records
with additional options specified by one or more Name,Value pair arguments.

Input Arguments
File

String specifying a file name or path and file name of a BAM-formatted file. If you specify
only a file name, that file must be on the MATLAB search path or in the Current Folder.

Default:
RefSeq
Either of the following:

* String specifying the name of a reference sequence in the BAM file.

+ Positive integer specifying the index of a reference sequence in the BAM file. This
number is also the index of the reference sequence in the Reference field of the
InfoStruct structure returned by baminfo.

1-207

1 Alphabetical List

1-208

Default:
Range

Two-element vector specifying the begin and end range positions on the reference
sequence, RefSeq. Both values must be positive, and are one-based. The second value
must be > to the first value.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

“Full*

Controls the return of only alignment records that are fully contained within the range
specified by Range. Choices are true or false (default).

Default: false
"Tags*

Controls the reading of the optional tags in addition to the first 11 fields for each
alignment in the BAM-formatted file. Choices are true (default) or false.

Default: true
"ToFile"

String specifying a nonexisting file name or a path and file name for saving the
alignment records in the specified range of a specific reference sequence. The ToFile
name-value pair argument creates a SAM-formatted file. If you specify only a file name,
the file is saved to the MATLAB Current Folder.

The SAM-formatted file is always one-based, even if you set the ZeroBased name-value
pair argument to true. You can use the SAM-formatted file as input when creating a
BioMap object.

bamread

Default:
"ZeroBased"

Logical specifying whether bamread uses zero-based indexing when reading a file. The
logical controls the return of zero-based or one-based positions in the Position and
MatePosition fields in BAMStruct. Choices are true or False (default), which returns
one-based positions.

This name-value pair argument affects the Position and MatePosition fields of
BAMStruct. It does not affect the Range input argument or the SAM file created when
using the ToFi le name-value pair argument. SAM files are always one-based.

Caution If you plan to use the BAMStruct output argument to construct a BioMap object,
make sure the ZeroBased name-value pair argument is false.

Default: false

Output Arguments

BAMStruct

An N-by-1 array of structures containing sequence alignment and mapping information
from a BAM-formatted file, where N is the number of alignment records stored in the
specified range. Each structure contains the following fields.

Field Description

QueryName Name of the read sequence (if unpaired) or the
name of sequence pair (if paired).

Flag Integer indicating the bit-wise information
that specifies the status of each of 11 flags
described by the SAM format specification.

Tip You can use the bitget function to
determine the status of a specific SAM flag.

Referencelndex Index of the reference sequence.

1-209

http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

Field Description
Tip To convert this index to a reference name,
see the Reference field in the HeaderStruct
output argument

Position Position of the forward reference sequence

where the leftmost base of the alignment
of the read sequence starts. This position is
zero-based or one-based, depending on the
ZeroBased name-value pair argument.

MappingQuality

Integer specifying the mapping quality score
for the read sequence.

CigarString

CIGAR-formatted string representing how
the read sequence aligns with the reference
sequence.

MateReferencelndex

Index of the reference sequence associated
with the mate. If there is no mate, then this
value is 0.

MatePosition

Position of the forward reference sequence
where the leftmost base of the alignment of the
mate of the read sequence starts. This position
1s zero-based or one-based, depending on the
ZeroBased name-value pair argument.

InsertSize

The number of base positions between the read
sequence and its mate, when both are mapped
to the same reference sequence. Otherwise,
this value is O.

Sequence

String containing the letter representations
of the read sequence. It is the reverse
complement if the read sequence aligns to the
reverse strand of the reference sequence.

Quality

String containing the ASCII representation
of the per-base quality score for the read
sequence. The quality score is reversed if the
read sequence aligns to the reverse strand of
the reference sequence.

1-210

bamread

Field Description
Tags List of applicable SAM tags and their values.
HeaderStruct

MATLAB structure containing header information for the BAM-formatted file in the

following fields.

Field

Description

NRefs

Number of reference sequences in the BAM-
formatted file.

Reference

1-by-NRefs array of structures containing
these fields:

+ Name — Name of the reference sequence.

* Length — Length of the reference
sequence.

Header*

Structure containing the file format version,
sort order, and group order.

SequenceDictionary®

Structure containing the:

* Sequence name

* Sequence length

* Genome assembly identifier
+ MD5 checksum of sequence
+ URI of sequence

+ Species

ReadGroup*

Structure containing the:

* Read group identifier
* Sample

* Library

* Description

+ Platform unit

* Predicted median insert size

1-211

1 Alphabetical List

1-212

Field Description
+ Sequencing center
+ Date
+ Platform
Program* Structure containing the:

* Program name
* Version

+ Command line

* These structures and their fields appear in the output structure only if they are present
in the BAM file. The information in these structures depends on the information present

in the BAM file.

Examples

Retrieve alignment records that align to reference sequences

Read multiple alignment records from the ex1.bam file that align to two different

reference sequences.

datal = bamread(“exl.bam®, "seql”,
data?2 = bamread(“exl.bam®, "seq2-,
datal =

59x1 struct array with fields:

QueryName

Flag

Position
MappingQuality
CigarString
MatePosition
InsertSize
Sequence
Quality

Tags

[100 200])
[100 200])

bamread

Referencelndex
MateReferencelndex

data2 =
79x1 struct array with fields:

QueryName

Flag

Position
MappingQual ity
CigarString
MatePosition
InsertSize
Sequence
Quality

Tags
Referencelndex
MateReferencelndex

Read alignments from the ex1.bam file that are fully contained in the 100 to 200 bp
range of the seql reference sequence.

data3

bamread("ex1.bam", "seql®, [100 200], “full®, true)

data3

31x1 struct array with fields:

QueryName

Flag

Position
MappingQuality
CigarString
MatePosition
InsertSize
Sequence
Quality

Tags
Referencelndex
MateReferencelndex

1-213

1 Alphabetical List

1-214

Read alignments from the ex1.bam file that align to the 100 to 300 bp range of the seql
reference sequence. Read the same alignments using zero-based indexing. Compare the
position of the 27th record in the two outputs.

data_one = bamread("exl.bam”,"seql®, [100 300]);
data_zero = bamread(“exl.bam®,"seql®, [100 300], “zerobased®, true);
data_one(27) -Position

ans =

135

data_zero(27).Position

ans =

134

More About

Tips

The bamread function requires a BAM file.

Use the baminfo function to investigate the size and content, including reference
sequence names, of a BAM-formatted file before using the bamread function to read
the file contents into a MATLAB array of structures.

If your BAM-formatted file is too large to read using available memory, try either of
the following:

Use a smaller range.

+ Use bamread without specifying outputs, but using the ToFi le Name,Value pair
arguments to create a SAM-formatted file. You can then use samread with the
BlockRead Name,Value pair arguments to read the SAM-formatted file. Or you
can pass the SAM-formatted file to the BiolndexedFi le constructor function to
construct a BiolndexedFi le object, which you can use to create a BioMap object.

bamread

* Use the BAMStruct output argument that bamread returns to construct a BioMap
object, which lets you explore, access, filter, and manipulate all or a subset of the
data, before doing subsequent analyses or viewing the data.

. “Manage Short-Read Sequence Data in Objects”

. “Work with Large Multi-Entry Text Files”

. Sequence Read Archive

. SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078—2079.

See Also

BiolndexedFile | BioMap | bamindexread | baminfo | samread | saminfo |
soapread | fastqwrite | fastginfo | fastainfo | fastaread | fastawrite |
sftfinfo | sffread | fastqread

1-215

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-216

basecount

Count nucleotides in sequence

Syntax

NTStruct = basecount(SeqNT)

NTStruct = basecount(SeqgNT, ..."Ambiguous®, AmbiguousValue, ...)
NTStruct = basecount(SegNT, ..."Gaps", GapsValue, ...)

NTStruct = basecount(SeqNT, ..."Chart", ChartValue, ...)

Input Arguments

SegNT

One of the following:

String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers

Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes

MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned

by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank

AmbiguousValue

String specifying how to treat ambiguous nucleotide characters
(R,Y,K, M, S, W, B, D, H, V, or N). Choices are:

"ignore” (default) — Skips ambiguous characters

"bundle® — Counts ambiguous characters and reports the
total count in the Ambiguous field.

"prorate” — Counts ambiguous characters and
distributes them proportionately in the appropriate fields.
For example, the counts for the character R are distributed
evenly between the A and G fields.

basecount

* "individual® — Counts ambiguous characters and
reports them in individual fields.

+ "warn® — Skips ambiguous characters and displays a
warning.

GapsValue Specifies whether gaps, indicated by a hyphen (=), are counted
or ignored. Choices are true or false (default).

ChartValue String specifying a chart type. Choices are "pie” or "bar”.

Output Arguments

‘NTStI‘UCt | 1-by-1 MATLAB structure containing the fields A, C, G, and T.

Description

NTStruct = basecount(SegNT) counts the number of each type of base in SeqNT, a
nucleotide sequence, and returns the counts in NTStruct, a 1-by-1 MATLAB structure
containing the fields A, C, G, and T.

* The character U is added to the T field.

* Ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N), and gaps, indicated
by a hyphen (-), are ignored by default.

* Unrecognized characters are ignored and cause the following warning message.

Warning: Unknown symbols appear in the sequence. These will be ignored.

NTStruct = basecount(SegNT, ..."PropertyName®, PropertyValue, ...)
calls basecount with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

NTStruct = basecount(SeqgNT, ..."Ambiguous®, AmbiguousValue, ...)
specifies how to treat ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N).
Choices are:

* "ignore"” (default)

1-217

1 Alphabetical List

1-218

* "bundle*

* "prorate”

* "individual*®

« "warn®

NTStruct = basecount(SeqNT, ..."Gaps", GapsValue, ...) specifies whether

gaps, indicated by a hyphen (), are counted or ignored. Choices are true or false
(default).

NTStruct = basecount(SegNT, ..."Chart®, ChartValue, ...) createsa chart

showing the relative proportions of the nucleotides. ChartValue can be "pie” or "bar".

Examples

1 Count the bases in a DNA sequence and return the results in a structure.

Bases = basecount("TAGCTGGCCAAGCGAGCTTG™)

Bases =
Az 4
C: 5
G: 7
T: 4

2 Get the count for adenosine (A) bases.
Bases.A
ans =

4

3 Count the bases in a DNA sequence containing ambiguous characters, listing the
ambiguous characters in separate fields.

basecount(*ABCDGGCCAAGCGAGCTTG", "Ambiguous”®, "individual ®)
ans =

Az 4
C: 5

basecount

Z<IO0OWm=0nnE=X"<TH®
OO0OO0ORPPFPOOOOOONOD

See Also

aacount | baselookup | codoncount | cpgisland | dimercount | nmercount |
ntdensity | seqviewer

1-219

1 Alphabetical List

1-220

baselookup

Find nucleotide codes, integers, names, and complements

Syntax

baselookup

baselookup("Complement®, SeqNT)
baselookup("Code", CodeValue)
baselookup(®Integer®, IntegerValue)
baselookup("Name®, NameValue)

Arguments
SegNT Nucleotide sequence(s) represented by one of the following:
+ String of single-letter codes from the table Nucleotide
Lookup
Cell array of sequences
* Two-dimensional character array of sequences
Note: If the input is multiple sequences, the complement for
each sequence is determined independently.
CodeValue Nucleotide letter code represented by one of the following:
+ String specifying a single-letter code representing a
nucleotide. For valid single-letter codes, see the table
Nucleotide Lookup.
* Cell array of letter codes.
Two-dimensional character array of letter codes.
IntegerValue Single integer representing a nucleotide. For valid integers, see
the table Nucleotide Lookup.
NameValue Nucleotide name represented by one of the following:

baselookup

+ String specifying a nucleotide name. For valid nucleotide
names, see the table Nucleotide Lookup.

Cell array of names.

+ Two-dimensional character array of names.

Description

baselookup displays a table of nucleotide codes, integers, names, and complements.

Nucleotide Lookup

Code Integer Nucleotide Name Meaning Complement
A Adenine A T
C 2 Cytosine C G
G 3 Guanine G C
T 4 Thymine T A
U 4 Uracil U A
R 5 Purine AorG Y
Y 6 Pyrimidine CorT R
K 7 Keto GorT M
M 8 Amino AorC K
S 9 Strong interaction (3 CorG S

H bonds)
W 10 Weak interaction (2 AorT w
H bonds)
B 11 Not A CorGorT \Y
D 12 Not C AorGor T H
H 13 Not G AorCorT D
Vv 14 Not T or U AorCorG B
N, X 15 Any nucleotide AorCorGorTorU N
- 16 Gap of indeterminate Gap -

length

1-221

1 Alphabetical List

1-222

baselookup("Complement®, SeqNT) displays the complementary nucleotide
sequence.

baselookup(“Code", CodeValue) displays the corresponding meaning and
nucleotide name. For ambiguous nucleotide codes (R, Y, K, M, S, W, B, D, H, V, N, and X), the
nucleotide name is a descriptive name.

baselookup(® Integer®, IntegerValue) displays the corresponding letter code,
meaning, and nucleotide name.

baselookup("Name®, NameValue) displays the corresponding letter code, meaning,
and nucleotide name or descriptive name.

Examples

Convert a nucleotide sequence to its complementary sequence.
baselookup("Complement®, “"TAGCTGRCCAAGGCCAAGCGAGCTTN™)
ans =

ATCGACYGGTTCCGGTTCGCTCGAAN

Display the meaning and nucleotide name or descriptive name for the nucleotide
codes G and Y.

baselookup(“Code®, "G")
ans =

G Guanine

baselookup("Code®, "Y")
ans =

T|C pYrimidine

Display the nucleotide letter code, meaning, and nucleotide name or descriptive name
for the integers 1 and 7.

baselookup(® Integer®, 1)

baselookup

ans =

A A - Adenine

baselookup(® Integer®, 7)
ans =

K G|T - Keto

* Display the corresponding nucleotide letter code, meaning, and name for cytosine
and purine.

baselookup(“Name®, "cytosine”)
ans =

C C - Cytosine

baselookup("Name®, "purine®)
ans =
R GJA - puRine

See Also

aaznt | basecount | codoncount | dimercount | geneticcode | int2nt | nt2aa
| nt2int | revgeneticcode | seqviewer

1-223

1 Alphabetical List

1-224

biograph object

Data structure containing generic interconnected data used to implement directed graph

Description

A biograph object is a data structure containing generic interconnected data used to
implement a directed graph. Nodes represent proteins, genes, or any other biological
entity, and edges represent interactions, dependences, or any other relationship between
the nodes. A biograph object also stores information, such as color properties and text
label characteristics, used to create a 2-D visualization of the graph.

You create a biograph object using the object constructor function biograph. You can
view a graphical representation of a biograph object using the view method.

Method Summary
Following are methods of a biograph object:

allshortestpaths (biograph)
Find all shortest paths in biograph object
conncomp (biograph)
Find strongly or weakly connected
components in biograph object
dolayout (biograph)
Calculate node positions and edge
trajectories
get (biograph)
Retrieve information about biograph object
getancestors (biograph)
Find ancestors in biograph object

getdescendants (biograph)

Find descendants in biograph object
getedgesbynodeid (biograph)

Get handles to edges in biograph object

biograph object

getmatrix (biograph)
getnodesbyid (biograph)
getrelatives (biograph)
isdag (biograph)

isomorphism (biograph)

isspantree (biograph)

maxflow (biograph)

minspantree (biograph)

set (biograph)

shortestpath (biograph)

topoorder (biograph)

traverse (biograph)

view (biograph)

Following are methods of a node object:

Get connection matrix from biograph object
Get handles to nodes

Find relatives in biograph object

Test for cycles in biograph object

Find isomorphism between two biograph
objects

Determine if tree created from biograph
object is spanning tree

Calculate maximum flow in biograph object

Find minimal spanning tree in biograph
object

Set property of biograph object

Solve shortest path problem in biograph
object

Perform topological sort of directed acyclic
graph extracted from biograph object

Traverse biograph object by following
adjacent nodes

Draw figure from biograph object

1-225

1 Alphabetical List

getancestors (biograph)
Find ancestors in biograph object

getdescendants (biograph)
Find descendants in biograph object

getrelatives (biograph)
Find relatives in biograph object

Property Summary

A biograph object contains two kinds of objects, node objects and edge objects, that have
their own properties. For a list of the properties of node objects and edge objects, see the
following tables.

Properties of a Biograph Object

Property Description

ID String to identify the biograph object. Default is " *.
Label String to label the biograph object. Default is " *.
Description String that describes the biograph object. Default is " *.
LayoutType String that specifies the algorithm for the layout engine.

Choices are:

* "hierarchical " (default) — Uses a topological order of
the graph to assign levels, and then arranges the nodes
from top to bottom, while minimizing crossing edges.

+ "radial® — Uses a topological order of the graph to
assign levels, and then arranges the nodes from inside to
outside of the circle, while minimizing crossing edges.

* "equilibrium® — Calculates layout by minimizing the
energy in a dynamic spring system.

EdgeType String that specifies how edges display. Choices are:

* "straight”
* "curved® (default)

+ T"segmented”

1-226

biograph object

Property

Description

Note: Curved or segmented edges occur only when necessary
to avoid obstruction by nodes. Biograph objects with
LayoutType equal to "equilibrium® or "radial " cannot
produce curved or segmented edges.

Scale

Positive number that post-scales the node coordinates.
Default is 1.

LayoutScale

Positive number that scales the size of the nodes before
calling the layout engine. Default is 1.

EdgeTextColor

Three-element numeric vector of RGB values. Default is [0,
0, 0], which defines black.

EdgeFontSize

Positive number that sets the size of the edge font in points.
Default is 8.

ShowArrows

Controls the display of arrows with the edges. Choices are
"on" (default) or "off".

ArrowSize

Positive number that sets the size of the arrows in points.
Default is 8.

ShowWeights

Controls the display of text indicating the weight of the
edges. Choices are "on" (default) or "off".

ShowTextlInNodes

String that specifies the node property used to label nodes
when you display a biograph object using the view method.
Choices are:

+ "Label® — Uses the Label property of the node object
(default).
* "ID" — Uses the ID property of the node object.

* "None*

NodeAutoSize

Controls precalculating the node size before calling the layout
engine. Choices are "on" (default) or "ofFf".

Note: Set it to ofF if you want to apply different node sizes
by changing the Size property.

NodeCal Iback

User-defined callback for all nodes. Enter the name of a
function, a function handle, or a cell array with multiple

1-227

1 Alphabetical List

Property

Description

function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click a node to activate the first callback, or right-click

and select a callback to activate. Default is the anonymous
function, @(node) inspect(node), which displays the
Property Inspector dialog box.

EdgeCal Iback

User-defined callback for all edges. Enter the name of a
function, a function handle, or a cell array with multiple
function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click an edge to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(edge) inspect(edge), which displays the
Property Inspector dialog box.

CustomNodeDrawFcn

Function handle to a customized function to draw nodes.
Default is [].

Nodes

Read-only column vector with handles to node objects of
a biograph object. The size of the vector is the number of

nodes. For properties of node objects, see Properties of a Node
Object.

Edges

Read-only column vector with handles to edge objects of a
biograph object. The size of the vector is the number of edges.
For properties of edge objects, see Properties of an Edge
Object.

Properties of a Node Object

Property Description

ID Character string defined when the biograph object is created,
either by the NodeIDs input argument or internally by the
biograph constructor function. You can modify this property
using the set method, but each node object's 1D must be unique.

Label String for labeling a node when you display a biograph object
using the view method. Default is " *.

Description String that describes the node. Default is " *.

1-228

biograph object

Property Description

Position Two-element numeric vector of x- and y-coordinates, for example,
[150, 150]. If you do not specify this property, default is initially
[1, then when the layout algorithms are executed, it becomes a
two-element numeric vector of x- and y-coordinates computed by
the layout engine.

Shape String that specifies the shape of the nodes. Choices are:

* "box"(default)

+ "ellipse-
“circle-

* "rectangle-

+ “diamond”
“trapezium®
"invtrapezium®

* "house*

+ "iInverse-
"parallelogram®

Size Two-element numeric vector calculated before calling the layout
engine using the actual font size and shape of the node. Default is
[10, 10].

Color Three-element numeric vector of RGB values that specifies the fill
color of the node. Default is [1, 1, 0.7], which defines yellow.

LineWidth Positive number. Default is 1.

LineColor Three-element numeric vector of RGB values that specifies the

outline color of the node. Default is [0.3, 0.3, 1], which
defines blue.

FontSize Positive number that sets the size of the node font in points.
Default is 8.

TextColor Three-element numeric vector of RGB values that specifies the
color of the node labels. Default is [0, 0, O], which defines
black.

1-229

1 Alphabetical List

1-230

Property

Description

UserData

Miscellaneous, user-defined data that you want to associate with
the node. The node does not use this property, but you can access
and specify it using the get and set functions. Default is [].

Properties of an Edge Object

Property Description

ID Character string automatically generated from the node IDs
when the biograph object is created by the biograph constructor
function. You can modify this property using the set method, but
each edge object's ID must be unique.

Label String for labeling an edge. Default is " *.

Description String that describes the edge. Default is " .

Weight Value that represents the weight (cost, distance, length, or
capacity) associated with the edge. Default is 1.

LineWidth Positive number. Default is 1.

LineColor Three-element numeric vector of RGB values that specifies the
color of the edge. Default is [0.5, 0.5, 0.5], which defines
gray.

UserData Miscellaneous, user-defined data that you want to associate with
the edge. The edge does not use this property, but you can access
and specify it using the get and set functions. Default is [].

Examples

Create a Biograph object and specify its properties

This example shows how to create a biograph object, access, and update its properties.

Create a biograph object with custom node IDs.

cm=[01100;10011;20000;00001;2010 0];

ids
bgl

{"M30931","L07625", "K03454" ,"M27323", "M15390"};
biograph(cm, ids)

Biograph object with 5 nodes and 9 edges.

biograph object

Specify the 1D property of the object.

bgl.ID = "mybg”;

Use the get function to display the node IDs.

get(bgl.nodes,"ID")

ans =

"M30931*
"LO7625"
"K03454*
"M27323*
"M15390*

Display all properties and their current values of the 5th node and 5th edge of the object.

bgl.nodes(5)

I1D:

Label :
Description:
Position:
Shape:
Size:
Color:
LineWidth:
LineColor:
FontSize:
TextColor:
UserData:

bgl.edges(5)

I1D:

Label :
Description:
Weight:
LineWidth:
LineColor:
UserData:

"M15390*

(N

"box*"

[10 10]

[1 1 0.7000]

1

[0.3000 0.3000 1]
9

[0 0 0]

1

"L07625 -> M15390*"

1
0.5000
[0.5000 0.5000 0.5000]

L1

1-231

1 Alphabetical List

Set the LineWidth property of the 5th node to 2.

bgl.nodes(5) -LineWidth = 2.0;
bgl.nodes(5)

ID: "M15390*
Label: ="
Description: **

Position: []
Shape: "box*”
Size: [10 10]
Color: [1 1 0.7000]
LineWidth: 2
LineColor: [0-3000 0.3000 1]
FontSize: 9
TextColor: [0 O 0]
UserData: []

Alternatively use getnodesbyid function to create a handle for the 5th node, and set its
Shape property to 'circle'.

nhl = getnodesbyid(bgl, "M15390%)

ID: "M15390*°
Label: ="
Description: **

Position: []
Shape: "box*
Size: [10 10]
Color: [1 1 0.7000]
LineWidth: 2
LineColor: [0-3000 0.3000 1]
FontSize: 9
TextColor: [0 O 0]
UserData: []

nhl.Shape = “circle”;

Specify the LineColor property of the 5th edge.

bgl.edges(5).LineColor = [0.7 0.0 0.1];

1-232

biograph object

Alternatively use getedgesbynodeid to retrieve the handel to the edge by providing a
source node id and a sink node id.

ehl = getedgesbynodeid(bgl, "L07625","M15390")

ID: "LO7625 -> M15390*

Label: ="
Description: **
Weight: 1

LineWidth: 0.5000
LineColor: [0.7000 0 0.1000]
UserData: []
Use the handle to specify the LineWidth property or any other properties of the edge.
ehl.LineWidth = 2.0;
View the biograph object.

view(bgl)

1-233

1 Alphabetical List

[= ==

- Biograph Viewer 1

Tools

QW
bl bl

File

1-234

Window Help

-

See Also
biograph | conncomp | get | getdescendants | getmatrix | getrelatives
| isomorphism | maxflow | set | topoorder | view | alIshortestpaths |

dolayout | getancestors | getedgesbynodeid | getnodesbyid | isdag |
isspantree | minspantree | shortestpath | traverse

biograph

biograph

Create biograph object

Syntax

BGobj = biograph(CMatrix)

BGobj = biograph(CMatrix, NodeIDs)

BGobj = biograph(CMatrix, NodeIDs, ..."ID", IDValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."Label", LabelValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ..."Description”,
DescriptionValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."LayoutType-®,
LayoutTypeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeType-®,
EdgeTypeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."Scale", ScaleValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ..."LayoutScale~,
LayoutScaleValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeTextColor"®,
EdgeTextColorValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeFontSize-",
EdgeFontSizeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."ShowArrows-",
ShowArrowsValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."ArrowSize-",
ArrowSizeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."ShowWeights~,
ShowWeightsValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."ShowTextlnNodes~,
ShowTextInNodesValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."NodeAutoSize-",
NodeAutoSizeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."NodeCallback”,
NodeCallbackValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeCallback",
EdgeCallbackValue, ...)

1-235

1 Alphabetical List

1-236

BGobj = biograph(CMatrix, NodeIDs, ..."CustomNodeDrawFcn",

CustomNodeDrawFcnValue,

Arguments

---)

CMatrix

Full or sparse square matrix that acts as a connection
matrix. That is, a value of 1 indicates a connection
between nodes while a O indicates no connection. The
number of rows/columns is equal to the number of
nodes.

NodelIDs

Node identification strings. Enter any of the following:

+ Cell array of strings with the number of strings
equal to the number of rows or columns in the
connection matrix CMatrix. Each string must be
unique.

* Character array with the number of rows equal to
the number of nodes. Each row in the array must
be unique.

+ String with the number of characters equal to the
number of nodes. Each character must be unique.

Default values are the row or column numbers.

Note: You must specify NodeIDs if you want to
specify property name/value pairs. Set NodeIDs to []
to use the default values of the row/column numbers.

IDValue

String to identify the biograph object. Default is " *.

LabelValue

String to label the biograph object. Default is " *.

DescriptionValue

String that describes the biograph object. Default is

LayoutTypeValue

String that specifies the algorithm for the layout
engine. Choices are:

* "hierarchical " (default) — Uses a topological
order of the graph to assign levels, and then

biograph

arranges the nodes from top to bottom, while
minimizing crossing edges.

+ "radial " — Uses a topological order of the graph
to assign levels, and then arranges the nodes from
inside to outside of the circle, while minimizing
crossing edges.

+ "equilibrium® — Calculates layout by
minimizing the energy in a dynamic spring system.

EdgeTypeValue

String that specifies how edges display. Choices are:

* “"straight”
* "curved® (default)
* "segmented-

Note: Curved or segmented edges occur only when
necessary to avoid obstruction by nodes. Biograph
objects with LayoutType equal to "equilibrium® or
"radial " cannot produce curved or segmented edges.

ScaleValue

Positive number that post-scales the node coordinates.
Default is 1.

LayoutScaleValue

Positive number that scales the size of the nodes
before calling the layout engine. Default is 1.

EdgeTextColorValue

Three-element numeric vector of RGB values. Default
is [0, O, 0], which defines black.

EdgeFontSizeValue

Positive number that sets the size of the edge font in
points. Default is 8.

ShowArrowsValue

Controls the display of arrows for the edges. Choices
are "on" (default) or "off".

ArrowSizeValue

Positive number that sets the size of the arrows in
points. Default is 8.

ShowWeightsValue

Controls the display of text indicating the weight of
the edges. Choices are "on" (default) or "off".

1-237

1 Alphabetical List

ShowTextInNodesValue

String that specifies the node property used to label
nodes when you display a biograph object using the
view method. Choices are:

+ "Label®™ — Uses the Label property of the node
object (default).

+ "ID" — Uses the ID property of the node object.

* "None*

NodeAutoSizeValue

Controls precalculating the node size before calling
the layout engine. Choices are "on" (default) or
“off-.

Note: Set it to ofF if you want to apply different node
sizes by changing the Size property.

NodeCallbackValue

User callback for all nodes. Enter the name of a
function, a function handle, or a cell array with
multiple function handles. After using the view
function to display the biograph in the Biograph
Viewer, you can double-click a node to activate the
first callback, or right-click and select a callback to
activate. Default is @(node) i1nspect(node), which
displays the Property Inspector dialog box.

EdgeCallbackValue

User callback for all edges. Enter the name of a
function, a function handle, or a cell array with
multiple function handles. After using the view
function to display the biograph in the Biograph
Viewer, you can double-click an edge to activate the
first callback, or right-click and select a callback to
activate. Default is @(edge) inspect(edge), which
displays the Property Inspector dialog box.

CustomNodeDrawFcnValue

Function handle to a customized function to draw
nodes. Default is [].

1-238

biograph

Description

BGobj = biograph(CMatrix) creates a biograph object, BGobj, using a connection
matrix, CMatrix. All nondiagonal and positive entries in the connection matrix,
CMatrix, indicate connected nodes, rows represent the source nodes, and columns
represent the sink nodes.

BGobj = biograph(CMatrix, NodeIDs) specifies the node identification strings.
NodeIDs can be:

+ Cell array of strings with the number of strings equal to the number of rows or
columns in the connection matrix CMatrix. Each string must be unique.

+ Character array with the number of rows equal to the number of nodes. Each row in
the array must be unique.

* String with the number of characters equal to the number of nodes. Each character
must be unique.

Default values are the row or column numbers.

Note: If you want to specify property name/value pairs, you must specify NodeIDs. Set
NodeIDs to [] to use the default values of the row/column numbers.

BGobj = biograph(..., "PropertyName®, PropertyValue, ...) calls
biograph with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

BGobj = biograph(CMatrix, NodeIDs, ..."ID", IDValue, ...) specifiesan ID
for the biograph object. Default is " *.

BGobj = biograph(CMatrix, NodeIDs, ..."Label", LabelValue, ...)
specifies a label for the biograph object. Default is " *.

BGobj = biograph(CMatrix, NodeIDs, ..."Description”,
DescriptionValue, ...) specifies a description of the biograph object. Default is " *.

BGobj = biograph(CMatrix, NodeIDs, ..."LayoutType-~,
LayoutTypeValue, ...) specifies the algorithm for the layout engine.

1-239

1 Alphabetical List

1-240

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeType-",
EdgeTypeValue, ...) specifies how edges display.

BGobj = biograph(CMatrix, NodeIDs, ..."Scale", ScaleValue, ...) post-
scales the node coordinates. Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ..."LayoutScale”,
LayoutScaleValue, ...) scales the size of the nodes before calling the layout engine.
Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeTextColor"®,
EdgeTextColorValue, ...) specifies a three-element numeric vector of RGB values.
Default is [0, 0, 0], which defines black.

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeFontSize~,
EdgeFontSizeValue, ...) setsthe size of the edge font in points. Default is 8.

BGobj = biograph(CMatrix, NodeIDs, ..."ShowArrows",
ShowArrowsValue, ...) controls the display of arrows for the edges. Choices are "on*
(default) or "ofF".

BGobj = biograph(CMatrix, NodeIDs, ..."ArrowSize-",
ArrowSizeValue, ...) setsthe size of the arrows in points. Default is 8.

BGobj = biograph(CMatrix, NodeIDs, ..."ShowWeights”,
ShowWeightsValue, ...) controlsthe display of text indicating the weight of the
edges. Choices are "on" (default) or "ofFf".

BGobj = biograph(CMatrix, NodeIDs, ..."ShowTextInNodes~,
ShowTextInNodesValue, ...) specifies the node property used to label nodes when
you display a biograph object using the view method.

BGobj = biograph(CMatrix, NodeIDs, ..."NodeAutoSize-,
NodeAutoSizeValue, ...) controls precalculating the node size before calling the
layout engine. Choices are "on" (default) or "ofFFf".

BGobj = biograph(CMatrix, NodeIDs, ..."NodeCallback",
NodeCallbackValue, ...) specifies user callback for all nodes.

BGobj = biograph(CMatrix, NodeIDs, ..."EdgeCallback",
EdgeCallbackValue, ...) specifies user callback for all edges.

biograph

BGobj = biograph(CMatrix, NodeIDs, ..."CustomNodeDrawFcn",
CustomNodeDrawFcnValue, ...) specifies function handle to customized function to
draw nodes. Default is [].

Examples

Create a biograph object
This example shows how to create a biograph object.

Create a biograph object with default node IDs, and then use the get function to display
the node IDs.

cm=][01100;10011;10000;00001;10100];
bgl = biograph(cm)

Biograph object with 5 nodes and 9 edges.

get(bgl.nodes,"ID")

ans =

"Node 1°
"Node 2*
"Node 3*
"Node 4*
"Node 5°

Create a biograph object, assign the node IDs, and then use the get function to display
the node IDs.

cn=[01100;20011;10000;00001;1010 0];
ids = {"M30931","L07625","K03454","M27323", "M15390"};

bg2 = biograph(cm,ids);

get(bg2.nodes, "ID")

ans =

"M30931*

1-241

1 Alphabetical List

"LO07625"
"K03454*
"M27323*
"M15390*

Display the biograph object.

view(bg2)

1-242

biograph
Z Biograph Viewer 1 E@
File Tools Window Help u
QAR D
|I III
[h
f I|I 1!
| | I'.
T | '|I !
| L
/ [\
l.\ Voo
\'\ \.I'-._ -'I II'l III|
\\ I"-.I l'l I'ul IIII
. Vool \ |
o |
i« i II". II'.
- Voo
. h \
~., Voo
-~ Vo
-~ Vo
ey Vol
~ |
More About
. “biograph object”
See Also

conncomp | get | getdescendants | getmatrix | getrelatives | isomorphism
| maxFlow | set | topoorder | view | allshortestpaths | dolayout |

1-243

1 Alphabetical List

getancestors | getedgesbynodeid | getnodesbyid | isdag | isspantree |
minspantree | shortestpath | traverse

1-244

BiolndexedFile class

BiolndexedFile class

Allow quick and efficient access to large text file with nonuniform-size entries

Description

The BiolndexedFi le class allows access to text files with nonuniform-size entries,
such as sequences, annotations, and cross-references to data sets. It lets you quickly and
efficiently access this data without loading the source file into memory.

This class lets you access individual entries or a subset of entries when the source file is
too big to fit into memory. You can access entries using indices or keys. You can read and
parse one or more entries using provided interpreters or a custom interpreter function.

Construction

BiolFobj = BiolndexedFile(Format,SourceFile) returns a BiolndexedFile
object BioIFobj that indexes the contents of SourceFile following the parsing rules
defined by Format, where SourceFile and Format are strings specifying a text file and
a file format, respectively. It also constructs an auxiliary index file to store information
that allows efficient, direct access to SourceFile. The index file by default is stored in
the same location as the source file and has the same name as the source file, but with
an IDX extension. The BiolndexedFi le constructor uses the index file to construct
subsequent objects from SourceFile, which saves time.

BiolFobj = BiolndexedFile(Format,SourceFile, IndexDir) returns a
BiolndexedFi le object BioIlFobj by specifying the relative or absolute path to a folder to
use when searching for or saving the index file.

BiolFobj = BiolndexedFile(Format,SourceFile, IndexFile) returns a
BiolndexedFi le object BiolFobj by specifying a file name, optionally including a
relative or absolute path, to use when searching for or saving the index file.

BiolFobj = BiolndexedFile(,Name,Value) returns a BiolndexedFile
object BioIFobj by using any input arguments from the previous syntaxes and additional
options, specified as one or more Name,Value pair arguments.

1-245

1 Alphabetical List

Input Arguments
Format

String specifying a file format. Choices are:

+ "SAM®" — SAM-formatted file
+ "FASTQ" — FASTQ-formatted file
+ "FASTA" — FASTA-formatted file

* "TABLE" — Tab-delimited table with multiple columns. Keys can be in any column.
Rows with the same key are considered separate entries.

* "MRTAB®" — Tab-delimited table with multiple columns. Keys can be in any column.
Contiguous rows with the same key are considered a single entry. Noncontiguous
rows with the same key are considered separate entries.

* "FLAT" — Flat file with concatenated entries separated by a string, typically *//".
Within an entry, the key is separated from the rest of the entry by a white space.

Default:

SourceFile

String specifying a text file. The string can include a relative or absolute path.
Default:

IndexDir

String specifying the relative or absolute path to a folder to use when searching for or
saving the index file.

Default:
IndexFile

String specifying a file name, optionally including a relative or absolute path, to use
when searching for or saving the index file.

Default:
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-246

BiolndexedFile class

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

" IndexedByKeys*

Specifies if you can access the object BiolFobj using keys. Choices are true or false.

Tip Set the value to false if you do not need to access entries in the object using keys.
Doing so saves time and space when creating the object.

Default: true
"MemoryMapped Index*

Specifies whether the constructor stores the indices in the auxiliary index file and
accesses them via memory maps (true) or loads the indices into memory at construction
time (False).

Tip If memory is not an issue and you want to maximize performance when accessing
entries in the object, set the value to false.

Default: true
"Interpreter”

Handle to a function that the read method uses when parsing entries from the source
file. The interpreter function must accept a single string of one or more concatenated
entries and return a structure or an array of structures containing the interpreted data.

When Format is a general-purpose format such as "TABLE", *"MRTAB", or "FLAT",
then the default is [], which means the function is an anonymous function in which the
output is equivalent to the input.

When Format is an application-specific format such as "SAM®, "FASTQ", or "FASTA",
then the default is a function handle appropriate for that file type and typically does not
require you to change it.

Default:

1-247

1 Alphabetical List

1-248

"Verbose*
Controls the display of the status of the object construction. Choices are true or false.

Default: true

Note: The following name-value pair arguments apply only when both of the following
are true:

* There is no pre-existing index file associated with your source file.

* Your source file has a general-purpose format such as "TABLE", "MRTAB", or "FLAT".

For source files with application-specific formats, the following name-value pairs are pre-
defined and you cannot change them.

"KeyColumn*

Positive integer specifying the column in the "TABLE" or "MRTAB" file that contains the
keys.

Default: 1

"KeyToken*

String that occurs in each entry before the key, for "FLAT" files that contain keys. If
the value is * ", it indicates the key is the first string in each entry and is delimited by
blank spaces.

Default: = *

"HeaderPrefix”

String specifying a prefix that denotes header lines in the source file so the constructor
ignores them when creating the object. If the value is [], it means the constructor does

not check for header lines in the source file.

Default: []

BiolndexedFile class

"CommentPrefix”

String specifying a prefix that denotes comment lines in the source file so the constructor
ignores them when creating the object. If the value is [], it means the constructor does
not check for comment lines in the source file.

Default: []
"ContiguousEntries”

Specifies whether entries are on contiguous lines, which means they are not separated by
empty lines or comment lines, in the source file or not. Choices are true or false.

Tip Set the value to true when entries are not separated by empty lines or comment
lines. Doing so saves time and space when creating the object.

Default: false
"TableDelimiter”

String specifying a delimiter symbol to use as a column separator for SourceFile when
Format is "TABLE" or "MRTAB". Choices are "\t" (horizontal tab), * " (blank space), or
", ", (comma).

Default: "\t"
"EntryDelimiter”

String specifying a delimiter symbol to use as an entry separator for SourceFile when
Format is "FLAT".

Default: "//"

Properties

FileFormat
File format of the source file

This information is read only. Possible values are:

1-249

1 Alphabetical List

1-250

*+ "SAM" — SAM-formatted file
*+ "FASTQ" — FASTQ-formatted file
+ "FASTA" — FASTA-formatted file

* "TABLE" — Tab-delimited table with multiple columns. Keys can be in any column.
Rows with the same key are considered separate entries.

* "MRTAB" — Tab-delimited table with multiple columns. Keys can be in any column.
Contiguous rows with the same key are considered a single entry. Noncontiguous
rows with the same key are considered separate entries.

* "FLAT" — Flat file with concatenated entries separated by a string, typically *//".
Within an entry, the key is separated from the rest of the entry by a white space.

IndexedByKeys

Whether or not the entries in the source file can be indexed by an alphanumeric key.
This information is read only.

IndexFile

Path and file name of the auxiliary index file.

This information is read only. Use this property to confirm the name and location of the
index file associated with the object.

InputFile
Path and file name of the source file.

This information is read only. Use this property to confirm the name and location of the
source file from which the object was constructed.

Interpreter
Handle to a function used by the read method to parse entries in the source file.

This interpreter function must accept a single string of one or more concatenated entries
and return a structure or an array of structures containing the interpreted data. Set
this property when your source file has a *"TABLE", "MRTAB", or "FLAT" format. When
your source file is an application-specific format such as "SAM", "FASTQ", or "FASTA",
then the default is a function handle appropriate for that file type and typically does not
require you to change it.

BiolndexedFile class

MemoryMapped I ndex

Whether the indices to the source file are stored in a memory-mapped file or in memory.
NumEntries

Number of entries indexed by the object.

This information is read only.

Methods

getDictionary
Retrieve reference sequence names from
SAM-formatted source file associated with
BiolndexedFile object

getEntryBylIndex
Retrieve entries from source file associated
with BioIndexedFile object using numeric
index

getEntryByKey
Retrieve entries from source file associated
with BiolndexedFile object using
alphanumeric key

getIndexByKey
Retrieve indices from source file associated
with BioIndexedFile object using
alphanumeric key

getKeys

Retrieve alphanumeric keys from source
file associated with BioIndexedFile object

getSubset
Create object containing subset of elements
from BiolndexedFile object

read
Read one or more entries from source file
associated with BiolndexedFile object

1-251

1 Alphabetical List

1-252

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Examples

Construct a BiolndexedFile object and access its gene ontology (GO) terms

This example shows how to construct a BioIndexedFile object and access its gene
ontology (GO) terms.

Create a variable containing full absolute path of source file.
sourcefile = which("yeastgenes.sgd");

Copy the file to the current working directory.
copyfile(sourcefile, "yeastgenes _copy.sgd®);

Construct a BioIndexedFile object from the source file that is a tab-delimited file,
considering contiguous rows with the same key as a single entry. Indicate that keys are
located in column 3 and that header lines are prefaced with "".

gene2goObj = BiolndexedFile("mrtab”, "yeastgenes_copy.sgd”, "KeyColumn®,3, "HeaderPrefix"™

Source File: yeastgenes_copy.-sgd
Path: C:\TEMP\Bdocl4b_ 152206 6100\tp3a9f2096_b251 4b45 af9l 2lac8fcf4la7
Size: 16069425 bytes
Date: 19-Jan-2013 22:45:16

Creating new index file ...

Indexer found 6381 entries after parsing 90171 text lines.

Index File: yeastgenes_copy.sgd.idx
Path: C:\TEMP\Bdocl4b_ 152206 6100\tp3a9f2096_b251 4b45 af91l 2lac8fcf4la7
Size: 89578 bytes
Date: 20-Sep-2014 00:39:21

Mapping object to yeastgenes_copy-sgd.idx ...

Done.

Return the GO term from all entries that are associated with the gene YAT2. Access
entries that have a key of YAT2.

YAT2_entries = getEntryByKey(gene2goObj, "YAT2%);

BiolndexedFile class

Adjust object interpreter to return only the column containing the GO term.

gene2golObj . Interpreter = @(x) regexp(x, "GO:\d+", "match");

Parse the entries with a key of YAT2 and return all GO terms from those entries.

GO_YAT2_entries = read(gene2goObj, "YAT2")

GO_YAT2 entries

Columns 1 through 4
"G0:0006066" "G0:0006810"
Columns 5 through 8
"G0:0005737*" "G0:0006629"
Columns 9 through 12
"G0:0016740" "G0:0006631"
Columns 13 through 15

"G0:0016746" "G0:0016746"

See Also

"G0:0004092"

"G0:0009437"

"G0:0005737"

"G0:0006066"

"G0:0005737"

"G0:0004092"

"G0:0005829*

| memmapfile | fastaread | fastqread | samread | genbankread

How To

. “Work with Large Multi-Entry Text Files”

1-253

1 Alphabetical List

1-254

bioma.data.ExptData class

Package: bioma.data

Contain data values from microarray experiment

Description

The ExptData class is designed to contain data values, such as gene expression values,
from a microarray experiment. It stores the data values in one or more DataMatrix
objects, each having the same row names (feature names) and column names (sample
names). It provides a convenient way to store related experiment data in a single data
structure (object). It also lets you manage and subset the data.

The ExptData class includes properties and methods that let you access, retrieve, and
change data values from a microarray experiment. These properties and methods are
useful to view and analyze the data.

Construction

EDobj = bioma.data.ExptData(Datal, Data2, ...) creates an ExptData object,
from one or more matrices of data. Each matrix can be a logical matrix, a numeric
matrix, or a DataMatrix object.

EDobj = bioma.data.ExptData(..., {DMobj1, Namei1}, {DMobj2,
Name2}, ...) specifies an element name for each DataMatrix object. Name# is a string
specifying a unique name. Default names are EImtl, EImt2, etc.

EDobj = bioma.data.ExptData({Datat, Data2, ...3}) createsan ExptData
object, from a cell array of matrices of data. Each matrix can be a logical matrix, a
numeric matrix, or a DataMatrix object.

EDobj = bioma.data.ExptData(..., "PropertyName®, PropertyValue)
constructs the object using options, specified as property name/property value pairs.

EDobj = bioma.data.ExptData(..., "ElementNames®, ElementNamesValue)
specifies element names for the matrix inputs. EIementNamesValue is a cell array of
strings. Default names are EImtl, EImt2, etc.

bioma.data.ExptData class

EDobj = bioma.data.ExptData(..., "FeatureNames", FeatureNamesValue)
specifies feature names (row names) for the ExptData object. .

EDobj = bioma.data.ExptData(..., "SampleNames®, SampleNamesValue)
specifies sample names (column names) for the ExptData object.

Input Arguments
Data#

Matrix of experimental data values specified by any of the following:

* Logical matrix
* Numeric matrix

+ DataMatrix object

All inputs must have the same dimensions. All DataMatrix objects must also have
the same row names and columns names. If you provide logical or numeric matrices,
bioma.data.ExptData converts them to DataMatrix objects with either default row
and column names, or the row and column names of DataMatrix inputs, if provided.

The rows must correspond to features and the columns must correspond to samples.
Default:

DMob j#

Variable name of a DataMatrix object in the MATLAB Workspace.

Default:

Name#

String specifying an element name for the corresponding DataMatrix object
Default:

ElementNamesValue

Cell array of strings that specifies unique element names for the matrix inputs. The
number of elements in EIementNamesValue must equal the number input matrices.

1-255

1 Alphabetical List

1-256

Default: {EImtl, EImt2, ...}

FeatureNamesValue

Feature names (row names) for the ExptData object, specified by one of the following:

Cell array of strings
Character array
Numeric or logical vector

Single string, which is used as a prefix for the feature names, with feature numbers
appended to the prefix

Logical true or false (default). If true, bioma.data.ExptData assigns unique
feature names using the format Featurel, Feature2, etc.

If you use a cell array of strings, character array, or vector, then the number of elements
must be equal in number to the number of rows in Dataf?.

Default:

SampleNamesValue

Sample names (column names) for the ExptData object, specified by one of the following:

Cell array of strings
Character array
Numeric or logical vector

Single string, which is used as a prefix for the sample names, with sample numbers
appended to the prefix

Logical true or false (default). If true, bioma.data.ExptData assigns unique
sample names using the format Samplel, Sample2, etc.

If you use a cell array of strings, character array, or vector, then the number of elements
must be equal in number to the number of columns in Data7. If the ExptData object

1s part of an ExpressionSet object that contains a MetaData object, the sample names
(column names) in the ExptData object must match the sample names (row names) in a
MetaData object.

Default:

bioma.data.ExptData class

Properties

ElementClass
Class type of the DataMatrix objects in the experiment

Cell array of strings specifying the class type of each DataMatrix object in the ExptData
object. Possible values are MATLAB classes, such as single, double, and logical.
This information is read-only.

Attributes:
SetAccess private

Name

Name of the ExptData object.

String specifying the name of the ExptData object. Default is [].
NElements

Number of elements in the experiment

Positive integer specifying the number of elements (DataMatrix objects) in the
experiment data. This value is equivalent to the number of DataMatrix objects in the
ExptData object. This information is read-only.

Attributes:
SetAccess private

NFeatures
Number of features in the experiment

Positive integer specifying the number of features in the experiment. This value is
equivalent to the number of rows in each DataMatrix object in the ExptData object. This
information is read-only.

Attributes:

1-257

1 Alphabetical List

SetAccess private

NSamples

Number of samples in the experiment

Positive integer specifying the number of samples in the experiment. This value is
equivalent to the number of columns in each DataMatrix object in the ExptData object.

This information is read-only.

Attributes:

SetAccess private

Methods

combine
Combine two ExptData objects
dmNames
Retrieve or set Name properties of
DataMatrix objects in ExptData object
elementData
Retrieve or set data element (DataMatrix
object) in ExptData object
elementNames
Retrieve or set element names of
DataMatrix objects in ExptData object
featureNames
Retrieve or set feature names in ExptData
object
isempty
Determine whether ExptData object is
empty
sampleNames

Retrieve or set sample names in ExptData
object

1-258

bioma.data.ExptData class

size
Return size of ExptData object

Instance Hierarchy

An ExpressionSet object contains an ExptData object. An ExptData object contains one
or more DataMatrix objects.

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

ExptData objects support 1-D parenthesis () indexing to extract, assign, and delete data.

ExptData objects do not support:

* Dot . indexing

* Curly brace {} indexing

Examples

Construct an ExptData object

This example shows how to construct an ExptData object containing one DataMatrix
object.

1-259

1 Alphabetical List

Import bioma.data package to make constructor functions available.

import bioma.data.*

Create a DataMatrix object from .txt file containing expression values from microarray
experiment.

dmObj = DataMatrix("File", "mouseExprsData.txt");

Construct an ExptData object from the DataMatrix object.

EDObj

ExptData(dmObj)

EDObj =

Experiment Data:
500 features, 26 samples
1 elements
Element names: Elmtl

. Working with Objects for Microarray Experiment Data

. Analyzing Illumina Bead Summary Gene Expression Data

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438, 662—666.

See Also

bioma.ExpressionSet | bioma.data.MetaData | bioma.data.MIAME

How To

. “Class Attributes”

. “Property Attributes”

. “Representing Expression Data Values in ExptData Objects”

1-260

bioma.data.MetaData class

bioma.data.MetaData class

Package: bioma.data

Contain metadata from microarray experiment

Description

The MetaData class is designed to contain metadata (variable values and descriptions)
from a microarray experiment. It provides a convenient way to store related metadata in
a single data structure (object). It also lets you manage and subset the data.

The metadata is a collection of variable names, for example related to samples or
microarray features, along with descriptions and values for the variables. A MetaData
object stores the metadata in two “dataset” arrays.

+ Values dataset array — A dataset array containing the measured value of each
variable per sample or feature. In this dataset array, the columns correspond to
variables and rows correspond to either samples or features. The number and names
of the columns in this dataset array must match the number and names of the rows
in the Descriptions dataset array. If this dataset array contains sample metadata,
then the number and names of the rows (samples) must match the number and names
of the columns in the DataMatrix objects in the same ExpressionSet object. If this
dataset array contains feature metadata, then the number and names of the rows
(features) must match the number and names of the rows in the DataMatrix objects
in the same ExpressionSet object.

+ Descriptions dataset array — A dataset array containing a list of the variable
names and their descriptions. In this dataset array, each row corresponds
to a variable. The row names are the variable names, and a column, named
VariableDescription, contains a description of the variable. The number and
names of the rows in the Descriptions dataset array must match the number and
names of the columns in the Values dataset array.

The MetaData class includes properties and methods that let you access, retrieve, and

change metadata variables, and their values and descriptions. These properties and
methods are useful to view and analyze the metadata.

1-261

1 Alphabetical List

1-262

Construction

MDobj = bioma.data.MetaData(VarValues) creates a MetaData object from one
dataset array whose rows correspond to sample (observation) names and whose columns
correspond to variables. The dataset array contains the measured value of each variable
per sample.

MDobj = bioma.data.MetaData(VarValues, VarDescriptions) creates a
MetaData object from two dataset arrays. VarDescriptions is a dataset array whose
rows correspond to variables. The row names are the variable names, and another
column, named VariableDescription, contains a description of each variable.

MDobj = bioma.data.MetaData(VarValues, VarDesc) creates a MetaData object
from a dataset array and VarDesc a cell array of strings containing descriptions of the
variables.

MDobj = bioma.data.MetaData(..., “PropertyName®, PropertyValue)
constructs the object using options, specified as property name/property value pairs.

MDobj = bioma.data.MetaData("File", FileValue) creates a MetaData object
from a text file containing a table of metadata. The table row labels must be sample
names, and its column headers must be variable names.

MDobj = bioma.data.MetaData("File", FileValue, ..."Path", PathValue)
specifies a folder or path and folder where FileValue is stored.

MDobj = bioma.data.MetaData("File", FileValue, ..."Delimiter”,
DelimiterValue) specifies a delimiter symbol to use as a column separator for
FileValue. Defaultis "\t".

MDobj = bioma.data.MetaData("File", FileValue, ..."RowNames"®,
RowNamesValue) specifies the row names (sample names) for the MetaData object.
Default 1s the information in the first column of the table.

MDobj = bioma.data.MetaData("File", FileValue, ..."ColumnNames"®,
ColumnNamesValue) specifies the columns of data to read from the table.
ColumnNamesValue is a cell array of strings specifying the column header names.
Default is to read all columns of data from the table, assuming the first row contains
column headers.

MDobj = bioma.data.MetaData("File", FileValue, ..."VarDescChar",
VarDescCharValue) specifies that lines in the table prefixed by VarDescCharValue

bioma.data.MetaData class

to be read as descriptions and used to create the VarDescriptions dataset array. By
default, bioma.data.MetaData does not read variable description information, and
does not create a Descriptions dataset array. These prefixed lines must appear at the top
of the file, before the table of metadata values.

MDobj = bioma.data.MetaData(..."Name", NameValue) specifies a name for the
MetaData object.

MDobj = bioma.data.MetaData("File", FileValue, ..."Description”,
DescriptionValue) specifies a description for the MetaData object.

MDobj = bioma.data.MetaData("File", FileValue, ..."SampleNames"®,
SampleNamesValue) specifies sample names (row names) for the MetaData object.

MDobj = bioma.data.MetaData("File", FileValue, ..."VariableNames"®,
VariableNamesValue) specifies variable names (column names) for the MetaData
object.

Input Arguments
VarValues

Dataset array whose rows correspond to sample (observation) names and whose columns
correspond to variables. The dataset array contains the measured value of each variable
per sample or feature.

The number and names of the columns in the VarValues dataset array must match the
number and names of the rows in the VarDescriptions dataset array. If VarValues
contains sample metadata, then the number and names of the rows (samples) must
match the number and names of the columns in the DataMatrix objects in the same
ExpressionSet object. If VarValues contains feature metadata, then the number and
names of the rows (features) must match the number and names of the rows in the
DataMatrix objects in the same ExpressionSet object.

Default:
VarDescriptions

Dataset array whose rows correspond to variables. The row names are the variable
names, and a column, named VariableDescription, contains a description of the
variable. The number and names of the rows in the VarDescriptions dataset array
must match the number and names of the columns in the VarValues dataset array.

1-263

1 Alphabetical List

Default:
VarDesc

Cell array of strings containing descriptions of the variables. The number of elements in
VarDesc must equal the number of columns (variable names) in VarValues.

Default:
Filevalue

String specifying a text file containing a table of metadata. The table row labels must be
sample or feature names, and its column headers must be variable names. The text file
must be on the MATLAB search path or in the Current Folder (unless you use the Path

property).

Default:

PathValue

String specifying a folder or path and folder where FileValue is stored.
Default:

DelimiterValue

String specifying a delimiter symbol to use as a column separator for FileValue. Typical
choices are:

+ "\t" (default)

° - I -
Default:
RowNamesValue

Row names (sample or feature names) for the MetaData object, specified by one of the
following:

* Cell array of strings

1-264

bioma.data.MetaData class

* Single number indicating the column of the table containing the row names

* Character string indicating the column header of the table containing the row names

If you specify [] for RowNamesValue, then bioma.data.MetaData provides numbered
row names, starting with 1.

Default: 1, which specifies the information in the first column of the table
ColumnNamesValue

Cell array of strings specifying the column header names to indicate which columns
of data to read from the table. Default is to read all columns of data from the table,
assuming the first row contains column headers. If the table does not have column
headers, specify [] for ColumnNamesValue to read all columns of data and provide
numbered column names, starting with 1.

Default:
VarDescCharValue

String specifying a character to prefix lines in the table that are to be read as
descriptions and used to create the VarDescriptions dataset array. By default,
bioma.data.MetaData does not read variable description information, and does not
create a VarDescriptions dataset array. These prefixed lines must appear at the top of
the file, before the table of metadata values.

Default:

NameValue

String specifying a name for the MetaData object.
Default:

DescriptionvValue

String specifying a description for the MetaData object.
Default:

SampleNamesValue

Cell array of strings specifying sample names for the MetaData object. The number of
elements in the cell array must equal the number of samples in the MetaData object.

1-265

1 Alphabetical List

This input overwrites sample names from the input file. Default are the sample names
(row names) from the input file.

Default:
VariableNamesValue

Cell array of strings specifying variable names for the MetaData object. The number of
elements in the cell array must equal the number of variables in the MetaData object.
This input overwrites variable names from the input file. Default are the variable names
(column names) from the input file.

Default:

Properties

Description

Description of the MetaData object.

String specifying a description of the MetaData object. Default is [].
DimensionLabels

Row and column labels for the MetaData object.

Two-element cell array containing strings specifying labels of the rows and columns
respectively in the MetaData object. Default is {"Samples®™, "Variables"}.

Name

Name of the MetaData object.

String specifying the name of the MetaData object. Default is [].
NSamples

Number of samples (observations) in the experiment

Positive integer specifying the number of samples in the experiment. This value is
equivalent to the number of rows in the VarValues dataset array. This information is
read-only

1-266

bioma.data.MetaData class

Attributes:

SetAccess

NVariables

Number of variables in the experiment

private

Positive integer specifying the number of variables in the experiment. This value is
equivalent to the number of columns in the VarValues dataset array. This information

is read-only

Attributes:

SetAccess

Methods

combine

isempty
sampleNames

size

variableDesc
variableNames

variableValues

private

Combine two MetaData objects

Determine whether MetaData object is
empty

Retrieve or set sample names in MetaData
object

Return size of MetaData object

Retrieve or set variable descriptions for
samples in MetaData object

Retrieve or set variable names for samples
in MetaData object

Retrieve or set variable values for samples
in MetaData object

1-267

1 Alphabetical List

1-268

varValuesTable
Create 2-D graphic table GUI of variable
values in MetaData object

Instance Hierarchy
An ExpressionSet object contains two MetaData objects, one for sample information and
one for microarray feature information. A MetaData object contains two dataset arrays.

One dataset array contains the measured value of each variable per sample or feature.
The other dataset array contains a list of the variable names and their descriptions.

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

MetaData objects support 2-D parenthesis () indexing and dot . indexing to extract,
assign, and delete data.

MetaData objects do not support:

* Curly brace {} indexing

* Linear indexing

Examples

Construct a MetaData object containing sample variable information from a text file:

bioma.data.MetaData class

% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData("File", "mouseSampleData.txt", "VarDescChar®, "#7);

% Display information about the MetaData object

MDObj2

% Supply a description for the MetaData object

MDObj2.Description = "This MetaData Object contains sample variable info."

See Also

bioma.ExpressionSet | bioma.data.ExptData | bioma.data.MIAME

Tutorials
. Working with Objects for Microarray Experiment Data

. Analyzing Illumina Bead Summary Gene Expression Data

How To

. “Class Attributes”

. “Property Attributes”

. “Representing Sample and Feature Metadata in MetaData Objects”

1-269

1 Alphabetical List

1-270

bioma.data.MIAME class

Package: bioma.data

Contain experiment information from microarray gene expression experiment

Description

The MIAME class is designed to contain information about experimental methods and
conditions from a microarray gene expression experiment. It loosely follows the Minimum
Information About a Microarray Experiment (MIAME) specification. It can include
information about:

+ Experiment design

* Microarrays used in the experiment

* Samples used

+ Sample preparation and labeling

* Hybridization procedures and parameters

* Normalization controls

* Preprocessing information

+ Data processing specifications

It provides a convenient way to store related information about a microarray experiment
in a single data structure (object).

The MIAME class includes properties and methods that let you access, retrieve, and
change experiment information related to a microarray experiment. These properties and
methods are useful to view and analyze the information.

Construction

MIAMEobj = bioma.data.MIAME() creates an empty MIAME object for storing
experiment information from a microarray gene expression experiment.

MIAMEobj = bioma.data.MIAME(GeoSeriesStruct) creates a MIAME object from a
structure containing Gene Expression Omnibus (GEO) Series data.

bioma.data.MIAME class

MIAMEobj = bioma.data.MIAME(..., "PropertyName®, PropertyValue)
constructs the object using options, specified as property name/property value pairs.

MIAMEobj = bioma.data.-MIAME(...,"Investigator®, InvestigatorValue)
specifies the name of the experiment investigator.

MIAMEobj = bioma.data.MIAME(...,"Lab", LabValue) specifies the laboratory
that conducted the experiment.

MIAMEobj = bioma.data.MIAME(...,"Contact”, ContactValue) specifies the
contact information for the experiment investigator or laboratory.

MIAMEobj = bioma.data.MIAME(...,"URL", URLValue) specifies the experiment
URL.

Input Arguments
GeoSeriesStruct

Gene Expression Omnibus (GEO) Series data specified by either:

+ MATLAB structure returned by the getgeodata function
+ Structure.Header.Series substructure returned by the getgeodata function

Default:

InvestigatorValue

String specifying the name of the experiment investigator.

Default:

Labvalue

String specifying the laboratory that conducted the experiment.

Default:

ContactValue

String specifying the contact information for the experiment investigator or laboratory

Default:

1-271

1 Alphabetical List

1-272

URLValue
String specifying the experiment URL.

Default:

Properties

Abstract

Abstract describing the experiment

String containing an abstract describing the experiment.
Arrays

Information about the microarray chips used in the experiment

Cell array containing information about the microarray chips used in the experiment.
Information can include array name, array platform, number of features on the array,
and so on.

Contact
Contact information for the experiment investigator or laboratory

Character array containing contact information for the experiment investigator or
laboratory.

ExptDesign

Brief description of the experiment design

Character array containing description of the experiment design.
Hybridization

Information about the experiment hybridization

Cell array containing information about the hybridization protocol used in the
experiment. Information can include hybridization time, concentration, volume,
temperature, and so on.

bioma.data.MIAME class

Investigator

Name of the experiment investigator

Character array containing the name of the experiment investigator.
Laboratory

Name of the laboratory where the experiment was conducted
Character array containing the name of laboratory.

Other

Other information about the experiment

Cell array containing other information about the experiment, not covered by the other
properties.

Preprocessing
Information about the experiment preprocessing steps

Cell array containing information about the preprocessing steps used on the data from
the experiment.

PubMedID
PubMed identifiers for relevant publications.

Character array containing PubMed identifiers for papers relevant to the data set used
in the experiment.

QualityControl
Information about the experiment quality controls

Cell array containing information about the experiment quality control steps.
Information can include replicates, dye swap, and so on.

Samples

Information about samples used in the experiment

1-273

1 Alphabetical List

1-274

Cell array containing information about the samples used in the experiment. Information
can include sample source, sample organism, treatment type, compound, labeling
protocol, external control, and so on.

Title

Experiment title

Character array containing a single sentence experiment title.
URL

URL for the experiment

Character array containing URL for the experiment.

Methods

combine
Combine two MIAME objects

isempty
Determine whether MIAME object is empty

Instance Hierarchy

An ExpressionSet object contains a MIAME object.

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

bioma.data.MIAME class

Examples

Construct a MIAME object

Create a MATLAB structure containing Gene Expression Omnibus (GEO) series data.
geoStruct = getgeodata("GSE46167);

Import bioma.data package to make the constructor function available.

import bioma.data.*

Construct MIAME object from the structure.

MIAMEObj 1

MIAME(geoStruct)

MIAMEODbj1

Experiment Description:
Author name: Mika, ,Silvennoinen
Riikka, ,KivelAo
Maarit, ,Lehti
Anna-Maria, ,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: LIKES - Research Center
Contact information: Mika,,Silvennoinen
URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available. Use the Abstract property.
Experiment Design: A 234 word summary is available. Use the ExptDesign property.
Other notes:
[1x84 char]

Supply a URL for the MIAME object.
MIAMEObj1.URL = "www.nonexistinglab.com”
MIAMEObj1 =

Experiment Description:

Author name: Mika, ,Silvennoinen
Riikka, ,KivelAo

1-275

1 Alphabetical List

Maarit, ,Lehti
Anna-Maria, , Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: LIKES - Research Center
Contact information: Mika, ,Silvennoinen
URL: www.nonexistinglab.com
PubMedIDs: 17003243
Abstract: A 90 word abstract is available. Use the Abstract property.
Experiment Design: A 234 word summary is available. Use the ExptDesign property.
Other notes:
[1x84 char]

Alternatively you can construct a MIAME object using customized properties.

MIAMEObj2 = MIAME("investigator®, “Jane Researcher”®,...
“lab®", "One Bioinformatics Laboratory®,...
"contact®, "jresearcher@lab.not.exist",...
“url®, "www.lab.not.exist",...
“title”, "Normal vs. Diseased Experiment®,...
“"abstract®, “"Example of using expression data“,...
“other®, {"Notes:Created from a text file."})

MIAMEObj 2

Experiment Description:
Author name: Jane Researcher
Laboratory: One Bioinformatics Laboratory
Contact information: jresearcher@lab.not.exist
URL: www.lab.not.exist
PubMedIDs:
Abstract: A 4 word abstract is available. Use the Abstract property.
No experiment design summary available.
Other notes:
"Notes:Created from a text file."

. Working with Objects for Microarray Experiment Data

. Analyzing Illumina Bead Summary Gene Expression Data

See Also
bioma.ExpressionSet | bioma.data.ExptData | bioma.data.MetaData |
getgeodata

1-276

bioma.data.MIAME class

How To
. “Class Attributes”
. “Property Attributes”

“Representing Experiment Information in a MIAME Object”

1-277

1 Alphabetical List

1-278

bioma.ExpressionSet class

Package: bioma

Contain data from microarray gene expression experiment

Description

The ExpressionSet class is designed to contain data from a microarray gene expression
experiment, including expression values, sample and feature metadata, and information
about experimental methods and conditions. It provides a convenient way to store related
information about a microarray gene expression experiment in a single data structure
(object). It also lets you manage and subset the data.

The ExpressionSet class includes properties and methods that let you access, retrieve,
and change data, metadata, and other information about the microarray gene expression
experiment. These properties and methods are useful for viewing and analyzing the data.

Construction

ExprSetobj = bioma.ExpressionSet(Data) creates an ExpressionSet object, from
Data, a numeric matrix, a DataMatrix object, or an ExptData object, which contains one
or more DataMatrix objects with the same dimensions, row names and column names.

ExprSetobj = bioma.ExpressionSet(Data, {DMobj1, Namei1}, {DMobj2,
Name2}, ...) creates an ExpressionSet object, from Data, and additional DataMatrix
objects with specified element names. All DataMatrix objects must have the same
dimensions, row names, and column names.

ExprSetobj = bioma.ExpressionSet(..., "PropertyName®, PropertyValue)
constructs the object using options, specified as property name/property value pairs.

ExprSetobj = bioma.ExpressionSet(..., "SData", SDataValue) includes a
MetaData object containing sample metadata in the ExpressionSet object.

ExprSetobj = bioma.ExpressionSet(..., "FData", FDataValue) includes a
MetaData object containing microarray feature metadata in the ExpressionSet object.

ExprSetobj = bioma.ExpressionSet(..., "EInfo", EInfoValue) includes a
MIAME object, which contains experiment information, in the ExpressionSet object.

bioma.ExpressionSet class

Input Arguments
Data

Any of the following:

* Numeric matrix
+ DataMatrix object

+ ExptData object, which contains one or more DataMatrix objects having the same
dimensions

If you provide a DataMatrix object, bioma.ExpressionSet creates an ExptData object
from it and names the DataMatrix object Expressions. If you provide an ExptData
object, bioma.ExpressionSet renames the first DataMatrix object in the ExptData
object to Expressions, unless another DataMatrix object in the ExptData object is
already named Expressions.

Default:
DMobj#

Variable name of a DataMatrix object. Each DataMatrix object must have the same
dimensions as Data.

Default:

Name#

String specifying an element name for the corresponding DataMatrix object. Each
DataMatrix object in an ExpressionSet object has an element name. At least one

DataMatrix object in an ExpressionSet object has an element name of Expressions. By
default, it is the first DataMatrix object.

Default:
SDataValue

Variable name of a MetaData object containing sample metadata for the experiment. The
variable name must exist in the MATLAB Workspace.

Default:

1-279

1 Alphabetical List

1-280

FDataValue

Variable name of a MetaData object containing microarray feature metadata for the
experiment. The variable name must exist in the MATLAB Workspace.

Default:
ElInfoValue

Variable name of a MIAME object, which contains information about the experiment
methods and conditions. The variable name must exist in the MATLAB Workspace.

Default:

Properties

NElements
Number of elements in the experiment

Positive integer specifying the number of elements (DataMatrix objects) in the
experiment data. This value is equivalent to the number of DataMatrix objects in the
ExperimentSet object. This information is read-only.

Attributes:

SetAccess private

NFeatures
Number of features in the experiment

Positive integer specifying the number of features in the experiment. This value is
equivalent to the number of rows in each DataMatrix object in the ExperimentSet object.
This information is read-only.

Attributes:
SetAccess private
NSamples

Number of samples in the experiment

bioma.ExpressionSet class

Positive integer specifying the number of samples in the experiment. This value is
equivalent to the number of columns in each DataMatrix object in the ExperimentSet
object. This information is read-only.

Attributes:

SetAccess private

Methods

abstract
Retrieve or set abstract describing
experiment in ExpressionSet object
elementData
Retrieve or set data element (DataMatrix
object) in ExpressionSet object
elementNames
Retrieve or set element names of
DataMatrix objects in ExpressionSet object
expressions
Retrieve or set Expressions DataMatrix
object from ExpressionSet object
exprWrite
Write expression values in ExpressionSet
object to text file
exptData
Retrieve or set experiment data in
ExpressionSet object
exptInfo
Retrieve or set experiment information in
ExpressionSet object
featureData
Retrieve or set feature metadata in
ExpressionSet object
featureNames

Retrieve or set feature names in
ExpressionSet object

1-281

1 Alphabetical List

1-282

featureVarDesc
Retrieve or set feature variable descriptions
in ExpressionSet object

featureVarNames
Retrieve or set feature variable names in
ExpressionSet object

featureVarValues
Retrieve or set feature variable data values
in ExpressionSet object

pubMedID
Retrieve or set PubMed IDs in
ExpressionSet object

sampleData
Retrieve or set sample metadata in
ExpressionSet object

sampleNames
Retrieve or set sample names in
ExpressionSet object

sampleVarDesc
Retrieve or set sample variable descriptions
in ExpressionSet object

sampleVarNames
Retrieve or set sample variable names in
ExpressionSet object

sampleVarValues
Retrieve or set sample variable values in
ExpressionSet object

size

Return size of ExpressionSet object

Instance Hierarchy

An ExpressionSet object contains an ExptData object, two MetaData objects, and a
MIAME object. These objects can be empty.

bioma.ExpressionSet class

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

ExpressionSet objects support 2-D parenthesis () indexing to extract, assign, and delete
data.

ExpressionSet objects do not support:

* Dot . indexing
+ Curly brace {} indexing

* Linear indexing

Examples

Construct an ExpressionSet Object

This example shows how to construct an ExpressionSet object. The
mouseExprsData. txt file used in this example contains data from Hovatta et al., 2005.

Import bioma.data package to make the constructor function available.

import bioma.data.*

Create a DataMatrix object from .txt file containing expression values from microarray
experiment.

dmObj = DataMatrix("File", "mouseExprsData.txt");

Construct an ExptData object.

1-283

1 Alphabetical List

1-284

EDObj ExptData(dmObj)

EDObj =

Experiment Data:
500 features, 26 samples
1 elements
Element names: Elmtl

Construct a MetaData object from .txt file.

MDObj2 = MetaData("File®, "mouseSampleData.txt", "VarDescChar"®,

MDObjj 2

Sample Names:
A, B, ...,Z (26 total)
Variable Names and Meta Information:
VariableDescription

Gender " Gender of the mouse in study”

Age " The number of weeks since mouse birth*
Type " Genetic characters”

Strain " The mouse strain”

Source " The tissue source for RNA collection”

Create a MATLAB structure containing GEO Series data.

geoStruct = getgeodata("GSE46167);

Construct a MIAME object.

MIAMEObj MIAME (geoStruct)

MIAMEObj

Experiment Description:
Author name: Mika, ,Silvennoinen

Riikka, ,KivelAo

Maarit, ,Lehti

Anna-Maria, , Touvras

Jyrki, ,Komulainen

Veikko, ,Vihko

Heikki, ,Kainulainen
Laboratory: LIKES - Research Center
Contact information: Mika, ,Silvennoinen

4%

bioma.ExpressionSet class

URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available. Use the Abstract property.
Experiment Design: A 234 word summary is available. Use the ExptDesign property.
Other notes:
[1x84 char]

Import bioma package to make constructor function available.
import bioma.*

Construct an ExpressionSet object.

ESObj = ExpressionSet(EDObj, "SDhata®, MDObj2, “"Elnfo", MIAMEObj)
ESObj =
ExpressionSet

Experiment Data: 500 features, 26 samples
Element names: Expressions
Sample Data:
Sample names: A, B, ...,Z (26 total)
Sample variable names and meta information:
Gender: Gender of the mouse in study
Age: The number of weeks since mouse birth
Type: Genetic characters
Strain: The mouse strain
Source: The tissue source for RNA collection
Feature Data: none
Experiment Information: use “exptinfo(obj)*

. Working with Objects for Microarray Experiment Data

. Analyzing Illumina Bead Summary Gene Expression Data

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438, 662—666.

See Also

bioma.data.ExptData | bioma.data.MetaData | bioma.data.MIAME

1-285

1 Alphabetical List

How To
. “Class Attributes”
. “Property Attributes”

“Managing Gene Expression Data in Objects”

1-286

BioRead class

BioRead class

Contain sequence and quality data

Description

The BioRead class contains data from short-read sequences, including sequence headers,
nucleotide sequences, and the quality scores for the sequences. This data is typically
obtained from a high-throughput sequencing instrument.

You construct a BioRead object from short-read sequence data. Each element in the
object has a sequence, header, and quality score associated with it. Use the object
properties and methods to explore, access, filter, and manipulate all or a subset of the
data, before doing subsequent analyses or sequence alignment and mapping.

Construction

BioReadobj = BioRead constructs BioReadobj, an empty BioRead object.

BioReadobj = BioRead(File) constructs BioReadobj, a BioRead object, from File,

a FASTQ- or SAM-formatted file. The data remains in the source file, and the BioRead
object accesses it using an auxiliary index file. The index file must have the same name
as the source file, but with an .IDX extension. If the index file is not present in the same
folder as the source file, the BioRead constructor function creates the index file in that
folder.

Note: Because the data remains in the source file:

* Do not delete the source file (FASTQ or SAM) or the auxiliary index file.

* You cannot modify BioReadobj properties.

BioReadobj = BioRead(Struct) constructs BioReadobj, a BioRead object, from
Struct, a MATLAB structure containing Header, Sequence, and Qual ity fields, such as
returned by the fastqgread or the samread function. The data from Struct is kept in
memory, which lets you modify the properties of BioReadobj.

1-287

1 Alphabetical List

1-288

BioReadobj = BioRead(Seqs) constructs BioReadobj, a BioRead object, from Seqs, a
cell array of strings containing the letter representations of nucleotide sequences.

BioReadobj = BioRead(Seqs,Quals) constructs BioReadobj, a BioRead object,
also from Quals, a cell array of strings containing the ASCII representation of per-base
quality scores for nucleotide sequences.

BioReadobj = BioRead(Seqs,Quals,Headers) constructs BioReadobj, a BioRead
object, also from Headers, a cell array of strings containing header text for nucleotide
sequences.

BioReadobj = BioRead(, "PropertyName~” ,PropertyValue) constructs a
BioRead object using options, specified as name-value pair arguments.

BioReadobj = BioRead(File, " InMemory" , InMemoryValue) specifies whether to
place the data in memory or leave the data in the source file. Leaving the data in the
source file and accessing it via an index file is more memory efficient, but does not let you
modify properties of BioReadobj. Choices are true or false (default). If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Tip Set the InMemory name-value pair argument to true if you want to modify the
properties of BioReadob;.

BioReadobj = BioRead(, "IndexDir", IndexDirValue) specifies the path to
the folder where the index file either exists or will be created.

Tip Use the IndexDir name-value pair argument if you do not have write access to the
folder where the source file is located.

BioReadobj = BioRead(___ ,"Sequence”,SequenceValue) constructs BioReadobj,
a BioRead object, from SequenceValue, a cell array of strings containing the letter
representations of nucleotide sequences. This name-value pair works only if the data is
read into memory.

BioReadobj = BioRead(, Quality” ,QualityValue) constructs BioReadobj,
a BioRead object, from QualityValue, a cell array of strings containing the ASCII

BioRead class

representation of per-base quality scores for nucleotide sequences. This name-value pair
works only if the data is read into memory.

BioReadobj = BioRead(, "Header" ,HeaderValue) constructs BioReadobj, a
BioRead object, from HeaderValue, a cell array of strings containing header text for
nucleotide sequences. This name-value pair works only if the data is read into memory.

BioReadobj = BioRead(, "Name* ,NameValue) constructs BioReadobj, a
BioRead object, and then sets the Name property to NameValue, a string describing the
object. Default is " ", an empty string.

Input Arguments

File

String specifying a FASTQ- or SAM-formatted file.

Default:

Struct

MATLAB structure containing Header, Sequence, and Qual i ty fields, such as returned
by the fastgread or the samread function.

Default:
InMemoryValue

Logical specifying whether to place the data in memory or leave the data in the source
file. Leaving the data in the source file and accessing it via an index file is more memory
efficient, but does not let you modify properties of the BioRead object. If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Default: false
IndexDirValue

String specifying the path to the folder where the index file either exists or will be
created.

Default: Folder where File is located

1-289

1 Alphabetical List

1-290

Seqgs

Cell array of strings containing the letter representations of nucleotide sequences. This
information populates the BioRead object's Sequence property.

Default:
Quals

Cell array of strings containing the ASCII representation of per-base quality scores
for nucleotide sequences. This information populates the BioRead object's Qual ity
property.

Default:
Headers

Cell array of strings containing header text for nucleotide sequences. This information
populates the BioRead object's Header property.

Default:
SequenceValue

Cell array of strings containing the letter representations of nucleotide sequences. This
information populates the BioRead object's Sequence property. This name-value pair
works only if the data is read into memory.

Default:
Qualityvalue

Cell array of strings containing the ASCII representation of per-base quality scores
for nucleotide sequences. This information populates the BioRead object's Qual ity
property. This name-value pair works only if the data is read into memory.

Default: Empty cell array
HeaderValue

Cell array of strings containing header text for nucleotide sequences. This information
populates the BioRead object's Header property. This name-value pair works only if the
data is read into memory.

Default: Empty cell array

BioRead class

NameValue

String describing the BioRead object. This information populates the object's Name
property.

Default: * *, an empty string

Properties

Header
Headers associated with all sequences represented in the BioRead object.

Cell array of strings, such that there is a header for each sequence in the object. Header
strings can be empty. There is a one-to-one relationship between the number and order of
elements in Header and Sequence, unless Header is an empty cell array.

Name

Description of the BioRead object.

Single string describing the BioRead object.

Default: * ", an empty string

NSeqgs

Number of sequences in the BioRead object.

This information is read only.

Quality

Per-base quality scores associated with all sequences represented in the BioRead object.

Cell array of strings, such that there is a quality string for each sequence in the object.
Each quality string is an ASCII representation of per-base quality scores for a nucleotide
sequence or an empty string. A one-to-one relationship exists between the number and
order of elements in Qual ity and Sequence, unless Qual ity is an empty cell array.

Sequence

Nucleotide sequences in the BioRead object.

1-291

1 Alphabetical List

Cell array of strings containing the letter representations of the nucleotide sequences.

Methods

combine

Combine two objects
get

Retrieve property of object
getHeader

Retrieve sequence headers from object
getQuality

Retrieve sequence quality scores from

object
getSequence

Retrieve sequences from object
getSubsequence

Retrieve partial sequences from object
getSubset

Create object containing subset of elements

from object
plotSummary

Plot summary statistics of BioRead object
set

Set property of object
setHeader

Set sequence headers for object
setQuality

Set sequence quality scores for object
setSequence

Set sequences for object
setSubsequence

Set partial sequences for object
setSubset

Set elements for object

1-292

BioRead class

write
Write contents of BioRead or BioMap object
to file

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

BioRead objects support dot . indexing to extract, assign, and delete data.

Examples

Construct BioRead Object from FASTQ File

Construct a BioRead object from a FASTQ-formatted file that is provided with
Bioinformatics Toolbox.

BRObj1 BioRead("SRR005164_1_50.fastq", "Name®, "MyObject")
BRObj1 =
BioRead with properties:

Quality: [50x1 File indexed property]
Sequence: [50x1 File indexed property]
Header: [50x1 File indexed property]
NSegs: 50
Name: “"MyObject*®

Construct BioRead Object from MATLAB Workspace Variables

Create variables containing sequences, quality scores, and headers.

seqs = {randseq(10);randseq(15);randseq(20)};
quals = {repmat("!", 1, 10);repmat("%", 1, 15);repmat("&", 1, 20)};

1-293

1 Alphabetical List

headers = {"H1";"H2";"H3"};
Construct a BioRead object from these three variables.
BRObj2 = BioRead(seqs,quals,headers)

BRObj 2

BioRead with properties:

Quality: {3x1 cell}

Sequence: {3x1 cell}

Header: {3x1 cell}
NSeqgs: 3
Name: **

Construct BioRead Object from MATLAB Structure

Create variables containing sequences, quality scores, and headers.

seqs = {randseq(10);randseq(15);randseq(20)};

quals = {repmat("1",1,10); repmat("%",1,15);repmat("&",1,20)};
headers = {"H1";"H2";"H3"};

Construct a structure containing Header, Sequence, and Quality fields.
BRStruct = struct("Header” ,headers, "Sequence”,seqs, "Quality”,quals);

Construct a BioRead object from this structure.

BRObj3

BioRead(BRStruct)

BRObj3
BioRead with properties:

Quality: {3x1 cell}

Sequence: {3x1 cell}

Header: {3x1 cell}
NSeqgs: 3
Name: **

See Also

BiolndexedFile | fastqinfo | BioMap | fastqread | saminfo | samread

1-294

BioRead class

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

1-295

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-296

BioReadQualityStatistics class

Quality statistics from a short-read sequence file

Description

The BioReadQual ityStatistics class contains quality statistics data from short-read
sequences and provides a standard set of quality control plots for such data.

Construct a BioReadQual ityStatistics object from short-read sequence data stored
in FASTQ, SAM, or BAM files. Perform data quality analyses using the object’s methods
to generate several quality control plots regarding average quality score for each base
position, average quality score distribution, read count percentage for each base position,
percentage of G and C nucleotides for each base position, G and C content distribution,
and all nucleotide distribution. The object lets parse a sequence file without creating a
BioRead object and interact with the quality data in order to compare different data sets
or filtering options and create customized plots.

Construction

QSObj = BioReadQualityStatistics(File) constructs QSObj, a
BioReadQualityStatistics object, from the data stored in File, a FASTQ-, SAM-, or
BAM-formatted file.

QSObj = BioReadQualityStatistics(Obj) constructs QSObj, a
BioReadQual ityStatistics object, from the data stored in Obj, a BioRead or BioMap
object.

QSObj = BioReadQualityStatistics(,Name,Value) constructs a
BioReadQualityStatistics object using options specified by one or more name-value
pair arguments.

Note: Once created, you cannot modify the properties of QSObj since it is an immutable
object.

BioReadQualityStatistics class

Input Arguments
File

String specifying a FASTQ file. The string can contain the path or folder location of the
file.

Obj
A BioRead or BioMap object.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Encoding” — Encoding format
"Il1luminal8” (default) | "Sanger®™ | "11luminal3® | "11luminal5® | "Solexa*”

Encoding format, specified as "Sanger™, "11luminal3®, "Il1luminal5”,
"I1luminal8”, or "Solexa". It is the format that is used for characters encoding
sequence information and quality scores in a FASTQ file.

Example: "Encoding”, "Sanger”

"FilterLength" — Number of characters
[1 (default) | positive integer

Number of characters, specified as a positive integer, from each read to be used. No
filtering is applied if you use an empty array, which is the default value.
Example: "FilterLength®,40

"QualityScoreThreshold" — Average quality threshold
- Inf (default) | real number

Average quality threshold, specified as a real number. Any read with an average score of
less than the specified threshold is ignored.

Example: "QualityScoreThreshold®, 10

1-297

1 Alphabetical List

1-298

Properties

FileName

Name of a file used to create BioReadQualityStatistics object.
FileType

Type of file from which a BioReadQual ityStatistics object is created. Supported file
types are FASTQ, SAM, and BAM formats.

Encoding

String specifying the format of the character encoding sequence information and quality
scores in the file. Supported formats are: "Sanger”, "11luminal3”, "11luminal5”,
"I1luminal8”, and "Solexa”. The default format is "1 1 luminal8"”.

CharOffset

Integer specifying ASCII code where the quality score begins for a sequence.

NumberOfReads

Integer representing the number of short-read sequences BioReadQual ityStatistics
object contains.

MaxReadlLength

Integer representing maximum length of a short-read sequence among all sequences of
BioReadQual ityStatistics object.

MinEncodingPhred

Integer specifying minimum Phred quality score [1] among all short-read sequences of a
BioReadQualityStatistics object.

MaxEncodingPhred

Integer specifying maximum Phred quality score among all short-read sequences of a
BioReadQual ityStatistics object.

BioReadQualityStatistics class

SkipPhred

Integer specifying the number of Phred scores that are not considered in the quality score
range.

PerSegAverageQualityDist

Vector of integers representing average quality distribution per sequence.
PerPosQualities

s-by-p matrix of integers that represent quality scores (s) per base positions (p).
PerSeqGCDist

Vector of integers representing the distribution of G and C nucleotides per sequence.
PerPosBaseDist

n-by-p matrix of integers that represents distribution of all nucleotides (n = 5) per base
position (p).

Name

String describing the user-defined name for the object.

MaxScore

Integer representing maximum sequence quality score among all scores.
MinScore

Integer representing minimum sequence quality score among all scores.
FilterLength

Positive integer specifying the length of each read used in quality analysis.
QualityScoreThreshold

Scalar value specifying minimum average quality threshold for a read. Any read with an
average score of less than the specified threshold is ignored. The default value is —InF,
which causes all reads to be considered.

1-299

1 Alphabetical List

Subset

Vector of integers specifying the index for subset of information from the original
sequence data used in analysis.

Methods

plotPerPositionCountByQuality
Plot fractions of reads with Phred scores in
ranges

plotPerPositionGC
Plot percentages of G or C nucleotides at
each base position

plotPerPositionQuality
Plot Phred score distributions

plotPerSequenceGC
Plot G or C nucleotide distribution

plotPerSequenceQuality
Plot distribution of average quality scores

plotSummary
Plot summary statistics of a
BioReadQualityStatistics object
plotTotalGC
Plot distribution of all nucleotides of short-
read sequences
Examples

Create a BioReadQualityStatistics object and plot its summary statistics

This example shows how to create a BioReadQualityStatistics object and plot summary
statistics of it.

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

1-300

BioReadQualityStatistics class

QSObj BioReadQualityStatistics("SRR005164 1 _50.fastq”, "FilterLength®,...

40, "QualityScoreThreshold®, 5)

QSObj =
BioReadQualityStatistics with properties:

FileName: "B:\matlab\toolbox\bioinfo\bioinfodata\SRROO..."
FileType: "FASTQ-"
Encoding: "I1lluminal8*
CharOffset: 33
NumberOfReads: 50
MaxReadLength: 40
MinEncodingPhred: O
MaxEncodingPhred: 62
SkipPhred: []
PerSeqAverageQualityDist: [1x62 double]
PerPosQualities: [63x40 double]
PerSeqGCDist: [0 00 0338597652200000 0]
PerPosBaseDist: [5x40 double]
Name: **
MaxScore: 34
MinScore: 1
FilterLength: 40
QualityScoreThreshold: 5
Subset: NaN

Plot the summary statistics of the object.

plotSummary(QSObj)

ans =

1.0099
2.0099
3.0099
4._.0099
5.0099
6.0099

1-301

1 Alphabetical List

Quality Scores

40 T T T T T T T

o %0 _q&?a?%&&@@eé%é@aéeé% i%% %%%%%%%&%eeéé%m‘l’_

S 20k .
0]

101 i

D L L L 1 | L L ']

5 10 15 20 25 30 35 40

Base Position
Quality Stratification

100 ' . i | | . . T
=
3
]
=]
8
o
S

Base Position

GC Content
1 DD L L] 1 1 I T ¥ L]
&)
Q sof » -
= .f’\.” .
D L L 1 1 1 L L ']
5 10 15 20 25 30 35 40
Base Position
Quality Distribution GC Distribution Nucleotide Distribution
60 20
= 30
=] 15
8 40
h= 10 20

[1] Wiljpedia. (2012). Hiired qu
red_quality_8core

==

References 0

1-302 0 4 8 1216202428323640 01020304056060708020 A C G ToOther
Average Score % GC-Content Mucleotide

=
=

R
% Ngleotides
&
©

% R@d-(joum
o+
o <

(x]

=

BioReadQualityStatistics class

See Also
BioMap | BioRead

1-303

1 Alphabetical List

1-304

blastformat

Create local BLAST database

Syntax

blastformat(" Inputdb®, InputdbValue)

blastformat(.. .,
blastformat(.. .,
blastformat(...,
blastformat(.. .,
blastformat(.. .,

Arguments

"FormatPath®, FormatPathValue, ...)
"Title", TitleValue, ...)

"Log", LogValue, ...)

"Protein®, ProteinValue, ...)
"FormatArgs®, FormatArgsValue, ...)

InputdbValue

String specifying a file name or path and file name of a FASTA
file containing a set of sequences to be formatted as a blastable
database. If you specify only a file name, that file must be on the
MATLAB search path or in the current folder. (This corresponds
to the formatdb option -1.)

FormatPathValue

String specifying the full path to the Formatdb executable file,
including the name and extension of the executable file. Default
is the system path.

TitleValue

String specifying the title for the local database. Default is the
input FASTA file name. (This corresponds to the Formatdb
option -t.)

LogValue

String specifying the file name or path and file name for
the log file associated with the local database. Default is
formatdb. log. (This corresponds to the formatdb option -1.)

ProteinValue

Specifies whether the sequences formatted as a local BLAST
database are protein or not. Choices are true (default) or false.
(This corresponds to the formatdb option -p.)

FormatArgsValue

NCBI formatdb command string, that is, a string containing
one or more instances of —x and the option associated with it,

blastformat

used to specify input arguments. For an example, see Using
blastformat with formatdb Syntax and Input Arguments.

Description

Note: To use the blastformat function, you must have a local copy of the NCBI
formatdb executable file available from your system. You can download the formatdb
executable file by accessing BLAST+ executables, then clicking the download link under
the blast column for your platform. Run the downloaded executable and configure it for
your system. .

For more information, see the readme file on the NCBI ftp site.

For convenience, consider placing the NCBI formatdb executable file on your system
path.

blastformat(" Inputdb®, InputdbValue) calls a local version of the NCBI
formatdb executable file with InputdbValue, a file name or path and file name of a
FASTA file containing a set of sequences. If you specify only a file name, that file must be
on the MATLAB search path or in the current folder. (This corresponds to the Formatdb
option —-1.)

It then formats the sequences as a local, blastable database, by creating multiple
files, each with the same name as the InputdbValue FASTA file, but with different
extensions. The database files are placed in the same location as the FASTA file.

Note: If you rename the database files, make sure they all have the same name.

blastformat(..., “PropertyName®, PropertyValue, ...) callsblastformat
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows.

1-305

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.2.17/
ftp://ftp.ncbi.nih.gov/blast/documents/blast.html

1 Alphabetical List

blastformat(..., "FormatPath", FormatPathValue, ...) specifies the full
path to the Formatdb executable file, including the name and extension of the executable
file. Default is the system path.

blastformat(..., "Title", TitleValue, ...) specifies the title for the local
database. Default is the input FASTA file name. (This corresponds to the formatdb
option -t.)

Note: The "Title" property does not change the file name of the database files.
This title is used internally only, and appears in the report structure returned by the
blastlocal function.

blastformat(..., "Log", LogValue, ...) specifies the file name or path and file
name for the log file associated with the local database. Default is formatdb. log. The
log file captures the progress of the database creation and formatting. (This corresponds
to the Formatdb option -1.)

blastformat(..., "Protein®, ProteinValue, ...) specifies whether the
sequences formatted as a local BLAST database are protein or not. Choices are true
(default) or False. (This corresponds to the Formatdb option -p.)

blastformat(..., "FormatArgs®", FormatArgsValue, ...) specifies options
using the input arguments for the NCBI formatdb function. FormatArgsValue is

a string containing one or more instances of -x and the option associated with it. For
example, to specify that the input is a database in ASN.1 format, instead of a FASTA file,
you would use the following syntax:

blastformat(" Inputdb®, "ecoli.asn®, "FormatArgs®", "-a T7)

Tip Use the "FormatArgs” property to specify formatdb options for which there are no
corresponding property name/property value pairs.

Note: For a complete list of valid input arguments for the NCBI formatdb function,
make sure that the Formatdb executable file is located on your system path or current
folder, then type the following at your system's command prompt.

formatdb -

1-306

blastformat

Using formatdb Syntax

You can also use the syntax and input arguments accepted by the NCBI formatdb
function, instead of the property name/property value pairs listed previously. To do so,
supply a single string containing multiple options using the -x option syntax. For
example, you can specify the ecoli.nt FASTA file, a title of myecol i, and that the
sequences are not protein by using

blastformat("-i ecoli.nt -t myecoli -p F*)

Note: For a complete list of valid input arguments for the NCBI formatdb function,
make sure that the Formatdb executable file is located on your system path or current
folder, then type the following at your system's command prompt.

formatdb -

Examples

Using blastformat with Property Name/Value Pairs

The following example assumes you have a FASTA nucleotide file, such as the E. coli file
NC_004431.fna, which you can download from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
saved to your MATLAB current folder.

Create a local blastable database from the NC_004431.fna FASTA file and give it a title
using the "title” property.

blastformat("inputdb®, *"NC_004431.fna", "protein”, "false",...
“title”, “myecoli_nt");

Using blastformat with formatdb Syntax and Input Arguments

The following example assumes you have a FASTA amino acid file, such as the E. coli file
NC_004431.fFaa, which you can download from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
saved to your MATLAB current folder.

Create a local blastable database from the NC_004431.faa FASTA file and rename the
title and log file using formatdb syntax and input arguments.

blastformat("inputdb®, *NC_004431.faa", ...

1-307

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

1 Alphabetical List

1-308

"formatargs®, "-t myecoli_aa -1 ecoli_aa.-log");

References
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schiaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389-3402.

For more information on the NCBI formatdb function, see:

http://blast._ncbi.nlm.nih.gov/docs/formatdb.html

See Also

blastlocal | blastncbi | blastread | blastreadlocal | getblast

http://blast.ncbi.nlm.nih.gov/docs/formatdb.html

blastlocal

blastlocal

Perform search on local BLAST database to create BLAST report

Syntax

blastlocal (" InputQuery®, InputQueryValue)
Data = blastlocal (" InputQuery®, InputQueryValue)

... blastlocal(...,
... blastlocal(...,
-.. blastlocal(...,
... blastlocal(...,
... blastlocal(...,
... blastlocal(...,
... blastlocal(...,
... blastlocal(...,
... blastlocal(...,
-.. blastlocal(...,

Input Arguments

"Program®, ProgramValue, ...)
"Database”, DatabaseValue, ...)
"BlastPath®, BlastPathValue, ...)
"Expect®, ExpectValue, ...)
"Format®, FormatValue, ...)
"ToFile", ToFileValue, ...)
"Filter®, FilterValue, ...)

"GapOpen*®, GapOpenValue, ...)
"GapExtend®, GapExtendValue, ...)
"BLASTArgs®, BLASTArgsValue, ...)

InputQueryValue

String specifying the file name or path and file name of
a FASTA file containing query nucleotide or amino acid
sequence(s). (This corresponds to the blastall option —i.)

ProgramValue

String specifying a BLAST program. Choices are:
* "blastp” (default) — Search protein query versus protein
database.

"blastn® — Search nucleotide query versus nucleotide
database.

"blastx™ — Search translated nucleotide query versus
protein database.

+ "tblastn®™ — Search protein query versus translated
nucleotide database.

+ "tblastx®™ — Search translated nucleotide query versus
translated nucleotide database.

1-309

1 Alphabetical List

1-310

(The ProgramValue argument corresponds to the blastall
option -p.)

DatabaseValue

String specifying a file name or path and file name of a local
BLAST database (formatted using the NCBI formatdb
function) to search. Default is a local version of the nr database
in the MATLAB current folder. (This corresponds to the
blastall option -d.)

BlastPathValue

String specifying the full path to the blastall executable
file, including the name and extension of the executable file.
Default is the system path.

ExpectValue

Value specifying the statistical significance threshold for
matches against database sequences. Choices are any real
number. Default is 10. (This corresponds to the blastall
option -e.)

FormatValue

Integer specifying the alignment format of the BLAST search
results. Choices are:
O (default) — Pairwise
* 1 — Query-anchored, showing identities
* 2 — Query-anchored, no identities
3 — Flat query-anchored, showing identities
4 — Flat query-anchored, no identities
* 5 — Query-anchored, no identities and blunt ends
+ 6 — Flat query-anchored, no identities and blunt ends
8 — Tabular

+ 9 —Tabular with comment lines

(This corresponds to the blastal l option -m.)

ToFileValue

String specifying a file name or path and file name in which
to save the contents of the BLAST report. (This corresponds to
the blastall option -0.)

FilterValue

Controls the application of a filter (DUST filter for the blastn
program or SEG filter for other programs) to the query
sequence(s). Choices are true (default) or False. (This
corresponds to the blastall option -F.)

blastlocal

GapOpenValue Integer that specifies the penalty for opening a gap in the
alignment of sequences. Default is -1. (This corresponds to the
blastall option -G.)

GapExtendValue Integer that specifies the penalty for extending a gap in the
alignment of sequences. Default is -1. (This corresponds to the
blastall option -E.)

BLASTArgsValue NCBI blastall command string, that is a string containing
one or more instances of —x and the option associated with it,
used to specify input arguments. For an example, see step 2 in
“Examples” on page 1-316.

Output Arguments

Data MATLAB structure or array of structures (if multiple query
sequences) containing fields corresponding to BLAST keywords
and data from a local BLAST report.

Description
This function assumes that

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online or local
databases.

Note: To use the blastlocal function, you must have a local copy of the NCBI
blastall executable file (version 2.2.17) available from your system. You can download
the blastall executable file by accessing BLAST+ executables, then clicking the
download link under the blast column for your platform. Run the downloaded
executable and configure it for your system.

For more information, see the readme file on the NCBI ftp site.

For convenience, consider placing the NCBI blastall executable file on your system
path.

1-311

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.2.17/
ftp://ftp.ncbi.nih.gov/blast/documents/blast.html

1 Alphabetical List

blastlocal (" InputQuery®, InputQueryValue) submits query sequence(s)
specified by InputQueryValue, a FASTA file containing nucleotide or amino acid
sequence(s), for a BLAST search of a local BLAST database, by calling a local version
of the NCBI blastal l executable file. The BLAST search results are displayed in the
MATLAB Command Window. (This corresponds to the blastall option -1i.)

Data = blastlocal (" InputQuery®, InputQueryValue) returns the BLAST search
results in Data, a MATLAB structure or array of structures (if multiple query sequences)
containing fields corresponding to BLAST keywords and data from a local BLAST report.

1-312

Data contains a subset of the following fields, based on the specified alignment format.

Field Description

Algorithm NCBI algorithm used to do a BLAST search.

Query Identifier of the query sequence submitted to a
BLAST search.

Length Length of the query sequence.

Database All databases searched.

Hits.Name Name of a database sequence (subject sequence)

that matched the query sequence.

Hits.Score

Alignment score between the query sequence and
the subject sequence.

Hits.Expect

Expectation value for the alignment between the
query sequence and the subject sequence.

Hits.Length

Length of a subject sequence.

Hits.HSPs.Score

Pairwise alignment score for a high-scoring
sequence pair between the query sequence and a
subject sequence.

Hits_HSPs_Expect

Expectation value for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Hits.HSPs. ldentities

Identities (match, possible, and percent) for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Positives

Identical or similar residues (match, possible,
and percent) for a high-scoring sequence pair

blastlocal

Field

Description

between the query sequence and a subject amino
acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences and/or
databases.

Hits.HSPs.Gaps

Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits.HSPs.Mismatches

Residues that are not similar to each other (match,
possible, and percent) for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Hits.HSPs.Frame

Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair between
the query sequence and a subject sequence.

Note: This field applies only when performing
translated searches, that is, when using tblastx,
tblastn, and blastx.

Hits.HSPs.Strand

Sense (Plus = 5'to 3' and Minus = 3' to 5') of
the DNA strands for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits_.HSPs_Alignment

Three-row matrix showing the alignment for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits_HSPs_Querylndices

Indices of the query sequence residue positions for
a high-scoring sequence pair between the query
sequence and a subject sequence.

1-313

1 Alphabetical List

1-314

Field Description

Hits.HSPs.Subjectlindices Indices of the subject sequence residue positions
for a high-scoring sequence pair between the query
sequence and a subject sequence.

Hits_HSPs_AlignmentLength Length of the pairwise alignment for a high-
scoring sequence pair between the query sequence
and a subject sequence.

Alignment Entire alignment for the query sequence and the
subject sequence(s).

Statistics Summary of statistical details about the
performed search, such as lambda values, gap
penalties, number of sequences searched, and
number of hits.

... blastlocal(..., "PropertyName®, PropertyValue, ...) calls
blastlocal with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows.

... blastlocal (..., "Program®, ProgramValue, ...) specifiesthe BLAST
program. Choices are "blastp” (default), "blastn”, "blastx”, "tblastn”, and
"tblastx". (This corresponds to the blastal l option —p.) For help in selecting an
appropriate BLAST program, visit:

http://blast._ncbi.nlm_nih.gov/producttable_shtml

... blastlocal (..., "Database", DatabaseValue, ...) specifies the local
BLAST database (formatted using the NCBI formatdb function) to search. Default is a
local version of the nr database in the MATLAB current folder. (This corresponds to the
blastall option -d.)

... blastlocal (..., "BlastPath®, BlastPathValue, ...) specifies the full
path to the blastal l executable file, including the name and extension of the executable
file. Default is the system path.

... blastlocal (..., "Expect”, ExpectValue, ...) specifies a statistical
significance threshold for matches against database sequences. Choices are any real
number. Default is 10. (This corresponds to the blastall option —-e.) You can learn
more about the statistics of local sequence comparison at:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

blastlocal

http://blast._ncbi._nlm_nih.gov/tutorial/Altschul-1_html#head2

... blastlocal(..., "Format®, FormatValue, ...) specifies the alignment
format of the BLAST search results. Choices are:

* 0 (default) — Pairwise

* 1 — Query-anchored, showing identities

* 2 — Query-anchored, no identities

+ 3 — Flat query-anchored, showing identities

* 4 — Flat query-anchored, no identities

* 5 — Query-anchored, no identities and blunt ends

* 6 — Flat query-anchored, no identities and blunt ends
* 7 — Not used

* 8 — Tabular

* 9 — Tabular with comment lines
(This corresponds to the blastall option -m.)

... blastlocal(..., "ToFile", ToFileValue, ...) saves the contents of the
BLAST report to the specified file. (This corresponds to the blastall option -0.)

... blastlocal(..., "Filter", FilterValue, ...) specifies whether a filter
(DUST filter for the blastn program or SEG filter for other programs) is applied to

the query sequence(s). Choices are true (default) or False. (This corresponds to the
blastall option -F.)

... blastlocal (..., "GapOpen®, GapOpenValue, ...) specifies the penalty
for opening a gap in the alignment of sequences. Default is -1. (This corresponds to the
blastall option -G.)

... blastlocal (..., "GapExtend®, GapExtendValue, ...) specifies the
penalty for extending a gap in the alignment of sequences. Default is -1. (This
corresponds to the blastall option -E.)

--. blastlocal (..., "BLASTArgs", BLASTArgsValue, ...) specifies options
using the input arguments for the NCBI blastall function. BLASTArgsValue is a
string containing one or more instances or —x and the option associated with it. For
example, to specify the BLOSUM 45 matrix, you would use the following syntax:

blastlocal (" InputQuery®, ecoliquery.txt, "BLASTArgs®", "-M BLOSUM45%)

1-315

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2

1 Alphabetical List

Tip Use the "BlastArgs” property to specify blastal l options for which there are no
corresponding property name/property value pairs.

Note: For a complete list of valid input arguments for the NCBI blastal l function,
make sure that the blastal l executable file is located on your system path or current
folder, then type the following at your system's command prompt.

blastall -

Using blastall Syntax

You can also use the syntax and input arguments accepted by the NCBI blastall
function, instead of the property name/property value pairs listed previously. To do so,
supply a single string containing multiple options using the -x option syntax. For
example, you can specify the ecoliquery.txt FASTA file as your query sequences, the
blastp program, and the ecoli local database, by using

blastlocal ("-i ecoliquery.txt -p blastp -d ecoli”)

Note: For a complete list of valid input arguments for the NCBI blastal I function,
make sure that the blastall executable file is located on your system path or current
folder, then type the following at your system's command prompt.

blastall -

Examples

The following examples assume you have a FASTA nucleotide file and a FASTA amino
acid file for E. coli, such as the files NC_004431.fna and NC_004431.faa, which you
can download from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/, saved to your MATLAB
current folder.

Performing a Nucleotide Translated Search

1 Create local blastable databases from the NC_004431 .fna and NC_004431.faa
FASTA files by using the blastformat function.

blastformat("inputdb®, *"NC_004431.fna", "protein”, "false®);

1-316

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

blastlocal

blastformat("inputdb®, *NC_004431.faa");

Use the getgenbank function to retrieve sequence information for the E. coli
threonine operon from the GenBank database.

S = getgenbank(*M28570%);

Create a query file by using the fastawrite function to create a FASTA file named
query_nt. fa from this sequence information, using only the accession number as
the header.

S.Header = S_Accession;
fastawrite("query_nt._fa", S);

Use MATLAB syntax to submit the query sequence in the query_nt.fa FASTA file
for a BLAST search of the local amino acid database NC_004431 . Ffaa. Specify the
BLAST program blastx. Return the BLAST search results in results, a MATLAB
structure.

results = blastlocal ("inputquery®, "query_nt.fa",...
"database”, "NC_004431.faa",...
“program®, “blastx");

Performing a Nucleotide Search Using blastall Syntax

1

If you have not already done so, create local blastable databases and a query file as
described in steps 1 through 3 in Performing a Nucleotide Translated Search.

Use blastall syntax to submit the query sequence in the query_nt.fa FASTA
file for a BLAST search of the local nucleotide database NC_004431.fna. Specify the
BLAST program blastn and an expectation value of 0.0001. Return the BLAST
search results in results, a MATLAB structure.

results = blastlocal("-i query nt.fa -d NC_004431.fna ...
-p blastn -e 0.0001%);

Performing a Nucleotide Search and Creating a Formatted Report

1

If you have not already done so, create local blastable databases and a query file as
described in steps 1 through 3 in Performing a Nucleotide Translated Search.

Submit the query sequence in the query_nt.fa FASTA file for a BLAST search of
the local nucleotide database NC_004431.fna. Specify the BLAST program blastn
and a tabular alignment format. Save the contents of the BLAST report to a file
named myecoli_nt.txt.

blastlocal ("inputquery®, “query nt.fa",...

1-317

1 Alphabetical List

1-318

"database®, "NC_004431.fna", "tofile",.._.
"myecoli_nt_txt", "blastargs®, "-p blastn -m 8%);

References
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schiffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389-3402.

For more information on the NCBI blastal l function, see:

http://blast._ncbi.nlm.nih._gov/docs/blastall . html

See Also

blastformat | blastncbi | blastread | blastreadlocal | getblast

http://blast.ncbi.nlm.nih.gov/docs/blastall.html

blastncbi

blastncbi

Create remote NCBI BLAST report request ID or link to NCBI BLAST report

Syntax

blastncbi(Seq, Program)
RID = blastncbi(Seq, Program)
[RID, RTOE] = blastncbi(Seq, Program)

. blastncbi (Seq,
- blastncbi(Seq,
DescriptionsValue,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
.. blastncbi(Seq,
. blastncbi(Seq,

Input Arguments

Program, ..."Database®, DatabaseValue, ...)
Program, ..."Descriptions”,

--)
Program, ..."Alignments®, AlignmentsValue, ...)
Program, ..."Filter®, FilterValue, ...)
Program, ..."Expect®, ExpectValue, ...)
Program, ..."Word", WordValue, ...)
Program, ..."Matrix", MatrixValue, ...)
Program, ..."GapOpen®, GapOpenValue, ...)
Program, ..."ExtendGap®, ExtendGapValue, ...)
Program, ..."GapCosts®, GapCostsValue, ...)
Program, ..."Inclusion®, InclusionValue, ...)
Program, ..."Pct®, PctValue, ...)
Program, ..."Entrez®, EntrezValue, ...)

Seq

Nucleotide or amino acid sequence specified by any of the
following:

GenBank, GenPept, or RefSeq accession number

GI sequence identifier

FASTA file

URL pointing to a sequence file

String

Character array

1-319

1 Alphabetical List

1-320

* MATLAB structure containing a Sequence field

Program String specifying a BLAST program. Choices are:

+ "blastn®™ — Search nucleotide query versus nucleotide
database.

* "blastp™ — Search protein query versus protein
database.

+ "blastx"™ — Search translated nucleotide query versus
protein database.

+ "megablast® — Quickly search for highly similar
nucleotide sequences.

+ "psiblast® — Search protein query using position-
specific iterative BLAST.

+ "tblastn® — Search protein query versus translated
nucleotide database.

+ "tblastx"™ — Search translated nucleotide query versus
translated nucleotide database.

DatabaseValue String specifying a database. Compatible databases depend
on the type of sequence specified by Seq, and the program
specified by Program.

For a list of database choices for nucleotide sequences
and amino acid sequences, see the lists in the section
“Description” on page 1-325.

DescriptionsValue Value specifying the number of short descriptions to
include in the report. Default is 100, unless Program =
"psiblast”, then default is 500.

AlignmentsValue Value specifying the number of sequences for which high-

scoring segment pairs (HSPs) are reported. Default is 100,
unless Program = “psiblast”, then default is 500.

blastncbi

FilterValue String specifying a filter. Possible choices are:

+ "L" (default) — Low complexity.
* "R" — Human repeats.
* "m" — Mask for lookup table.

* "lcase” — Turn on the lowercase mask.

Choices vary depending on the selected Program. For more
information, see the table Choices for Optional Properties by
BLAST Program.

ExpectValue Value specifying the statistical significance threshold for
matches against database sequences. Choices are any real
number. Default is 10.

1-321

1 Alphabetical List

1-322

WordValue Value specifying a word length for the query sequence.
Choices for amino acid sequences are:
. 2
+ 3 (default)
Choices for nucleotide sequences are:
- 7
+ 11 (default)
+ 15
Choices when Program = "megablast” are:
- 11
12
+ 16
+ 20
- 24
+ 28 (default)
+ 32
- 48
+ 64
MatrixValue String specifying the substitution matrix for amino acid

sequences only. The matrix assigns the score for a possible
alignment of any two amino acid residues. Choices are:

* "PAM30*

+ "PAM70*"

+ "BLOSUM45*

+ "BLOSUM62" (default)

+ "BLOSUM8BO*

blastncbi

GapOpenValue

Integer that specifies the penalty for opening a gap in the
alignment of amino acid sequences.

Choices and default depend on the substitution matrix
specified by the "Matrix" property. For more information,
see the table Choices for the GapCosts Property by Matrix.

ExtendGapValue

Integer that specifies the penalty for extending a gap in the
alignment of amino acid sequences.

Choices and default depend on the substitution matrix
specified by the "Matrix" property. For more information,
see the table Choices for the GapCosts Property by Matrix.

GapCostsValue

Vector containing two integers: the first is the penalty for
opening a gap, and the second is the penalty for extending
the gap, in the alignment of amino acid sequences.

Choices and default depend on the substitution matrix
specified by the "Matrix" property. For more information,
see the table Choices for the GapCosts Property by Matrix.

InclusionValue

Value specifying the statistical significance threshold for
including a sequence in the Position-Specific Scoring Matrix
(PSSM) created by PSI-BLAST for the subsequent iteration.
Default is 0.005.

Note: Specify an InclusionValue only when Program =
"psiblast”.

1-323

1 Alphabetical List

1-324

PctValue

Value specifying the percent identity and the corresponding
match and mismatch score for matching existing sequences
in a public database. Choices are:

* None

+ 99 (default) — 99, 1, -3

+ 98—98,1, -3

+ 95—-95/1, -3

+ 90—90,1, -2

+ 85—85,1, -2

- 80—80,2,-3

« 75—75,4,-5

+ 60—60,1, -1

Note: Specify a PctValue only when Program =
"megablast”.

EntrezValue

String specifying Entrez query syntax to search a subset of
the selected database.

Tip Use this property to limit searches based on molecule
types, sequence lengths, organisms, and so on.

Output Arguments

RID

Request ID for the NCBI BLAST report.

RTOE

Request Time Of Execution, which is an estimate of the time
(in minutes) until completion.

Tip Use this time estimate with the "WaitTime" property
when using the getblast function.

blastncbi

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online
databases.

blastncbi(Seq, Program) sends a BLAST request to NCBI against a Seq, a
nucleotide or amino acid sequence, using Program, a specified BLAST program, and then
returns a command window link to the NCBI BLAST report. For help in selecting an
appropriate BLAST program, visit:

http://blast.ncbi.nlm.nih.gov/producttable.shtml
RID = blastncbi(Seq, Program) returns RID, the Request ID for the report.

[RID, RTOE] = blastncbi(Seq, Program) returns both RID, the Request ID for the
NCBI BLAST report, and RTOE, the Request Time Of Execution, which is an estimate of
the time until completion.

Tip Use RTOE with the *WaitTime" property when using the getblast function.

... blastncbi(..., "PropertyName®, PropertyValue,...) calls blastncbi
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are
explained below. Additional information on these optional properties can be found at:

http://www.ncbi.nIm_nih.gov/BLAST/blastcgihelp.shtml

-.. blastncbi(Seq, Program, ..."Database", DatabaseValue, ...)
specifies a database for the alighment search. Compatible databases depend on the type
of sequence specified by Seq, and the program specified by Program.

Database choices for nucleotide sequences are:

* "nr* (default)
*+ "refseqg_rna”
+ "refseq_genomic*

est”

1-325

http://blast.ncbi.nlm.nih.gov/producttable.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml

1 Alphabetical List

1-326

+ "est_human
* "est_mouse*
+ "est _others”

+ "gss
* "htgs*
*+ "pat”

* "pdb*

* "month*®

+ "alu_repeats”
+ "dbsts”
+ "chromosome

+ "wgs

« "env_nt"
Database choices for amino acid sequences are:

* "nr* (default)
+ “refseq_protein”
* "swissprot*

*+ "pat”
* "month-
° Ipde

- “env_nr-
For help in selecting an appropriate database, visit:

http://blast._ncbi.nlm.nih.gov/producttable.shtml

... blastncbi(Seq, Program, ..."Descriptions”,
DescriptionsValue, ...) specifies the number of short descriptions to include in the
report, when you do not specify return values.

... blastncbi(Seq, Program, ..."Alignments®, AlignmentsValue, ...)
specifies the number of sequences for which high-scoring segment pairs (HSPs) are
reported, when you do not specify return values.

http://blast.ncbi.nlm.nih.gov/producttable.shtml

blastncbi

... blastncbi(Seq, Program, ..."Filter®, FilterValue, ...) specifiesthe
filter to apply to the query sequence.

--. blastncbi(Seq, Program, ..."Expect®, ExpectValue, ...) specifiesa
statistical significance threshold for matches against database sequences. Choices are
any real number. Default is 10. You can learn more about the statistics of local sequence
comparison at:

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1_html#head2

--. blastncbi(Seq, Program, ..."Word®, WordValue, ...) specifies a word
size for the query sequence.

... blastncbi(Seq, Program, ..."Matrix", MatrixValue, ...) specifies the
substitution matrix for amino acid sequences only. This matrix assigns the score for a
possible alignment of two amino acid residues.

... blastncbi(Seq, Program, ..."GapOpen®, GapOpenValue, ...) specifies
the penalty for opening a gap in the alignment of amino acid sequences. Choices and
default depend on the substitution matrix specified by the *"Matrix® property. For more
information, see the table Choices for the GapCosts Property by Matrix.

For more information about allowed gap penalties for various matrices, see:

http://blast.ncbi.nlm._nih.gov/html/sub_matrix.html

... blastncbi(Seq, Program, ..."ExtendGap®, ExtendGapValue, ...)
specifies the penalty for extending a gap greater than one space in the alignment of
amino acid sequences. Choices and default depend on the substitution matrix specified
by the "Matrix" property. For more information, see the table Choices for the GapCosts
Property by Matrix.

... blastncbi(Seq, Program, ..."GapCosts", GapCostsValue, ...)
specifies the penalty for opening and extending a gap in the alighment of amino acid
sequences. GapCostsValue is a vector containing two integers: the first is the penalty
for opening a gap, and the second is the penalty for extending the gap. Choices and
default depend on the substitution matrix specified by the *"Matrix® property. For more
information, see the table Choices for the GapCosts Property by Matrix.

... blastncbi(Seq, Program, ..."Inclusion®, InclusionValue, ...)
specifies the statistical significance threshold for including a sequence in the Position-

1-327

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2
http://blast.ncbi.nlm.nih.gov/html/sub_matrix.html

1 Alphabetical List

1-328

Specific Scoring Matrix (PSSM) created by PSI-BLAST for the subsequent iteration.
Default is 0.005.

Note: Specify an InclusionValue only when Program = "psiblast”.

--. blastncbi(Seq, Program, ..."Pct", PctValue, ...) specifiesthe
percent identity and the corresponding match and mismatch score for matching existing
sequences in a public database. Default is 99.

Note: Specify a PctValue only when Program = “megablast-”.

... blastncbi(Seq, Program, ..."Entrez®, EntrezValue, ...) specifies
Entrez query syntax to search a subset of the selected database.

Note: For more information about Entrez query syntax, see:

http://www.ncbi.nlm.nih.gov/books/NBK3837/

Tip Use this property to limit searches based on molecule types, sequence lengths,
organisms, and so on. For more information on limiting searches, see:

http://blast._ncbi.nlm.nih.gov/blastcgihelp.shtml#entrez_query

http://www.ncbi.nlm.nih.gov/books/NBK3837/
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml#entrez_query

blastncbi

1-329

AU AUS,
Lurayouad basjau,
.yauou,
.apd. | ysejqusd.
.9seo]. .Jed,
L, .yoadssims, -X1Se1q.
(negep) .. (3[negep) Lau, .dasejq.
.9seo|.
SWa
.08WNSOTd. — v.m. ce
(3negep) .Z9NNSO14. HIEFEP) . .Xxasejql.
-SVANSOT1d. .9Sed]. _
?[qe? .0/NVd.| (mejep) e Jw, -JU AUS,
—| 3xou o3 v0g .0ENVd z| (megep) q.121WOUSL basyal. | ysepay.,
.Bua beasjou,
09 V9 .Sbm,
— 8v .dwosouwoayo,
08 @z .s1sap.
. (mezop) .Sleadaa nje,
06 o .uauou,
56 ve .apd.
86 (0Y4 yed,
(3nejep) 91 .sbh1y.
66 cl .Ssb,
SUON TT 2. .wgocuolumm..umm_nm@wg.
ST .9seo]. .9show 3sa,
(3negop) L, .uewny 3sea,
1T ada .1S9,
— — — L| (megep) .. (3[neyep) .Au, .uisejq.
d sjsoydog XLYOW piop\ Jay4 as0qoIdQ | ...q; woiboud
**a.p saysadoid Buimojjoj ayy Joj sadloyd U3y | 1SVY1g USYM

wouboug 1S9 Aq saysadoug [puoydQ 1oy sadtoy)

1 Alphabetical List

Choices for the GapCosts Property by Matrix

When substitution matrix is... Then choices for GapCosts are...

*PAM30" [7 2]
[6 2]
[5 2]
[10 1]
[9 1] (default)
[8 1]

"PAM70" s 2]
*BLOSUMS0" [7 2]
[6 2]
[11 1]
[10 17 (default)
[© 1]

"BLOSUM45*" [13 3]
[12 3]
[11 3]
[10 3]
[15 2] (default)
[14 2]
[13 2]
[12 2]
[19 1]
[18 1]
[17 1]
[16 1]

BLOSUM62 [0 21

[8 2]

[7 2]

[12 1]

[11 1] (default)
[10 1]

Examples

% Get a sequence from the Protein Data Bank and create

1-330

blastncbi

% a MATLAB structure.
= getpdb("1CIV*™)

wn

% Use the structure as input for a BLAST search with an
% expectation of le-10.
blastncbi (S, "blastp”, "expect”,1le-10)

% Click the URL link (Link to NCBI BLAST Request) to go
% directly to the NCBI request.

% You can also perform a typical BLAST protein search directly

% with an accession number and an alternative scoring matrix.

RID = blastncbi("AAA59174", "blastp”, "matrix”, "PAM70", . ..
"expect”,le-10)

% You can pass the RID to GETBLAST to parse the report and

% load it into a MATLAB structure.
Struct = getblast(RID)

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.dJ. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schiaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389-3402.

See Also

blastformat | blastlocal | blastread | blastreadlocal | getblast

1-331

1 Alphabetical List

1-332

blastread

Read data from NCBI BLAST report file

Syntax

Data = blastread(BLASTReport)

Input Arguments

BLASTReport NCBI BLAST-formatted report specified by any of the following:
File name or path and file name, such as returned by the
getblast function with the "ToFile" property.

URL pointing to an NCBI BLAST report.

MATLAB character array that contains the text for an NCBI
BLAST report.

If you specify only a file name, that file must be on the
MATLAB search path or in the MATLAB Current Folder.

Output Arguments

Data MATLAB structure or array of structures (if multiple query
sequences) containing fields corresponding to BLAST keywords and
data from an NCBI BLAST report.

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online
databases. BLAST reports can be lengthy, and parsing the data from the various formats
can be cumbersome.

blastread

Data = blastread(BLASTReport) reads a BLAST report from BLASTReport, an
NCBI-formatted report, and returns Data, a MATLAB structure or array of structures
(if multiple query sequences) containing fields corresponding to the BLAST keywords.
blastread parses the basic BLAST reports BLASTN, BLASTP, BLASTX, TBLASTN, and

TBLASTX.

Data contains the following fields.

Field Description

RID Request ID for retrieving results for a specific
NCBI BLAST search.

Algorithm NCBI algorithm used to do a BLAST search.

Query Identifier of the query sequence submitted to a
BLAST search.

Database All databases searched.

Hits.Name Name of a database sequence (subject sequence)

that matched the query sequence.

Hits.Length

Length of a subject sequence.

Hits.HSPs.Score

Pairwise alignment score for a high-scoring
sequence pair between the query sequence and a
subject sequence.

Hits.HSPs.Expect

Expectation value for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Hits.HSPs. ldentities

Identities (match, possible, and percent) for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Positives

Identical or similar residues (match, possible,
and percent) for a high-scoring sequence pair
between the query sequence and a subject amino
acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences and/or
databases.

1-333

1 Alphabetical List

Field

Description

Hits.HSPs.Gaps

Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits.HSPs.Frame

Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair between
the query sequence and a subject sequence.

Note: This field applies only when performing
translated searches, that is, when using tblastx,
tblastn, and blastx.

Hits.HSPs.Strand

Sense (Plus =5'to 3' and Minus = 3' to 5') of
the DNA strands for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits_.HSPs_Alignment

Three-row matrix showing the alignment for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits_HSPs_Querylndices

Indices of the query sequence residue positions for
a high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.SubjectiIndices

Indices of the subject sequence residue positions
for a high-scoring sequence pair between the query
sequence and a subject sequence.

Statistics

Summary of statistical details about the
performed search, such as lambda values, gap
penalties, number of sequences searched, and
number of hits.

1-334

blastread

Examples

1 Create an NCBI BLAST report request using a GenPept accession number.

RID

blastncbi ("AAA59174", “blastp®, "expect®, le-10)
RID =

"1175088155-31624-126008617054 .BLASTQ3"

2 Pass the Request ID for the report to the getblast function, and save the report
data to a text file.

getblast(RID, "ToFile" ,"AAA59174 BLAST.rpt");

Note: You may need to wait for the report to become available on the NCBI Web site
before you can run the preceding command.

3 Using the saved file, read the results into a MATLAB structure.

resultsStruct = blastread("AAA59174_BLAST.rpt")

resultsStruct

RID: "1175093446-29831-201366571074 .BLASTQ2*
Algorithm: "BLASTP 2.2.16 [Mar-11-2007]"
Query: [1x63 char]
Database: [1x96 char]
Hits: [1x50 struct]
Statistics: [1x1034 char]

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.-W. and Lipman, D.dJ. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schiaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389-3402.

For more information about reading and interpreting NCBI BLAST reports, see:

1-335

1 Alphabetical List

http://blast._ncbi.nlm_nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

See Also
blastformat | blastlocal | blastncbi | blastreadlocal | getblast

1-336

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

blastreadlocal

blastreadlocal

Read data from local BLAST report

Syntax

Data = blastreadlocal (BLASTReport, Format)

Input Arguments

BLASTReport BLAST report specified by any of the following:

+ File name or path and file name of a locally created BLAST
report file, such as returned by the blastlocal function with
the "ToFile" property.

* MATLAB character array that contains the text for a local
BLAST report.

If you specify only a file name, that file must be on the MATLAB
search path or in the current folder.

Format Integer specifying the alignment format used to create
BLASTReport. Choices are:

* 0 — Pairwise

* 1 — Query-anchored, showing identities

* 2 — Query-anchored, no identities

+ 3 — Flat query-anchored, showing identities

* 4 — Flat query-anchored, no identities

* 5 — Query-anchored, no identities and blunt ends

* 6 — Flat query-anchored, no identities and blunt ends
* 7 — Not used

* 8 — Tabular

* 9 — Tabular with comment lines

1-337

1 Alphabetical List

Output Arguments

Data MATLAB structure or array of structures (if multiple query
sequences) containing fields corresponding to BLAST keywords and
data from a local BLAST report.

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online and local
databases. BLAST reports can be lengthy, and parsing the data from the various formats
can be cumbersome.

Data = blastreadlocal (BLASTReport, Format) reads BLASTReport, alocally
created BLAST report file, and returns Data, a MATLAB structure or array of structures
(if multiple query sequences) containing fields corresponding to BLAST keywords and
data from a local BLAST report. Format is an integer specifying the alignment format
used to create BLASTReport.

Note: The function assumes the BLAST report was produced using version 2.2.17 of the
blastall executable.

Data contains a subset of the following fields, based on the specified alignment format.

Field Description

Algorithm NCBI algorithm used to do a BLAST
search.

Query Identifier of the query sequence submitted
to a BLAST search.

Length Length of the query sequence.

Database All databases searched.

Hits.Name Name of a database sequence (subject
sequence) that matched the query
sequence.

1-338

blastreadlocal

Field

Description

Hits.Score

Alignment score between the query
sequence and the subject sequence.

Hits.Expect

Expectation value for the alignment
between the query sequence and the
subject sequence.

Hits.Length

Length of a subject sequence.

Hits.HSPs.Score

Pairwise alignment score for a high-scoring
sequence pair between the query sequence
and a subject sequence.

Hits_HSPs_Expect

Expectation value for a high-scoring
sequence pair between the query sequence
and a subject sequence.

Hits.HSPs. ldentities

Identities (match, possible, and percent) for
a high-scoring sequence pair between the
query sequence and a subject sequence.

Hits.HSPs.Positives

Identical or similar residues (match,
possible, and percent) for a high-scoring
sequence pair between the query sequence
and a subject amino acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences
and/or databases.

Hits.HSPs.Gaps

Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Hits.HSPs.Mismatches

Residues that are not similar to each other
(match, possible, and percent) for a high-
scoring sequence pair between the query
sequence and a subject sequence.

1-339

1 Alphabetical List

Field

Description

Hits.HSPs.Frame

Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Note: This field applies only when
performing translated searches, that
1s, when using tblastx, tbhlastn, and
blastx.

Hits.HSPs.Strand

Sense (Plus = 5'to 3' and Minus = 3' to

5") of the DNA strands for a high-scoring
sequence pair between the query sequence
and a subject sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits.HSPs.Alignment

Three-row matrix showing the alignment
for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits_HSPs.Querylndices

Indices of the query sequence residue
positions for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Hits_HSPs._.Subjectlindices

Indices of the subject sequence residue
positions for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Hits.HSPs.AlignmentLength

Length of the pairwise alignment for a
high-scoring sequence pair between the
query sequence and a subject sequence.

Alignment

Entire alignment for the query sequence
and the subject sequence(s).

1-340

blastreadlocal

Field Description

Statistics Summary of statistical details about

the performed search, such as lambda
values, gap penalties, number of sequences
searched, and number of hits.

Examples

The following examples assume you have a FASTA nucleotide file for E. coli, such as
the file NC_004431 . fna, which you can download from ftp://ftp.ncbi.nih.gov/genomes/
Bacteria/, saved to your MATLAB current folder.

Reading Data Using a Tabular Alignment Format

1

Create a local blastable database from the NC_004431.fna FASTA file.

blastformat("inputdb®, "NC_004431.fna", "protein”, "false®);

Use the getgenbank function to retrieve two sequences from the GenBank
database.

S1 getgenbank("M28570.17);

S2 getgenbank("M12565%);

Create a query file by using the Fastawrite function to create a FASTA file named
query_multi_nt.fa from these two sequences, using the only accession number as
the header.

1.Accession;
S1.Sequence;

Segs(1l) .Header =
Segs(1) .Sequence
Segs(2) .Header = S2_Accession;

Segs(2) .Sequence S2.Sequence;
fastawrite("query_multi_nt.fa", Seqs);

Submit the query sequences in the query_multi_nt.fa FASTA file for a BLAST
search of the local nucleotide database NC_004431.fna. Specify the BLAST
program blastn and a tabular alignment format. Save the contents of the BLAST
report to a file named myecoli_nt8. txt, and then read the local BLAST report.

nmwmilwm

blastlocal ("inputquery®, “query multi_nt_.fa",...
"database®, "NC_004431.fna",...
“tofile®, "myecoli_nt8.txt", "program®, "blastn®,._...
“format®, 8);

1-341

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

1 Alphabetical List

1-342

blastreadlocal ("myecoli_nt8._txt", 8);

Reading Data Using a Query Anchored Format

1

If you have not already done so, create a local blastable database and a query file as
described in steps 1 through 3 in Reading Data Using a Tabular Alignment Format.

Submit the query sequences in the query_multi_nt.fa FASTA file for a BLAST
search of the local nucleotide database NC_004431.fna. Specify the BLAST
program blastn and a query-anchored format. Save the contents of the BLAST
report to a file named myecoli_ntl.txt, and then read the local BLAST report,
saving the results in results, an array of structures.

blastlocal ("inputquery™, "query multi_nt.fa",...
"database”, "NC_004431.fna",...
"tofile”, "myecoli_ntl.txt", "program®, "blastn®,...
"format®, 1);

results = blastreadlocal ("myecoli_ntl.txt", 1);

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.-W., and Lipman, D.dJ. (1990). Basic local

alignment search tool. J. Mol. Biol. 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schiaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and

Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389-3402.

For more information about reading and interpreting BLAST reports, see:

http://blast._ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

See Also

blastformat | blastlocal | blastncbi | blastread | getblast

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

blosum

blosum

Return BLOSUM scoring matrix

Syntax

Matrix = blosum(Identity)

[Matrix, MatrixInfo] = blosum(Identity)

--.. = blosum(Identity, ..."Extended", ExtendedValue, ...)
... = blosum(Identity, ..."Order", OrderValue, ...)

Input Arguments

Identity Scalar specifying a percent identity level. Choices are:
+ Values from 30 to 90 in increments of 5
+ 62
+ 100

ExtendedValue Controls the listing of extended amino acid codes. Choices are
true (default) or false.

OrderValue Character string of legal amino acid characters that specifies
the order amino acids are listed in the matrix. The length of the
character string must be 20 or 24.

Output Arguments

Matrix BLOSUM (Blocks Substitution Matrix) scoring matrix with a
specified percent identity.

MatrixInfo Structure of information about Matrix containing the following

fields:

* Name

+ Scale

1-343

1 Alphabetical List

1-344

+ Entropy

+ ExpectedScore
+ HighestScore
* LowestScore

+ Order

Description

Matrix = blosum(Identity) returns a BLOSUM (Blocks Substitution Matrix)
scoring matrix with a specified percent identity. The default ordering of the output
includes the extended characters B, Z, X, and *.

ARNDCQEGHILKMFPSTWYVBZX™*

[Matrix, MatrixInfo] = blosum(Identity) returns MatrixInfo, a structure
of information about Matrix, a BLOSUM matrix. MatrixInfo contains the following
fields:

* Name
+ Scale
* Entropy

+ ExpectedScore
* HighestScore
* LowestScore

* Order

--.. = blosum(Identity, ..."PropertyName®, PropertyValue, ...) calls
blosum with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

-.. = blosum(Identity, ..."Extended®, ExtendedValue, ...) controls
the listing of extended amino acid codes. Choices are true (default) or false. If
ExtendedValue is false, returns the scoring matrix for the standard 20 amino acids.
Ordering of the output when ExtendedValue is false is

blosum

ARNDCQEGHILKMFPSTWYYV

--. = blosum(Identity, ..."Order", OrderValue, ...) returnsa BLOSUM
matrix ordered by OrderValue, a character string of legal amino acid characters that
specifies the order amino acids are listed in the matrix. The length of the character string
must be 20 or 24.

Examples

Return a BLOSUM matrix with a percent identity level of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75, "Order"”, "CSTPAGNDEQHRKMILVFYW™)

See Also

dayhoff | gonnet | localalign | nuc44 | nwalign | pam | swalign

1-345

1 Alphabetical List

1-346

bowtie

Map short reads to reference sequence using Burrows-Wheeler transform

Syntax

bowtie(indexBaseName, reads,outputFileName)
bowtie(indexBaseName, reads,outputFileName,Name,Value)

Description

bowtie(indexBaseName, reads, outputFileName) aligns the reads specified in
reads to the indexed reference specified by indexBaseName, and writes the results to
the BAM-formatted file outputFileName.

Note: bowtie runs on Mac and UNIX® platforms only.

bowtie(indexBaseName, reads,outputFileName,Name,Value) aligns reads using
additional options specified by one or more name-value pair arguments.

Examples

Align Short Reads

Download the E. coli genome from NCBI.

getgenbank("NC_008253","tofile”, "NC_008253.fna", "SequenceOnly”,true)

Built a Bowtie index with the base name ECOLI.

bowtiebuild("NC_008253.fna", "ECOLI ")

Find the path to the example FASTQ file ecoli100.Fq, which has E. Coli short reads.

fastqfile = which("ecolil00.Tfqg")

bowtie

Align the short reads in ecol i100.Fq to the built index with base name ECOLI.

bowtie("ECOLI",Ffastqfile, "ecolil00_.bam®)

Access the mapped reads using BioMap.

bm

bm =

BioMap with properties:

SequenceDictionary:
Reference:
Signature:

Start:
MappingQuality:
Flag:
MatePosition:
Quality:
Sequence:
Header:

NSeqs:

Name:

Input Arguments

indexBaseName — Name of indexed reference file

string

BioMap(“ecolil00.bam™)

{"gi]110640213|ref|NC_008253.1] "}

[73x1
[73x1
[73x1
[73x1
[73x1
[73x1
[73x1
[73x1
[73x1
73

File
File
File
File
File
File
File
File
File

indexed
indexed
indexed
indexed
indexed
indexed
indexed
indexed
indexed

property]
property]
property]
property]
property]
property]
property]
property]
property]

Name of indexed reference file for short read alignment, specified as a string containing
the path and base name of the Bowtie index file.

reads — Short reads to align

string | cell array of strings

Short reads to align to the indexed reference, specified as a string or cell array of strings

indicating one or more FASTQ formatted files with the input reads.

outputFileName — Name for output file

string

1-347

1 Alphabetical List

1-348

Name for output file containing the results of the short read alignment, specified as a
string. By default, the output file is BAM-formatted, and bowtie automatically adds the
-bam extension if it is missing from the file name.

To specify a SAM-formatted output file, use the name-value pair argument
BamFileOutput, false. In this case, bowtie automatically adds the .sam extension if
it is missing from the file name.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "BamFileOutput” ,false, "Paired”,true specifies the output file is SAM-

formatted, and bowtie performs pair-read alignment.

"BamFi leOutput” — Indicator for output file format
true (default) | false

Indicator for the output file format, specified as the comma-separated pair consisting of
"BamFileOutput® and either true or false.

+ If true (the default), then the output file is BAM-formatted, with a . bam extension.
+ If false, then the output file is SAM-formatted, with a .sam extension.

bowtie automatically adds the corresponding file extension if it is missing from the
input argument outputFileName.

Example: "BamFileOutput” ,false
Data Types: logical

"Paired” — Indicator for paired-read alignment performance
false (default) | true

Indicator for paired-read alignment performance, specified as the comma-separated pair
consisting of "Paired” and either true or false (the default). If false, then bowtie
performs paired-read alignment using the odd elements in reads as the upstream mates
and the even elements in reads as the downstream mates.

Example: "Paired”,true

bowtie

Data Types: logical

"BowtieOptions™ — Additional bowtie options
valid bowtie option

Additional bowtie options, specified as the comma-separated pair consisting of
"BowtieOptions™ and any valid bowtie option. Type bowtie("--help™) for
available options.

Example: "BowtieOptions®,"-k 5°

More About
Tips

* More information on the Bowtie algorithm (Version 0.12.7) can be found at http://
bowtie-bio.sourceforge.net/index.shtml.

* Some prebuilt index files for model organisms can be downloaded directly from the
Bowtie repository.

See Also

baminfo | BioMap | bowtiebuild | fastainfo | fastqinfo | saminfo | samread

1-349

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml

1 Alphabetical List

1-350

bowtiebuild

Generate index using Burrows-Wheeler transform

Syntax

bowtiebui ld(input, indexBaseName)
bowtiebuild(input, indexBaseName, "BowtieBuildOptions™,options)

Description

bowtiebuild(input, indexBaseName) builds an index using the reference sequence(s)
in Input, and saves it to the index file indexBaseName.

Note: bowtiebuild runs on Mac and UNIX platforms only.

bowtiebuild(input, indexBaseName, "BowtieBui ldOptions”,options) specifies
additional options.

Examples

Build a Bowtie Index

Download the E. coli genome from NCBI.

getgenbank("NC_008253", "tofile”,"NC_008253.fna", "SequenceOnly”,true)

Built a Bowtie index with the base name ECOLI.

bowtiebui ld("NC_008253.fna", "ECOLI ™)

Input Arguments

input — FASTA-formatted files

string | cell array of strings

bowtiebuild

FASTA-formatted files with the reference sequences to be indexed, specified as a string
or cell array of strings. Use a cell array of strings to specify multiple files.

indexBaseName — Name for indexed reference file
string

Name for indexed reference file, specified as a string containing the path and base name
for the resulting Bowtie index file.

options — Additional bowtiebui Id options
valid bowtiebui Id option

Additional bowtiebui ld options, specified as any valid bowtiebui ld option. Type
bowtiebuild("--help") for available options.

More About
Tips

* More information on the Bowtie algorithm (Version 0.12.7) can be found at http://
bowtie-bio.sourceforge.net/index.shtml.

* Some prebuilt index files for model organisms can be downloaded directly from the
Bowtie repository.

See Also

baminfo | BioMap | bowtie | fastainfo | fastqinfo | saminfo | samread

1-351

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml

1 Alphabetical List

1-352

celintensityread

Read probe intensities from Affymetrix CEL files

Syntax

ProbeStructure
ProbeStructure
ProbeStructure
ProbeStructure
ProbeStructure

celintensityread(CELFiles, CDFFile)

celintensityread(..., "CELPath®, CELPathValue, ...)
celintensityread(..., "CDFPath®, CDFPathValue, ...)
celintensityread(..., "PMOnly", PMOnlyValue, ...)

celintensityread(..., "Verbose®, VerboseValue, ...)

Input Arguments

CELFiles Any of the following:
String specifying a single CEL file name.
"** which reads all CEL files in the current folder.
" ", which opens the Select CEL Files dialog box from which
you select the CEL files. From this dialog box, you can press
and hold Ctrl or Shift while clicking to select multiple CEL
files.
Cell array of CEL file names.
CDFFile Either of the following:
String specifying a CDF file name.
" " which opens the Select CDF File dialog box from which
you select the CDF file.
CELPathValue String specifying the path and folder where the files specified in
CELFiles are stored.
CDFPathValue String specifying the path and folder where the file specified in
CDFFile is stored.
PMOnlyValue Property to include or exclude the mismatch (MM) probe

intensity values in the returned structure. Enter true to return

celintensityread

only perfect match (PM) probe intensities. Enter false to
return both PM and MM probe intensities. Default is true.

VerboseValue Controls the display of a progress report showing the name of
each CEL file as it is read. When VerboseValue is false, no
progress report is displayed. Default is true.

Output Arguments

ProbeStructure MATLAB structure containing information from the CEL files,
including probe intensities, probe indices, and probe set IDs.

Description

ProbeStructure = celintensityread(CELFiles, CDFFile) reads the
specified Affymetrix CEL files and the associated CDF library file (created from
Affymetrix GeneChip arrays for expression or genotyping assays), and then creates
ProbeStructure, a structure containing information from the CEL files, including
probe intensities, probe indices, and probe set IDs. CELFiles is a string or cell array of
CEL file names. CDFFile is a string specifying a CDF file name.

If you set CELFiles to "*", then it reads all CEL files in the current folder. If you set
CELFiles to " ", then it opens the Select CEL Files dialog box from which you select the
CEL files. From this dialog box, you can press and hold Ctrl or Shift while clicking to
select multiple CEL files.

If you set CDFFile to * ", then it opens the Select CDF File dialog box from which you
select the CDF file.

ProbeStructure = celintensityread(..., “PropertyName~,
PropertyValue, ...) callscelintensityread with optional properties that use
property name/property value pairs. You can specify one or more properties in any order.
Each PropertyName must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

ProbeStructure = celintensityread(..., "CELPath", CELPathValue, ...)
specifies a path and folder where the files specified by CELFiles are stored.

ProbeStructure = celintensityread(..., "CDFPath®, CDFPathValue, ...)
specifies a path and folder where the file specified by CDFFile is stored.

1-353

1 Alphabetical List

1-354

ProbeStructure = celintensityread(..., "PMOnly*®, PMOnlyValue, ...)
includes or excludes the mismatch (MM) probe intensity values. When PMOnlyValue
is true, celintensityread returns only perfect match (PM) probe intensities.
When PMOnlyValue is false, celintensityread returns both PM and MM probe
intensities. Default is true.

You can learn more about the Affymetrix CEL files and download sample files from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note: Some Affymetrix CEL files are combined with other data files in a DTT or CAB
file. You must download and use the Affymetrix Data Transfer Tool to extract these files
from the DTT or CAB file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/browse/products. jsp?productld=131431&navMode=34000&navAction:

You will have to register and log in at the Affymetrix Web site to download the
Affymetrix Data Transfer Tool.

Tip Reading a large number of CEL files and/or a large CEL file can require extended
amounts of memory from the operating system. If you receive any errors related to
memory or have trouble reading CEL files, try the following:

+ Increase the virtual memory (swap space) for your operating system (with a
recommended initial size of 3,069 and a maximum size of 16,368) as described in
“Memory Usage”.

* Set the 3 GB switch (32-bit Windows®™ XP only) as described in “Memory Usage”.

ProbeStructure contains the following fields.

Field Description

CDFName File name of the Affymetrix CDF library file.
CELNames Cell array of names of the Affymetrix CEL files.
NumChips Number of CEL files read into the structure.
NumProbeSets Number of probe sets in each CEL file.
NumProbes Number of probes in each CEL file.

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

celintensityread

Field Description

ProbeSetlIDs Cell array of the probe set IDs from the Affymetrix CDF
library file.

Probelndices Column vector containing probe indexing information.

Probes within a probe set are numbered O through N - 1,
where N is the number of probes in the probe set.

GroupNumbers Column vector containing group numbers for probes within
the probe set. For gene expression data, the group number
for all probes is 1. For SNP (genotyping) data, the group
numbers for probes are:

+ 1 — Allele A — (sense)
+ 2 — Allele B — (sense)

3 — Allele A + (antisense)
* 4 — Allele B + (antisense)

PMIntensities Matrix containing perfect match (PM) probe intensity
values. Each row corresponds to a probe, and each column
corresponds to a CEL file. The rows are ordered the same
way as in Probelndices, and the columns are ordered the
same way as in the CELFiles input argument.

MMIntensities (optional) |Matrix containing mismatch (MM) probe intensity values.
Each row corresponds to a probe, and each column
corresponds to a CEL file. The rows are ordered the same
way as in Probelndices, and the columns are ordered the
same way as in the CELFiles input argument.

ProbeStructure = celintensityread(..., "Verbose®", VerboseValue, ...)
controls the display of a progress report showing the name of each CEL file as it is read.
When VerboseValue is false, no progress report is displayed. Default is true.

Examples

The following example assumes that you have the HG_U95Av2 . CDF library file stored

at D:\Affymetrix\LibFiles\HGGenome, and that your current folder points to a
location containing CEL files associated with this CDF library file. In this example, the
celintensityread function reads all the CEL files in the current folder and a CDF file

1-355

1 Alphabetical List

1-356

in a specified folder. The next command line uses the rmabackadj function to perform
background adjustment on the PM probe intensities in the PMIntensities field of
PMProbeStructure.

PMProbeStructure = celintensityread("*", "HG_U95Av2.CDF", ...
"CDFPath®™, "D:\Affymetrix\LibFiles\HGGenome");
BackAdjustedMatrix = rmabackadj(PMProbeStructure.PMIntensities);

The following example lets you select CEL files and a CDF file to read using Open File
dialog boxes:

PMProbeStructure = celintensityread(®™ ", " ");

See Also

affygcrma | affyinvarsetnorm | affyprobeseqread | affyread | affyrma
| afFfysnpintensitysplit | agferead | gcrma | gcrmabackadj | gprread

| ilmnbsread | probelibraryinfo | probesetlink | probesetlookup |
probesetplot | probesetvalues | rmabackadj | rmasummary | sptread

cghcbs

cghcbs

Perform circular binary segmentation (CBS) on array-based comparative genomic
hybridization (aCGH) data

Syntax

SegmentStruct = cghcbs(CGHData)

SegmentStruct = cghcbs(CGHData, ..."Alpha®, AlphaValue, ...)
SegmentStruct = cghcbs(CGHData, ..."Permutations”,
PermutationsValue, ...)

SegmentStruct = cghcbs(CGHData, -..."Method", MethodValue, ...)
SegmentStruct = cghcbs(CGHData, ..."StoppingRule-®,

StoppingRuleValue, ...)

SegmentStruct = cghcbs(CGHData, ..."Smooth®, SmoothValue, ...)
SegmentStruct = cghcbs(CGHData, ..."Prune®, PruneValue, ...)
SegmentStruct = cghcbs(CGHData, ..."Errsum®, ErrsumValue, ...)
SegmentStruct = cghcbs(CGHData, ..."WindowSize",

WindowSizeValue, ...)

SegmentStruct = cghcbs(CGHData, ..."Samplelndex”,
SampleIndexValue, ...)

SegmentStruct = cghcbs(CGHData, -..."Chromosome®,

ChromosomeValue, ...)

SegmentStruct = cghcbs(CGHData, ..."Showplot®™, ShowplotValue, ...)
SegmentStruct = cghcbs(CGHData, ..."Verbose", VerboseValue, ...)
Input Arguments

CGHData Array-based comparative genomic hybridization (aCGH) data

in either of the following forms:
Structure with the following fields:

Sample — Cell array of strings containing the sample
names (optional).

Chromosome — Vector containing the chromosome
numbers on which the clones are located.

1-357

1 Alphabetical List

+ GenomicPosition — Vector containing the genomic
positions (in any unit) to which the clones are mapped.

* Log2Ratio — Matrix containing logs ratio of test to
reference signal intensity for each clone. Each row
corresponds to a clone, and each column corresponds to
a sample.

* Matrix in which each row corresponds to a clone. The first
column contains the chromosome number, the second
column contains the genomic position, and the remaining
columns each contain the log, ratio of test to reference
signal intensity for a sample.

AlphaValue

Scalar that specifies the significance level for the statistical
tests to accept change points. Default is 0.01.

PermutationsValue

Scalar that specifies the number of permutations used for p-
value estimation. Default is 10, 000.

MethodValue

String that specifies the method to estimate the p-values.
Choices are "Perm® or "Hybrid" (default). *Perm® does

a full permutation, while "Hybrid" uses a faster, tail
probability-based permutation. When using the "Hybrid*®
method, the "Perm® method is applied automatically when
segment data length becomes less than 200.

StoppingRuleValue

Controls the use of a heuristic stopping rule, based on the
method described by Venkatraman and Olshen (2007),

to declare a change without performing the full number

of permutations for the p-value estimation, whenever it
becomes very likely that a change has been detected. Choices
are true or false (default).

Tip Set this property to true to increase processing speed.
Set this property to false to maximize accuracy.

SmoothValue

Controls the smoothing of outliers before segmenting using
the procedure explained by Olshen et al. (2004). Choices are
true (default) or false.

1-358

cghcbs

PruneValue

Controls the elimination of change points identified due to
local trends in the data that are not indicative of real copy
number change, using the procedure explained by Olshen et
al. (2004). Choices are true or False (default).

ErrsumValue

Scalar that specifies the allowed proportional increase in the
error sum of squares when eliminating change points using
the "Prune” property. Commonly used values are 0.05 and
0.1. Default is 0.05.

WindowSizeValue

Scalar that specifies the size of the window (in data points)
used to divide the data when using the "Perm® method on
large data sets. Default is 200.

SampleIndexValue

A single sample index or a vector of sample indices that
specify the sample(s) to analyze. Default is all sample indices.

ChromosomeValue

A single chromosome number or a vector of chromosome
numbers that specify the data to analyze. Default is all
chromosome numbers.

ShowplotValue

Controls the display of plots of the segment means over the
original data. Choices are either:

+ true — All chromosomes in all samples are plotted. If
there are multiple samples in CGHData, then each sample
is plotted in a separate Figure window.

+ false — No plot.

* W — The layout displays all chromosomes in the whole
genome in one plot in the Figure window.

* S — The layout displays each chromosome in a subplot in
the Figure window.

+ I — An integer specifying only one of the chromosomes in
CGHData to be plotted.

Default is:

+ fTalse — When return values are specified.

+ true and W— When return values are not specified.

VerboseValue

Controls the display of a progress report of the analysis.
Choices are true (default) or False.

1-359

1 Alphabetical List

1-360

Output Arguments

SegmentStruct Structure containing segmentation information in the
following fields:

+ Sample — Sample name from CGHData input argument. If
the input argument does not include sample names, then
sample names are assigned as Samplel, Sample2, and so
forth.

+ SegmentData — Structure array containing segment data
for the sample in the following fields:
* Chromosome — Chromosome number on which the
segment is located.

* Start — Genomic position at the start of the segment
(in the same units as used for the CGHData input).

* End — Genomic position at the end of the segment (in
the same units as used for the CGHData input).

+ Mean — Mean value of the log, ratio of the test to
reference signal intensity for the segment.

Description

SegmentStruct = cghcbs(CGHData) performs circular binary segmentation (CBS)
on array-based comparative genomic hybridization (aCGH) data to determine the copy
number alteration segments (neighboring regions of DNA that exhibit a statistical
difference in copy number) and change points.

Note: The CBS algorithm recursively splits chromosomes into segments based on a
maximum t statistic estimated by permutation. This computation can be time consuming.
If n = number of data points, then computation time ~ O(n?).

SegmentStruct = cghcbs(CGHData, ..."PropertyName®,
PropertyValue, ...) calls cghcbs with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each

cghcbs

PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

SegmentStruct = cghcbs(CGHData, ..."Alpha®, AlphaValue, ...) specifies
the significance level for the statistical tests to accept change points. Default is 0.01.

SegmentStruct = cghcbs(CGHData, ..."Permutations”,
PermutationsValue, ...) specifies the number of permutations used for p-value
estimation. Default is 10, 000.

SegmentStruct = cghcbs(CGHData, ..."Method", MethodValue, ...)
specifies the method to estimate the p-values. Choices are "Perm® or "Hybrid"
(default). "Perm® does a full permutation, while "Hybrid" uses a faster, tail probability-
based permutation. When using the "Hybrid® method, the "Perm® method is applied
automatically when segment data length becomes less than 200.

SegmentStruct = cghcbs(CGHData, ..."StoppingRule”,
StoppingRuleValue, ...) controls the use of a heuristic stopping rule, based on
the method described by Venkatraman and Olshen (2007), to declare a change without
performing the full number of permutations for the p-value estimation, whenever

it becomes very likely that a change has been detected. Choices are true or false
(default).

SegmentStruct = cghcbs(CGHData, ..."Smooth®, SmoothValue, ...) controls
the smoothing of outliers before segmenting, using the procedure explained by Olshen et
al. (2004). Choices are true (default) or false.

SegmentStruct = cghcbs(CGHData, ..."Prune®, PruneValue, ...) controls
the elimination of change points identified due to local trends in the data that are not
indicative of real copy number change, using the procedure explained by Olshen et al.
(2004). Choices are true or false (default).

SegmentStruct = cghcbs(CGHData, ..."Errsum®, ErrsumValue, ...)
specifies the allowed proportional increase in the error sum of squares when eliminating

change points using the "Prune” property. Commonly used values are 0.05 and 0.1.
Default is 0.05.

SegmentStruct = cghcbs(CGHData, ..."WindowSize",

WindowSizeValue, ...) specifies the size of the window (in data points) used to divide
the data when using the "Perm”™ method on large data sets. Default is 200.

1-361

1 Alphabetical List

1-362

SegmentStruct = cghcbs(CGHData, ..."Samplelndex”,
SamplelIndexValue, ...) analyzes only the sample(s) specified by
SamplelIndexValue, which can be a single sample index or a vector of sample indices.
Default is all sample indices.

SegmentStruct = cghcbs(CGHData, -..."Chromosome®,
ChromosomeValue, ...) analyzes only the data on the chromosomes specified
by ChromosomeValue, which can be a single chromosome number or a vector of
chromosome numbers. Default is all chromosome numbers.

SegmentStruct = cghcbs(CGHData, ..."Showplot®, ShowplotValue, ...)
controls the display of plots of the segment means over the original data. Choices are
true, false, W, S, or I, an integer specifying one of the chromosomes in CGHData.
When ShowplotValue is true, all chromosomes in all samples are plotted. If there
are multiple samples in CGHData, then each sample is plotted in a separate Figure
window. When ShowplotValue is W, the layout displays all chromosomes in one plot in
the Figure window. When ShowplotValue is S, the layout displays each chromosome
in a subplot in the Figure window. When ShowplotValue is I, only the specified
chromosome is plotted. Default is either:

+ false — When return values are specified.

+ true and W — When return values are not specified.

SegmentStruct = cghcbs(CGHData, ..."Verbose®, VerboseValue, ...)
controls the display of a progress report of the analysis. Choices are true (default) or
false.

Examples

Analyzing Data from the Coriell Cell Line Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
coriell_data, a structure of array-based CGH data.

load coriell_baccgh

2 Analyze all chromosomes of sample 3 (GM05296) of the aCGH data and return
segmentation data in a structure, S. Plot the segment means over the original data
for all chromosomes of this sample.

S = cghcbs(coriell_data, "sampleindex”,3, "showplot” ,true);

cghcbs

=1o]x|

Fle Edt View Insert Tools Desktop Window Help

DeE& K RO 0B 0O

GMO5296

Log2{Ratio)

1 23 4 5 6B 7 8 9 10 11 1213141516 17 18192023230
Chromosome

Chromosome 10 shows a gain, while chromosome 11 shows a loss.

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

Analyzing Data from a Pancreatic Cancer Study

1

Load a MAT-file, included with the Bioinformatics Toolbox software, which contains

pancrea_data, a structure of array-based CGH data from a pancreatic cancer

study.

load pancrea_oligocgh

1-363

1 Alphabetical List

2 Analyze only chromosome 9 in sample 32 of the CGH data and return the
segmentation data in a structure, PS. Plot the segment means over the original data
for chromosome 9 in this sample.

PS = cghcbs(pancrea_data, "sampleindex”,32, "chromosome”,9, . ..
“showplot®,9);

[0l x]
Fle Edit View Insert Tools Desktop Window Help L
D& K aRaOe(E 08 0O
PAT.7692.redo - Chr9
1 T T T T T T
05} B
O - .
)
™
14
> 05 B
(=]
—
1 i
15+ i
| | | | | |
0 2 4 6 8 10 12 14
Genomic Position
x10

Chromosome 9 contains two segments that indicate losses. For more detailed
information on interpreting the data, see Aguirre et al. (2004).

3 Use the chromosomeplot function with the "addtoplot” property to add the
ideogram of chromosome 9 for Homo sapiens to the plot of the segmentation data.

chromosomeplot(“hs_cytoBand.txt", 9, “addtoplot®, gca)

1-364

cghcbs

Il x

Fle Edt View Insert Tools Desktop Window Help ¥
DeE& Kb RO 0B 0O

PAT7692 redo-Chr9
Genomic Paosition

10 2 4 6 8 10 12 14

05 .

~ Of 1
=
m
14

& 05t .
(=]
|

Ak 4

15+ _

| | | | | | l

Sl b AL LML L L Wb AL b LA d L dd

HT NI TEI T T T T A e B B0 TS BE s

Op o oOon O 0O O0oh O o NN TNNNTONNS T T O a'tra'oﬁ_wr:‘-_trﬂ'

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al.,
2004.

Displaying Copy Number Alteration Regions Aligned to a Chromosome Ideogram

1 Create a structure containing segment gain and loss information for chromosomes
10 and 11 from sample 3 from the Coriell cell line study, making sure the segment
data is in bp units. (You can determine copy number variance (CNV) information by
exploring S, the structure of segments returned by the cghcbs function in Analyzing
Data from the Coriell Cell Line Study.) For the "CNVType* field, use 1 to indicate a
loss and 2 to indicate a gain.

cnvStruct = struct("Chromosome®, [10 11],.-..

1-365

1 Alphabetical List

"CNVType®, [2 17,-.-..

"Start”, [S-SegmentData(10).Start(2),-.-.-
S_SegmentData(l11l).Start(2)]*1000, ...

"End", [S-SegmentData(10) .End(2), - - .
S_SegmentData(11) .End(2)]*1000)

cnvStruct =

Chromosome: [10 11]
CNVType: [2 1]

Start: [66905000 35416000]
End: [110412000 43357000]

2 Pass the structure to the chromosomeplot function using the "CNV" property
to display the copy number gains (green) and losses (red) aligned to the human
chromosome ideogram. Specify kb units for the display of segment information in the
data tip.

chromosomeplot("hs_cytoBand.txt", “cnv®, cnvStruct, “unit®, 2)

1-366

cghcbs

M=

Fle Edt View Insert Tools Desktop Window Help E
sEHE K RRAOe|(E 0E 0O

Y
ézé

Chramosome 14
pter - gter
Start (kby: 0.0

End {kb): 108362 6
15 16 17 1

108 1 A 1)
Y1l I | i)
(DI

(D

> (TN

D@r::"‘- =
1888810

9

oo
=

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

References

[1] Olshen, A.B., Venkatraman, E.S., Lucito, R., and Wigler, M. (2004). Circular
binary segmentation for the analysis of array-based DNA copy number data.
Biostatistics 5, 4, 557-572.

[2] Venkatraman, E.S., and Olshen, A.B. (2007). A Faster Circular Binary Segmentation
Algorithm for the Analysis of Array CGH Data. Bioinformatics 23(6), 657—-663.

1-367

1 Alphabetical List

[3] Venkatraman, E.S., and Olshen, A.B. (2006). DNAcopy: A Package for Analyzing DNA
Copy Data. http://www.bioconductor.org/packages/2.1/bioc/html/DNAcopy.html

[4] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J.,
Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer,
dJ., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G.
(2001). Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics 29, 263—264.

[6] Aguirre, A.J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y., Zhang,
dJ., Gans, J.D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.S.,
DePinho, R.A., and Chin, L. (2004). High-resolution characterization of the
pancreatic adenocarcinoma genome. PNAS 101, 24, 9067-9072.

See Also

chromosomeplot | cytobandread

1-368

http://www.bioconductor.org/packages/2.1/bioc/html/DNAcopy.html

cghfreqp|ot

cghfreqplot

Display frequency of DNA copy number alterations across multiple samples

Syntax

FreqStruct = cghfreqplot(CGHData)
FreqStruct = cghfreqplot(CGHData, ..."Threshold",

ThresholdValue, ...)

FreqStruct = cghfregplot(CGHData, ..."Group®, GroupValue, ...)
FreqStruct = cghfreqgplot(CGHData, ..."Subgrp®, SubgrpValue, ...)
FreqStruct = cghfreqplot(CGHData, ..."Subplot®, SubplotValue, ...)
FreqStruct = cghfreqplot(CGHData, ..."Cutoff", CutoffValue, ...)
FreqStruct = cghfreqplot(CGHData, ..."Chromosome®,

ChromosomeValue, ...)

FreqStruct = cghfregplot(CGHData, ..."IncludeX®, IncludeXValue, ...)
FreqStruct = cghfreqplot(CGHData, ..."IncludeY", IncludeYValue, ...)
FreqStruct = cghfreqplot(CGHData, ..."Chrominfo~,

ChrominfoValue, ...)

FreqStruct = cghfreqplot(CGHData, ..."ShowCentr",

ShowCentrValue, ...)

FreqStruct = cghfregplot(CGHData, ..."Color®, ColorValue, ...)

FreqStruct = cghfreqgplot(CGHData, ...°"YLim", YLimValue, ...)
FreqStruct = cghfreqplot(CGHData, ..."Titles", TitlesValue, ...)
Input Arguments

CGHData Array-based comparative genomic hybridization (aCGH) data in

either of the following forms:
Structure with the following fields:

Sample — Cell array of strings containing the sample
names (optional).

Chromosome — Vector containing the chromosome
numbers on which the clones are located.

1-369

1 Alphabetical List

1-370

+ GenomicPosition — Vector containing the genomic
positions (in bp, kb, or mb units) to which the clones are
mapped.

* Log2Ratio — Matrix containing logs ratio of test to
reference signal intensity for each clone. Each row
corresponds to a clone, and each column corresponds to a
sample.

Matrix in which each row corresponds to a clone. The first
column contains the chromosome number, the second
column contains the genomic position, and the remaining
columns each contain the logs ratio of test to reference signal
intensity for a sample.

ThresholdValue

Positive scalar or vector that specifies the gain/loss threshold.
A clone is considered to be a gain if its log, ratio is above
ThresholdValue, and a loss if its log, ratio is below negative
ThresholdValue.

The ThresholdValue is applied as follows:

If a positive scalar, it is the gain and loss threshold for all
the samples.

If a two-element vector, the first element is the gain
threshold for all samples, and the second element is the loss
threshold for all samples.

If a vector of the same length as the number of samples, each
element in the vector is considered as a unique gain and loss
threshold for each sample.

Default 1s 0.25.

cghfreqp|ot

GroupValue

Specifies the sample groups to calculate the frequency from.
Choices are:

* A vector of sample column indices (for data with only one
group). The samples specified in the vector are considered a
group.

* A cell array of vectors of sample column indices (for data
divided into multiple groups). Each element in the cell array
1s considered a group.

Default is a single group of all the samples in CGHData.

SubgrpValue

Controls the analysis of samples by subgroups. Choices are
true (default) or false.

SubplotValue

Controls the display of all plots in one Figure window when
more than one subgroup is analyzed. Choices are true (default)
or False (displays plots in separate windows).

CutoffValue

Scalar or two-element numeric vector that specifies a cutoff,
which controls the plotting of only the clones with frequency
gains or losses greater than or equal to CutoffValue. If a two-
element vector, the first element is the cutoff for gains, and the
second element is for losses. Default is O.

ChromosomeValue

Single chromosome number or a vector of chromosome numbers
that specify the chromosomes for which to display frequency
plots. Default is all chromosomes in CGHData.

IncludeXValue

Controls the inclusion of the X chromosome in the analysis.
Choices are true (default) or False.

IncludeYValue

Controls the inclusion of the Y chromosome in the analysis.
Choices are true or false (default) .

1-371

1 Alphabetical List

1-372

ChrominfoValue

Cytogenetic banding information specified by either of the
following:

* Structure returned by the cytobandread function

* String specifying the file name of an NCBI ideogram text file
or a UCSC Genome Browser cytoband text file

Default is Homo sapiens cytogenetic banding information
from the UCSC Genome Browser, NCBI Build 36.1 (http://
genome.UCSC.edu).

ShowCentrValue

Controls the display of the centromere positions as vertical
dashed lines in the frequency plot. Choices are true (default) or
false.

Tip The centromere positions are obtained from
ChrominfoValue.

ColorValue

Color scheme for the vertical lines in the plot, indicating the
frequency of the gains and losses, specified by either of the
following:

* Name of or handle to a function that returns a colormap

* M-by-3 matrix containing RGB values. If M equals 1, then
that single color is used for all gains and losses. If M equals
2 or more, then the first row is used for gains, the second
row is used for losses, and remaining rows are ignored. For
example, [0 1 0;1 O O] specifies green for gain and red
for loss.

The default color scheme is a range of colors from pure green
(gain = 1) through yellow (0) to pure red (loss = —1).

YLimValue

Two-element vector specifying the minimum and maximum
values on the vertical axis. Default is [1, -1].

TitlesValue

Single string or a cell array of strings that specifies titles for the
group(s), which are added to the tops of the plot(s).

http://genome.UCSC.edu
http://genome.UCSC.edu

cghfreqp|ot

Output Arguments

FreqStruct Structure containing frequency data in the following fields:

* Group — Structure array, with each structure representing
a group of samples. Each structure contains the following
fields:

+ Sample — Cell array containing names of samples
within the group.

+ GainFrequency — Column vector containing the
average gain for each clone for a group of samples.

* LossFrequency — Column vector containing the
average loss for each clone for a group of samples.

* Chromosome — Column vector containing the chromosome
numbers on which the clones are located.

GenomicPosition — Column vector containing the
genomic positions of the clones.

Tip You can use this output structure as input to the
cghfregplot function.

Description

FreqStruct = cghfregplot(CGHData) displays the frequency of copy number gain
or loss across multiple samples for each clone on an array against their genomic position
along the chromosomes.

FreqStruct = cghfreqplot(CGHData, ..."PropertyName-®,

PropertyValue, ...) calls cghfregplot with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

FreqStruct = cghfreqplot(CGHData, ..."Threshold",
ThresholdValue, ...) specifies the gain/loss threshold. A clone is considered to be

1-373

1 Alphabetical List

1-374

a gain if its log, ratio is above ThresholdValue, and a loss if its log, ratio is below
negative ThresholdValue.

The ThresholdValue is applied as follows:

+ If a positive scalar, it is the gain and loss threshold for all the samples.

+ If a two-element vector, the first element is the gain threshold for all samples, and the
second element is the loss threshold for all samples.

+ If a vector of the same length as the number of samples, each element in the vector is
considered as a unique gain and loss threshold for each sample.

Default is 0.25.

FreqStruct = cghfregplot(CGHData, ..."Group®, GroupValue, ...)
specifies the sample groups to calculate the frequency from. Choices are:

* A vector of sample column indices (for data with only one group). The samples
specified in the vector are considered a group.

* A cell array of vectors of sample column indices (for data divided into multiple
groups). Each element in the cell array is considered a group.

Default is a single group of all the samples in CGHData.

FreqStruct = cghfreqplot(CGHData, ..."Subgrp®, SubgrpValue, ...)
controls the analysis of samples by subgroups. Choices are true (default) or false.

FreqStruct = cghfregplot(CGHData, ..."Subplot®, SubplotValue, ...)
controls the display of all plots in one Figure window when more than one subgroup is
analyzed. Choices are true (default) or False (displays plots in separate windows).

FreqStruct = cghfreqplot(CGHData, ..."Cutoff", CutoffValue, ...)
specifies a cutoff value, which controls the plotting of only the clones with frequency
gains or losses greater than or equal to CutoffValue. CutoffValue is a scalar or two-
element numeric vector. If a two-element numeric vector, the first element is the cutoff
for gains, and the second element is for losses. Default is O.

FreqStruct = cghfreqplot(CGHData, -..."Chromosome”,

ChromosomeValue, ...) displays the frequency plots only of chromosome(s) specified
by ChromosomeValue, which can be a single chromosome number or a vector of
chromosome numbers. Default is all chromosomes in CGHData.

cghfreqp|ot

FreqStruct = cghfreqplot(CGHData, ..."IncludeX®, IncludeXValue, ...)
controls the inclusion of the X chromosome in the analysis. Choices are true (default) or
false.

FreqgStruct = cghfreqgplot(CGHData, ..."IncludeY®, IncludeYValue, ...)
controls the inclusion of the Y chromosome in the analysis. Choices are true or false
(default).

FreqStruct = cghfreqplot(CGHData, ..."Chrominfo",
ChrominfoValue, ...) specifies the cytogenetic banding information for the
chromosomes. ChrominfoValue can be either of the following

+ Structure returned by the cytobandread function
* String specifying the file name of an NCBI ideogram text file or a UCSC Genome
Browser cytoband text file

Default is Homo sapiens cytogenetic banding information from the UCSC Genome
Browser, NCBI Build 36.1 (http://genome. UCSC.edu).

Tip You can download files containing cytogenetic G-banding data from the NCBI or
UCSC Genome Browser ftp site. For example, you can download the cytogenetic banding
data for Homo sapiens from:

ftp://ftp_ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz
or

ftp://hgdownload.cse.ucsc.edu/goldenPath/hgl8/database/cytoBandldeo.txt.gz

FreqStruct = cghfreqplot(CGHData, -.."ShowCentr-®,
ShowCentrValue, ...) controlsthe display of the centromere positions as vertical
dashed lines in the frequency plot. Choices are true (default) or false.

Tip The centromere positions are obtained from ChrominfoValue.

FreqStruct = cghfregplot(CGHData, ..."Color®, ColorValue, ...)
specifies a color scheme for the vertical lines in the plot, indicating the frequency of the
gains and losses. Choices are:

* Name of or handle to a function that returns a colormap.

1-375

http://genome.UCSC.edu
ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

1 Alphabetical List

1-376

* M-by-3 matrix containing RGB values. If M equals 1, then that single color is used
for all gains and losses. If M equals 2 or more, then the first row is used for gains, the
second row is used for losses, and remaining rows are ignored. For example, [0 1
0;1 0O 0] specifies green for gain and red for loss.

The default color scheme is a range of colors from pure green (gain = 1) through yellow
(0) to pure red (loss =-1).

FreqStruct = cghfreqplot(CGHData, ..."YLim", YLimValue, ...) specifies
the y vertical limits for the frequency plot. YLimValue is a two-element vector specifying
the minimum and maximum values on the vertical axis. Default is [1, -1].

FreqStruct = cghfreqplot(CGHData, ... "Titles", TitlesValue, ...)
specifies titles for the group(s), which are added to the tops of the plot(s). TitlesValue
can be a single string or a cell array of strings.

Examples

Plotting Data from the Coriell Cell Line Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
coriell_data, a structure of array-based CGH data.

load coriell_baccgh

2 Display a frequency plot of the copy number alterations across all samples in the
Coriell aCGH data.

Struct = cghfregplot(coriell_data);

cghFreqp|ot

Drgwes _ioixi
File Edit View Insert Tools Desktop MWindow Help]
D& hRaOeE /¢ |08 =8O
1
1 L 4
-0.8
0.ar E
ol | 06
o 04 . e
c
BE!
B 02| | Loss: -0.33333 o102
3 Location; 16308300kk) on Chr 9
S0 [| q0
[=]
g
£ D2t 1 F 102
e
= 4 I 104
06+ B
06
08¢ -
0.8
'1_1 2 | 2| 4|58 |7|e|9[1011)1201204) 5087 1% | 4
Chromosome number

3 View data tips for the data, chromosomes, and centromeres by clicking the Data

L
Cursor | 'EI | button on the toolbar, then clicking data, a blue chromosome boundary
line, or a dotted centromere line in the plot. To delete this data tip, right-click it,
then select Delete Current Datatip.

4 Display a color bar indicating the degree of gain or loss by clicking the Insert
Colorbar E button on the toolbar.

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

Plotting Pancreatic Cancer Study Data Using a Green and Red Color Scheme

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
pancrea_data, a structure of array-based CGH data from a pancreatic cancer
study.

1-377

1 Alphabetical List

load pancrea_oligocgh
2 Display a frequency plot of the copy number alterations across all samples in the
pancreatic cancer data, using a green and red color scheme.

cghfregplot(pancrea_data, “Color®, [0 1 0; 1 0 0])

File Edit View Insert Tools Deskiop MWindow Help

D& R ee /-2 08 50

=10l

Fraction of alterations

1 2 3 4 S5 | 6 | 7| 8| 8 |10 |11)12 13 1415161 R0 X

Chramosome number

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al.,
2004.

Plotting Groups of aCGH Dataq, Specifying a Frequency Value Cutoff, and Adding a
Chromosome Ideogram

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
pancrea_data, a structure of array-based CGH data from a pancreatic cancer
study.

load pancrea_oligocgh

1-378

cghfreqp|ot

2 Define two groups of data.

grpl = strncmp("PA.C", pancrea_data.Sample,4);
grpl_ind = find(grpl);
grp2 = strncmp("PA.T", pancrea_data.Sample,4);
grp2_ind = Ffind(grp2);

3 Display a frequency plot of the copy number alterations across all samples in the two
groups and limit the plotting to only the clones with frequency gains or losses greater
than or equal to 0.25.

SP = cghfregplot(pancrea_data, "Group®, {grpl_ind, grp2_ind},...
“Title", {"CL", "PT"}, "Cutoff", 0.25);

T —— =lox]
File Edit View Insert Tools Deskiop Window Help ~u
DEESE L RAMBE /-2 |0EH O
L

o If | ;

=

' O05p ‘

=

L L |

o1l elﬁ" bkl Al ‘1 '

o]

i 1F 1 2 3 a5 e | 78] al10|11]12)13 1415161 MHROET X

Chramosome number
FT

o TF | 1

2

& D&[il

=

L T it

c ! | | | ’ |

g -D'SM i .h" i‘u "‘ [.HA. 0 i L |r” i e

c gl 2 3 a8 s | 78] al10|11]12)13)14)i516iMAROE: X -

Chramosome number

4 Display a frequency plot of the copy number alterations across all samples in the
first group and limit the plot to chromosome 4 only.

SP = cghfregplot(pancrea_data, “Group®, grpl_ind,
"Title®, "CL Group on Chr 4%, “Chromosome®, 4);

1-379

1 Alphabetical List

_Inix|
o

File Edit View Insert Tools Desktop MWindow Help

DEEHE|(L RAOMDE /-« 0B 0O
CL Group on Chr 4

0.8 E
0.6 E
0.4 4

0.2 - A

T

4

-0.

M

Fraction of alterations
[mm]

-0.

=

-0.

(a3}

Chramaosome number

5 Use the chromosomeplot function with the "addtoplot” property to add the
ideogram of chromosome 4 for Homo sapiens to this frequency plot. Because the plot
of the frequency data from the pancreatic cancer study is in kb units, use the "Unit”
property to convert the ideogram data to kb units.

chromosomeplot("hs_cytoBand.txt", 4, “addtoplot®, gca, “"unit", 2);

1-380

cghFreqp|ot

_Inix|
o

File Edit View Insert Tools Desktop MWindow Help

Ded&| s RAMeE /- |08 50

L Group on Chr 4

Chramosome number

Fraction of alterations

|

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al.,
2004.

References

[1] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J.,
Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer,
dJ., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G.
(2001). Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics 29, 263—264.

[2] Aguirre, A.J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y., Zhang,
dJ., Gans, J.D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.S.,
DePinho, R.A., and Chin, L. (2004). High-resolution characterization of the
pancreatic adenocarcinoma genome. PNAS 101, 24, 9067-9072.

1-381

1 Alphabetical List

See Also

cghcbs | chromosomeplot | cytobandread

1-382

chromosomeplot

chromosomeplot

Plot chromosome ideogram with G-banding pattern

Syntax

chromosomeplot(CytoData)
chromosomeplot(CytoData, ChromNum)

chromosomeplot(CytoData, ChromNum, ...,"Orientation”,
OrientationValue, ...)

chromosomeplot(CytoData, ChromNum, ...,"ShowBandLabel",
ShowBandLabelValue, ...)

chromosomeplot(CytoData, ChromNum, ...,"AddToPlot",
AddToPlotValue, ...)

chromosomeplot(..., "Unit", UnitValue, ...)

chromosomeplot(..., "CNV", CNVValue, ...)

Arguments

CytoData Either of the following:

units) in the following fields:

+ ChromLabels
+ BandStartBPs
* BandEndBPs

+ BandLabels

+ GieStains

+ String specifying a file containing cytogenetic G-banding
data (in bp units), such as an NCBI ideogram text file or
a UCSC Genome Browser cytoband text file.

Structure containing cytogenetic G-banding data (in bp

to use for CytoData.

Tip Use the cytobandread function to create the structure

1-383

1 Alphabetical List

ChromNum

Scalar or string specifying a single chromosome to plot.
Valid entries are integers, "X", and "Y".

Note: Setting ChromNum to O will plot ideograms for all
chromosomes.

OrientationValue

String or number that specifies the orientation of the
ideogram of a single chromosome specified by ChromNum.
Choices are "Vertical” or 1 (default) and "Horizontal "
or 2.

ShowBandLabelValue

Controls the display of band labels (such as q25. 3) when
plotting a single chromosome ideogram, specified by
ChromNum. Choices are true (default) or False.

AddToPlotValue

Variable name of a figure axis to which to add the single
chromosome ideogram, specified by ChromNum.

Note: If you use this property to add the ideogram to a
plot of genomic data that is in units other than bp, use
the "Unit" property to convert the ideogram data to the
appropriate units.

Tip Before printing a figure containing an added
chromosome ideogram, change the background to white by
issuing the following command:

set(gcf, "color=, "w")

UnitValue

Integer that specifies the units (base pairs, kilo base pairs,
or mega base pairs) for the starting and ending genomic
positions. This unit is used in the data tip displayed when
you hover the cursor over chromosomes in the ideogram.
This unit can also be used when using the "AddToPlot*
property to add the ideogram to a plot that is in units other
than bp. Choices are 1 (bp), 2 (kb), or 3 (mb). Default is 1

(bp).

1-384

chromosomeplot

CNVValue Controls the display of copy number variance (CNV)
data, provided by CNVValue, aligned to the chromosome
ideogram. Gains are shown in green to the right or above
the ideogram, while losses are shown in red to the left

or below the ideogram. CNVValue is a structure array
containing the four fields described in the table below.

Description

chromosomeplot(CytoData) plots the ideogram of all chromosomes, using information
from CytoData, a structure containing cytogenetic G-banding data (in bp units), or a
string specifying a file containing cytogenetic G-banding data (in bp units), such as an
NCBI ideogram text file or a UCSC Genome Browser cytoband text file. The G bands
distinguish different areas of the chromosome. For example, for the Homo sapiens
ideogram, possible G bands are:

* gneg — white

* gpos25 — light gray

* gpos50 — medium gray

* gpos75 — dark gray

* gpos100 — black

+ acen — red (centromere)

+ stalk — light blue (regions with repeats)
* gvar — indented region

Darker bands are AT-rich, while lighter bands are GC-rich.

chromosomeplot(CytoData, ChromNum) plots the ideogram of a single chromosome
specified by ChromNum.

chromosomeplot(..., "PropertyName®, PropertyValue, ...) calls
chromosomeplot with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

chromosomeplot(CytoData, ChromNum, ...,"Orientation”,
OrientationValue, ...) specifies the orientation of the ideogram of a single

1-385

1 Alphabetical List

1-386

chromosome specified by ChromNum. Choices are "Vertical " or 1 (default) and
"Horizontal " or 2.

Note: When plotting the ideogram of all chromosomes, the orientation is always vertical.

chromosomeplot(CytoData, ChromNum, ...,"ShowBandLabel",
ShowBandLabelValue, ...) displays band labels (such as q25.3) when plotting a
single chromosome ideogram, specified by ChromNum. Choices are true (default) or
false.

chromosomeplot(CytoData, ChromNum, ...,"AddToPlot”,
AddToPlotValue, ...) adds the single chromosome ideogram, specified by ChromNum,
to a figure axis specified by AddToPlotValue.

Note: If you use this property to add the ideogram to a plot of genomic data that is
in units other than bp, use the "Unit" property to convert the ideogram data to the
appropriate units.

Tip Before printing a figure containing an added chromosome ideogram, change the
background to white by issuing the following command:

set(gcf, "color”,"w")

chromosomeplot(..., "Unit", UnitValue, ...) specifiesthe units (base pairs,
kilo base pairs, or mega base pairs) for the starting and ending genomic positions. This
unit is used in the data tip displayed when you hover the cursor over chromosomes in
the ideogram. This unit can also be used when using the "AddToPlot" property to add
the ideogram to a plot that is in units other than bp. Choices are 1 (bp), 2 (kb), or 3 (mb).
Default is 1 (bp).

chromosomeplot(..., "CNV", CNVValue, ...) displayscopy number variance
(CNV) data, provided by CNVValue, aligned to the chromosome ideogram. Gains are
shown in green to the right or above the ideogram, while losses are shown in red to the
left or below the ideogram. CNVValue is a structure array containing the following fields.
Each field must contain the same number of elements.

chromosomeplot

Field

Description

Chromosome

Either of the following:

* Numeric vector containing the chromosome number on which each
CNV is located.

Note: For the sex chromosome, X, use N, where N = number of
autosomes + 1. For the sex chromosome, Y, use M, where M =
number of autosomes + 2. For example, for Homo sapiens use 23 for
X and 24 for Y, and for Mus musculus (lab mouse), use 20 for X and
21 for Y.

+ Character array containing the chromosome number on which each
CNV is located.

Note: Using a character array lets you use the characters X and Y
(instead of numbers) for sex chromosomes. However, all elements
in the array must be the same width, which may require you to add
spaces to the strings. For example:

- 17; ° 2%; "107; * X7]
Or you can use the char function with a cell array to create a

character array of the chromosome numbers and letters. For
example: .

char({"1", 27, "10", "X}

CNVType

Numeric vector containing the type of each CNV, either 1 (loss) or 2
(gain).

Start

Numeric vector containing the starting genomic position of each CNV.
Units must be in base pairs.

End

Numeric vector containing the ending genomic position of each CNV.
Units must be in base pairs.

1-387

1 Alphabetical List

1-388

Examples

Plotting Chromosome Ideograms

1

Read the cytogenetic banding information for Homo sapiens into a structure.

hs_cytobands = cytobandread("hs_cytoBand.txt")

hs_cytobands

ChromLabels: {862x1 cell}
BandStartBPs: [862x1 int32]
BandEndBPs: [862x1 int32]
BandLabels: {862x1 cell}
GieStains: {862x1 cell}

Plot the entire chromosome ideogram for Homo sapiens.

chromosomeplot(hs_cytobands);
title("Human Karyogram®)

chromosomeplot

M=

Fle Edt View Insert Tools Desktop Window Help E
DEeEE haRaOe(E 08 0O

Human Karyogram

(T (AT T
(AT I
(T
M
(I TN TITD
NI 11 DIGE T 0

= [
(I m

i
]
(IITIT)
()
> (TN

&=

1 8 = =
@ S0 88880
13 14 15 16 17 18 9 20 237 A

=

21

3 Display the ideogram of only chromosome 7 for Homo sapiens by right-clicking
chromosome 7 in the plot, then selecting Display in New Figure > Vertical.

1-389

1 Alphabetical List

1-390

Fle Edt View Insert Tools Desktop Window Help

=lo] x|

DeE& RO 0B 0O

Plot the ideogram of only chromosome 15 for Homo sapiens in a horizontal
orientation. Set the units used in the data tip to kilo base pairs.

chromosomeplot(hs_cytobands, 15, "Orientation®, 2,

"Unit", 2);

chromosomeplot

Fle Edt View Insert Tools Desktop Window Help

=lo] x|

DeE& Kb fRa&e | 0B 7O

& A 4 L4 AL oL L4 4L

= —

o o T ZzZz ol T 2T 5 oao
O oo o oo oo T O OO

gl2-
iy
1834
q22:2—
22.31-
22.3%
Q2%
q24.1-
4345
q2a.1-
g26. 2~
g26. 3
q26.2-
q26.3

q
q

Chromosome 15
pter - gter

Start (kb): 0.0

End (kb): 100338.9

15

q26.1-

View a data tip with information about the chromosome by hovering the cursor over
the chromosome. View a data tip with detailed information about a specific band by

)
clicking the Data Cursor | 'EI | button on the toolbar, then clicking the band in the
plot. To delete this data tip, right-click it, then select Delete Current Datatip.

Tip You can change the orientation of a single chromosome ideogram by right-clicking,
selecting Display > Vertical or Horizontal. You can show or hide the band labels of a
single chromosome ideogram by right-clicking, then selecting Show G-band Labels or

Hide G-band Labels.

1-391

1 Alphabetical List

1-392

Adding a Chromosome Ideogram to a Plot

1

Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
coriell _data, a structure of CGH data.
load coriell_baccgh

Use the cghcbs function to analyze chromosome 10 of sample 3 (GM05296) of the
CGH data and return copy number variance (CNV) data in a structure, S. Plot the
segment means over the original data for only chromosome 10 of sample 3.

S = cghcbs(coriell_data, "sampleindex”,3, "chromosome*®, 10, ...
"showplot®,10);

_iofx]

Fle Edit View Insert Tocols Deskfop Window Help E
DeEE K *RaOe(E 08 8O

GM05296 - Chr 10

08} -

04 .

02} -

LogZ{Ratio)
=
1

-0.2 4

06 -

08} i

1 L 1
0]} 10 13

Genomic Paosition 4
x 10

chromosomeplot

3 Use the chromosomeplot function with the "addtoplot” property to add the
ideogram of chromosome 10 for Homo sapiens to the plot. Because the plot of the
CNV data from the Coriell cell line study is in kb units, use the "Unit" property to
convert the ideogram data to kb units.

chromosomeplot("hs_cytoBand.txt", 10, "addtoplot®, gca,...
“Unit", 2)

_lo)x

Fle Edit View Insert Tocls Deskfop Window Help]
DzEE K Ra@e | 0B 8O0

GM05296 - Chr 10
Genomic Position

10 2 4 6 8 10 12

08} -

06} -

04} .
02} .

Log2iRatio)
(]

02+t i
-0.4 4

06 i

Chromosome 10
| pter - gter
08 Start (kb): 0.0
End (kb): 135374.7

Tip Before printing the above figure containing an added chromosome ideogram, change
the background to white by issuing the following command.:

set(gcf, "color™, "w")

1-393

1 Alphabetical List

1-394

Displaying Copy Number Alteration Regions Aligned to a Chromosome Ideogram

1 Create a structure containing segment gain and loss information for chromosomes
10, 11, and X from sample 3 from the Coriell cell line study, making sure the
segment data is in bp units. (You can determine copy number variance (CNV)
information by exploring S, the structure of segments returned by the cghcbs
function in step 2 in Adding a Chromosome Ideogram to a Plot.) For the "CNVType*
field, use 1 to indicate a loss and 2 to indicate a gain.
cnvStruct = struct(“Chromosome®, char({"10", "11%, "X"}),...

"CNVType®, [2 1 2].,-..-
"Start”, [66905000 25416000 1],--.-
"End", [110412000 39389000 154913755]);

2 Pass the structure to the chromosomeplot function using the "CNV*" property
to display the copy number gains (green) and losses (red) aligned to the human
chromosome ideogram.
chromosomeplot("hs_cytoBand.txt", “cnv®, cnvStruct);

i

Fil= Edit View Insert Tools Desktop Window Help LY

Do0d2 | 5 |RR0PDLEL- 2|02 0O

(M

E
:

w ([T TN T
= [T T
o (I TR HCHD
~ (TN AN T

o (T TN

© I WI

= (D

= [MTHITD

5 (NI

(.

&

]

(T D
< (D
(T
(W)
S
()
R3 (IIw)
> (T T
=)

& (TN)

=
o
—
(s3]
—
oo
—_
w

chromosomeplot

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

References

[1] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J.,
Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer,
d., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G.
(2001). Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics 29, 263—-264.

See Also

cghcbs | cytobandread

1-395

1 Alphabetical List

1-396

cigar2align

Convert unaligned sequences to aligned sequences using Compact Idiosyncratic Gapped
Alignment Report (CIGAR) format strings

Syntax

Alignment = cigar2align(Seqs,Cigars)
[GapSeq, Indices] = cigar2align(Seqgs,Cigars)
... = cigar2align(Segs,Cigars,Name,Value)

Description

Alignment = cigar2align(Seqs,Cigars) converts unaligned sequences in Seqgs, a
cell array of strings, into Alignment, a matrix of aligned sequences, using the information
stored in Cigars, a cell array of CIGAR strings.

[GapSeq, Indices] = cigar2align(Segs,Cigars) converts unaligned sequences
in Seqs, a cell array of strings, into GapSeq, a cell array of strings of aligned sequences,
and also returns Indices, a vector of numeric indices, using the information stored in
Cigars, a cell array of CIGAR strings. When an alighment has many columns, this syntax
uses less memory and is faster.

... = cigar2align(Segs,Cigars,Name,Value) converts unaligned sequences in
Seqs, a cell array of strings, into Alignment, a matrix of aligned sequences, using the
information stored in Cigars, a cell array of CIGAR strings, with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
Seqs

Cell array of strings containing unaligned sequences. Seqs must contain the same
number of elements as Cigars.

Default:

cigar2align

Cigars

Cell array of valid CIGAR strings. Cigars must contain the same number of elements as
Seqs.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

“Start”

Vector of positive integers specifying the reference sequence position at which each
aligned sequence starts. By default, each aligned sequence starts at position 1 of the
reference sequence.

Default:
"GapsInRef*®

Logical specifying whether to display positions in the aligned sequences that correspond
to gaps in the reference sequence. Choices are true (1) or false (0). If your reference
sequence has gaps and you set GapsInReT to false (0), and then later use Alignment as
input to align2cigar, the returned CIGAR strings will not match the original CIGAR
strings.

Default: false (0)
SoftClipping

Logical specifying whether to include characters in the aligned read sequences
corresponding to soft clipping ends. Choices are true (1) or False (0).

Default: false (0)
"OffsetPad”

Logical specifying whether to add padding blanks to the left of each aligned read
sequence to represent the offset of the start position from the first position of the

1-397

1 Alphabetical List

reference sequence. Choices are true (1) or false (0). When false, the matrix of
aligned sequences starts at the start position of the leftmost aligned read sequence.

Default: false (0)

Output Arguments

Alignment

Matrix of aligned sequences, in which the number of rows equals the number of strings in
Segs.

GapSeq

Cell array of strings of aligned sequences, in which the number strings equals the
number of strings in Seqs.

Indices

Vector of numeric indices indicating the starting column for each aligned sequence
in Alignment. These indices are not necessarily the same as the start positions in the
reference sequence for each aligned sequence. This is because either of the following:

* The reference sequence can be extended to account for insertions.

* An aligned sequence can have leading soft clippings, padding, or insertion characters.

Examples

Create a cell array of strings containing unaligned sequences, create a cell array of
strings containing corresponding CIGAR strings associated with a reference sequence of
ACGTATGC, and then reconstruct the alignment:

r = {"ACGACTGC", "ACGTTGC", “AGGTATC"}; % unaligned sequences
c = {"3M1DIM1I3M", "4M1D1P3MT", "5M1PIM1DIM"}; % cigar strings
alnl = cigar2align(r, ©)

alnl =

ACG-ATGC
ACGT-TGC

1-398

cigar2align

AGGTAT-C

Reconstruct the same alignment to display positions in the aligned sequences that
correspond to gaps in the reference sequence:

aln2 = cigar2align(r, c,"GapslnRef" ,true)

aln2

ACG-ACTGC
ACGT--TGC
AGGTA-T-C

Reconstruct the alignment adding an offset padding of 5:

aln3 = cigar2align(r, c, "start", [5 5 5], "OffsetPad”, true)

aln3
ACG-ATGC

ACGT-TGC
AGGTAT-C

Alternatives

If your CIGAR information is captured in the Signature property of a BioMap object,
you can use the getAl ignment method to construct the alighment.

More About

Algorithms

When cigar2align reconstructs the alignment, it does not display hard clipped
positions (H) or soft clipped positions (S). Also, it does not consider soft clipped positions
as start positions for aligned sequences.

. “Manage Short-Read Sequence Data in Objects”
. Sequence Read Archive

. SAM format specification

1-399

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078-2079.

See Also
getAlignment | align2cigar | segalignviewer | getBaseCoverage |
getCompactAlignment | BioMap

1-400

classperf

classperf

Evaluate performance of classifier

Syntax

classperf

CP = classperf(truelabels)

CP = classperf(truelabels, classout)

CP = classperf(..., "Positive®, PositiveValue, "Negative-,
NegativeValue)

classperf(CP, classout)

classperf(CP, classout, testidx)

Input Arguments
truelabels True class labels for each observation, specified by one of the
following:

Numeric vector

+ Cell array of strings

Note: When used in a cross-validation design experiment,
truelabels should have the same size as the total number of
observations.

classout Classifier output, specified by one of the following:

* Numeric vector

Cell array of strings

Note: classout must contain the same number of elements as
truelabels.

PositiveValue Numeric vector or cell array of strings that specifies the positive
labels to identify the target class(es). Default is the first class
returned by grp2idx(truelabels).

1-401

1 Alphabetical List

1-402

NegativeValue Numeric vector or cell array of strings that specifies the negative
labels to identify the control class(es). Default is all classes other
than the first class returned by grp2idx(truelabels).

testidx Vector that indicates the observations that were used in the
current validation. Choices are:
+ Index vector

+ Logical index vector of the same size as truelabels used to
construct the classifier performance object

Output Arguments

cP Classifier performance object with performance properties listed
in the following table.

Description

classperf provides an interface to keep track of the performance during the validation
of classifiers. classperf creates and, optionally, updates a classifier performance object,
CP, which accumulates the results of the classifier. The performance properties of a
classifier performance object are listed in the following table.

classperf, without input arguments, displays all the performance properties of a
classifier performance object.

CP = classperf(truelabels) creates and initializes an empty classifier performance
object. CP is the handle to the object. truelabels is a vector or cell array of strings
containing the true class labels for every observation. When used in a cross-validation
design experiment, truelabels must have the same size as the total number of
observations.

CP = classperf(truelabels, classout) creates CP using truelabels, then
updates CP using the classifier output, classout.

Tip This syntax is useful when you want to know the performance of a single validation.

classperf

CP = classperf(..., "Positive", PositiveValue, "Negative®,
NegativeValue) specifies the positive and negative labels to identify the target and
the control classes, respectively. These labels are used to compute clinical diagnostic test
performance.

If truelabels is a numeric vector, PositiveValue and NegativeValue must be
numeric vectors whose entries are subsets of grp2idx(truelabels). If truelabels
is a cell array of strings, PositiveValue and NegativeValue can be cell arrays

of strings or numeric vectors whose entries are subsets of grp2idx(truelabels).
PositiveValue defaults to the first class returned by grp2idx(truelabels), while
NegativeValue defaults to all other classes.

PositiveValue and NegativeValue must consist of disjoint sets of the labels used in
truelabels. For example, if

truelabels = [1 2213441333 2]

you could set

[1 2];
[3 4]1;

p
n

For example, if you have a data set with data from six samples: five different types
of cancer (ovarian, lung, prostate, skin, brain) and no cancer, then ClassLabels =
{"Ovarian®, "Lung®, "Prostate®, "Skin", "Brain®, "Healthy"}.

You could test a detector for lung cancer by using a PositiveValue of 2, and a
NegativeValue = [1 3 4 5 6].

Or you can test for any type of cancer by using PositiveValue = [1 2 3 4 5] and a
NegativeValue of 6.

In clinical tests, inconclusive values such as " " or NaN are counted as false negatives
for the computation of the specificity, and as false positives for the computation of the
sensitivity. That is, inconclusive results may decrease the diagnostic value of the test.
Tested observations for which truelabels is not within the union of PositiveValue
and NegativeValue are not considered. However, tested observations that result in a
class not covered by the vector truelabels are counted as inconclusive.

classperf(CP, classout) updates CP, the classifier performance object, with the
classifier output classout. classout must be the same size as truelabels, the vector

1-403

1 Alphabetical List

1-404

or cell array used to construct the classifier performance object. When classout is a cell
array of strings, an empty string, ", represents an inconclusive result of the classifier.
For numeric arrays, NaN represents an inconclusive result.

classperf(CP, classout, testidx) updates CP, the classifier performance object,
with the classifier output classout. classout has a smaller size than truelabels.
testidx is an index vector or a logical index vector of the same size as truelabels, the
vector or cell array used to construct the classifier performance object. testidx indicates
the observations that were used in the current validation.

Note: In the two previous syntaxes, you do not need to create a separate output variable
to update the classifier performance object, CP.

Properties of a Classifier Performance Object
You can access classifier performance object properties by using the get function
get(CP, "ControlClasses”)

or using dot notation

CP.ControlClasses

You cannot directly modify the classifier performance object properties by using the set
function, with the exception of the Label and Description properties.

Tip To modify properties, use either of the following syntaxes:

classperf(CP, classout)
classperf(CP, classout, testidx)

Property Description

Label String to label the classifier performance object.
Default is " ".

Description String to describe the classifier performance

object. Default is "

classperf

Property Description

ClassLabels Numeric vector or cell array of strings
specifying a unique set of class labels from
unique(truelabels).

GroundTruth Numeric vector or cell array of strings

that specifies the true class labels for each
observation. The number of elements =
NumberOfObservations.

NumberOfObservations Positive integer specifying the number of
observations in the study.

ControlClasses Indices to the ClassLabels vector or cell array,
indicating which classes to be considered as the
control or negative classes in a diagnostic test.

Tip You set the ControlClasses property
with the "Negative" property name/value
pair. If you do not specify the "Negative*®
property, ControlClasses defaults to all
classes other than the first class returned by
grp2idx(truelabels).

TargetClasses Indices to the ClassLabels vector or cell array,
indicating which classes to be considered as the
target or positive classes in a diagnostic test.

Tip You set the TargetClasses property with
the "Positive” property name/value pair. If
you do not specify the "Positive" property,
TargetClasses defaults to the first class
returned by grp2idx(truelabels).

ValidationCounter Positive integer specifying the number of
validations performed.

1-405

1 Alphabetical List

Property

Description

SampleDistribution

Numeric vector indicating how many times each
sample was considered in the validation.

For example, if you use resubstitution,
SampleDistribution is a vector of ones and
ValidationCounter = 1. If you have a ten-fold
cross-validation, SampleDistribution is also a
vector of ones, but Val idationCounter = 10.

Tip SampleDistribution is more useful when
doing Monte Carlo partitions of the test sets, as
this will help determine if all the samples are
being equally tested.

ErrorDistribution

Numeric vector indicating how many times each
sample was misclassified.

SampleDistributionByClass

Numeric vector indicating the frequency of the
true classes in the validation.

ErrorDistributionByClass

Numeric vector indicating the frequency of errors
for each class in the validation.

CountingMatrix

The classification confusion matrix. The

order of rows and columns is the same as
grp2idx(truelabels). Columns represent the
true classes, and rows represent the classifier
prediction. The last row in CountingMatrix
is reserved to count inconclusive results. There
are some families of classifiers that can reserve
the right to make a hard class assignment; this
can be based on metrics, such as the posterior
probabilities, or on how close a sample is to the
class boundaries.

CorrectRate

Correctly Classified Samples / Classified Samples

Note: Inconclusive results are not counted.

1-406

classperf

Property

Description

ErrorRate

Incorrectly Classified Samples / Classified
Samples

Note: Inconclusive results are not counted.

LastCorrectRate

The following equation applies only to
samples considered the last time the classifier
performance object was updated:

Correctly Classified Samples / Classified Samples

LastErrorRate

The following equation applies only to
samples considered the last time the classifier
performance object was updated:

Incorrectly Classified Samples / Classified
Samples

InconclusiveRate

Nonclassified Samples / Total Number of Samples

ClassifiedRate

Classified Samples / Total Number of Samples

Sensitivity

Correctly Classified Positive Samples / True
Positive Samples

Note: Inconclusive results that are true
positives are counted as errors for computing
Sensitivity (following a conservative
approach). This is the same as being incorrectly
classified as negatives.

Specificity

Correctly Classified Negative Samples / True
Negative Samples

Note: Inconclusive results that are true
negatives are counted as errors for computing
Specificity (following a conservative
approach). This is the same as being incorrectly
classified as positives.

1-407

1 Alphabetical List

1-408

Property

Description

PositivePredictiveValue

Correctly Classified Positive Samples / Positive
Classified Samples

Note: Inconclusive results are
classified as negatives when computing
PositivePredictiveVvalue.

NegativePredictiveValue

Correctly Classified Negative Samples / Negative
Classified Samples

Note: Inconclusive results are
classified as positives when computing
NegativePredictiveValue.

PositiveLikelihood

Sensitivity /(1 -Specificity)

NegativelLikelihood

(1 —Sensitivity)/Specificity

Prevalence

True Positive Samples / Total Number of Samples

DiagnosticTable

A 2-by-2 numeric array with diagnostic counts.
The first row indicates the number of samples
that were classified as positive, with the number
of true positives in the first column, and the
number of false positives in the second column.
The second row indicates the number of samples
that were classified as negative, with the number
of false negatives in the first column, and the
number of true negatives in the second column.

Correct classifications appear in the diagonal
elements, and errors appear in the off-diagonal
elements. Inconclusive results are considered
errors and counted in the off-diagonal elements.

For an illustration of a diagnostic table, see
below.

classperf

Example Diagnostic Table

In a cancer study of ten patients, suppose we get the following results:

Patient Classifier Output Has Cancer
1 Positive Yes
2 Positive Yes
3 Positive Yes
4 Positive No
5 Negative Yes
6 Negative No
7 Negative No
8 Negative No
9 Negative No
10 Inconclusive Yes

The diagnostic table would look as follows:

Classifier |
Output
Examples

True State
1 0
3 1

1+1 | 4

% Classify the fisheriris data with a K-Nearest Neighbor classifier
load fisheriris
c = knnclassify(meas,meas,species,4,"euclidean”, "Consensus"™);

cp = classperf(species,c)

get(cp)

% 10-fold cross-validation on the fisheriris data using linear
% discriminant analysis and the third column as only feature for

1-409

1 Alphabetical List

% classification
load fisheriris
indices crossvalind("Kfold"

,Species,10);

cp = classperf(species); % initializes the CP object

for i = 1:10
test = (indices
class

i); train = ~test;
classify(meas(test,3) ,meas(train,3),species(train));

% updates the CP object with the current classification results

classperf(cp,class, test)
end

cp.CorrectRate % queries for the correct classification rate

Cp =

biolearning.classperformance

Label :
Description:

ClassLabels
truelabels:

NumberOfObservations:
ControlClasses:
TargetClasses:
ValidationCounter:
SampleDistribution:
ErrorDistribution:
SampleDistributionByClass:
ErrorDistributionByClass:
CountingMatrix:
CorrectRate:

ErrorRate:
InconclusiveRate:
ClassifiedRate:
Sensitivity:
Specificity:
PositivePredictiveValue:
NegativePredictiveValue:
PositiveLikelihood:
NegativelLikelihood:
Prevalence:
DiagnosticTable:

ans =
0.9467

See Also

crossvalind | classify | grp2idx | knnclassify | svmclassify

1-410

: {3x1 cell}
[150x1 double]
150

[2x1 double]
1

1

[150x1 double]
[150x1 double]
[3x1 double]
[3x1 double]
[4x3 double]

.0733
-9267

-8900
.8197

-0909

.3333
2x2 double]

cleave

cleave

Cleave amino acid sequence with enzyme

Syntax

Fragments =
Fragments =
[Fragments,
[Fragments,
[Fragments,
cleave(...,

cleave(SeqAA, Enzyme)

cleave(SeqAA, PeptidePattern, Position)
CuttingSites] = cleave(...)

CuttingSites, Lengths] = cleave(...)
CuttingSites, Lengths, Missed] = cleave(...)
"PartialDigest®, PartialDigestValue, ...)

cleave(..., "MissedSites", MissedSitesValue, ...)

cleave(..., "Exception®, ExceptionValue, ...)

Input Arguments

SegAA One of the following:
String of single-letter codes specifying an amino acid
sequence.

+ Row vector of integers specifying an amino acid
sequence.

+ MATLAB structure containing a Sequence field that
contains an amino acid sequence, such as returned by
fastaread, getgenpept, genpeptread, getpdb, or
pdbread.

Examples: "ARN" or [1 2 3].

Enzyme String specifying a name or abbreviation code for an

enzyme or compound for which the literature specifies a
cleavage rule.

Tip Use the cleavelookup function to display the names
of enzymes and compounds in the cleavage rule library.

1-411

1 Alphabetical List

1-412

PeptidePattern

Short amino acid sequence to search for in SeqAA, a larger
sequence. PeptidePattern can be any of the following:

* Character string

* Vector of integers

“Regular expression”

Position

Integer from O to the length of the PeptidePattern, that
specifies a position in the PeptidePattern to cleave.

Note: Position O corresponds to the N terminal end of
PeptidePattern.

PartialDigestValue

Value from 0 to 1 (default) specifying the probability that a
cleavage site will be cleaved.

MissedSitesValue

Nonnegative integer specifying the maximum number
of missed cleavage sites. The output includes all
possible peptide fragments that can result from missing
MissedSitesValue or less cleavage sites. Default is O,
which is equivalent to an ideal digestion.

ExceptionValue

“Regular expression” specifying an exception rule to the
cleavage rule associated with Enzyme. By default, cleave
applies no exception rule.

Output Arguments

Fragments Cell array of strings representing the fragments from the
cleavage.
CuttingSites Numeric vector containing indices representing the

cleavage sites.

Note: The cleave function adds a O to the list, so

numel (CuttingSites)==numel (Fragments). Use
CuttingSites + 1 to point to the first amino acid of every
fragment respective to the original sequence.

cleave

Lengths Numeric vector containing the length of each fragment.

Missed Numeric vector containing the number of missed cleavage
sites for every peptide fragment.

Description

Fragments = cleave(SeqAA, Enzyme) cuts SegAA, an amino acid sequence, into
parts at the cleavage sites specific for Enzyme, a string specifying a name or abbreviation
code for an enzyme or compound for which the literature specifies a cleavage rule. It
returns Fragments, a cell array of strings representing the fragments from the cleavage.

Tip Use the cleavelookup function to display the names of enzymes and compounds in
the cleavage rule library.

Fragments = cleave(SeqAA, PeptidePattern, Position) cuts SeqAA, an amino
acid sequence, into parts at the cleavage sites specified by a peptide pattern and position.

[Fragments, CuttingSites] = cleave(...) returns a numeric vector containing
indices representing the cleavage sites.

Note: The cleave function adds a O to the list, so
numel (CuttingSites)==numel (Fragments). Use CuttingSites + 1 to point to the
first amino acid of every fragment respective to the original sequence.

[Fragments, CuttingSites, Lengths] = cleave(...) returns a numeric vector
containing the length of each fragment.

[Fragments, CuttingSites, Lengths, Missed] = cleave(...) returns a
numeric vector containing the number of missed cleavage sites for every fragment.

cleave(..., "PropertyName®, PropertyValue, ...) calls cleave with optional
properties that use property name/property value pairs. You can specify one or more
properties in any order. Enclose each PropertyName in single quotation marks. Each
PropertyName is case insensitive. These property name/property value pairs are as
follows:

1-413

1 Alphabetical List

1-414

cleave(..., "PartialDigest”, PartialDigestValue, ...) simulates a partial
digestion where PartialDigestValue is the probability of a cleavage site being cut.
PartialDigestValue is a value from O to 1 (default).

This table lists some common proteases and their cleavage sites.

Protease Peptide Pattern Position

Aspartic acid N D 1
Chymotrypsin [WYF1(?!P) 1
Glutamine C [ED](?!P) 1
Lysine C [K]1(?1P) 1
Trypsin [KRI(?!1P) 1
cleave(..., "MissedSites", MissedSitesValue, ...) returns all possible

peptide fragments that can result from missing MissedSitesValue or less cleavage
sites. MissedSitesValue is a nonnegative integer. Default is O, which is equivalent to
an ideal digestion.

cleave(..., "Exception®, ExceptionValue, ...) specifies an exception rule to
the cleavage rule associated with Enzyme. ExceptionValue is a “regular expression”.
By default, cleave applies no exception rule.

Examples

1 Retrieve a protein sequence from the GenPept database.

S = getgenpept("AAA59174%);
2 Cleave the sequence using proteinase K.
[partsPK, sitesPK, lengthsPK] = cleave(S.Sequence,
"proteinase K");
3 Display the indices of the cleavage sites, lengths, and sequences of the first ten
fragments.

for i1=1:10
fprintf("%5d%5d %s\n®,sitesPK(1), lengthsPK(1),partsPK{i})
end

0 3 MGT

cleave

3 6 GGRRGA
9 1
10 1
11 1
12 2
14 1
15 1
16 1
1

17

<><ruUr»r>r

4 Cleave the same sequence using one of trypsin's cleavage rules (cleave after K or R
when the next residue is not P).

[partsT, sitesT, lengthsT] = cleave(S.Sequence, "[KR](?!P)",1);

5 Display the indices of the cleavage sites, lengths, and sequences of the first ten
fragments.

for i=1:10
fprintf("%5d%5d %s\n",sitesT(i), lengthsT(i),partsT{i})
end

0 6 MGTGGR
6 1 R
7 34 GAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIR
41 5 NNLTR
46 21 LHELENCSVIEGHLQILLMFK
67 7 TRPEDFR
74 6 DLSFPK
80 12 LIMITDYLLLFR
92 8 VYGLESLK
100 10 DLFPNLTVIR

6 Cleave the same sequence using trypsin's cleavage rule, but allow for one missed
cleavage site.

[partsT2, sitesT2, lengthsT2, missedT2] = cleave(S.Sequence,
"trypsin®, "missedsites”,1);

7 Cleave the same sequence using trypsin's cleavage rule, except do not to cleave after
K when K is following by a D.

partsT3 = cleave(S.Sequence, "trypsin®, "exception®, "KD");

See Also

cleavelookup | rebasecuts | restrict | seqshowwords | regexp

1-415

1 Alphabetical List

cleavelookup

Find cleavage rule for enzyme or compound

Syntax

cleavelookup
cleavelookup("Code", CodeValue)
cleavelookup(“Name®, NameValue)

Arguments

CodeValue String specifying a code representing an abbreviation code
for an enzyme or compound. For valid codes, see the table
Cleave Lookup.

NameValue String specifying an enzyme or compound name. For valid
names, see the table Cleave Lookup.

Description

cleavelookup displays a table of abbreviation codes, cleavage positions, cleavage
patterns, and full names of enzymes and compounds for which cleavage rules

are specified by the cleavage rule library. For more information, see the ExPASy
PeptideCutter tool.

Cleave Lookup

Code Position Pattern Full Name
ARG-C 1 R ARG-C
proteinase
ASP-N 2 D ASP-N
endopeptidase
BNPS w BNPS-Skatole
CASP1 (?<=[FWYL]\W[HAT])D(?=[*PEDQKR]) Caspase 1

1-416

http://web.expasy.org/peptide_cutter/
http://web.expasy.org/peptide_cutter/

cleavelookup

Code Position Pattern Full Name
CASP2 1 (?<=DVA)D(?=["PEDQKR]) Caspase 2
CASP3 1 (?<=DMQ)D(?=["PEDQKR]) Caspase 3
CASP4 1 (?<=LEV)D(?=["PEDQKR]) Caspase 4
CASP5 1 (?<=[LW]EH)D Caspase 5
CASP6 1 (?<=VE[HIT])D(?=["PEDQKR]) Caspase 6
CASP7 1 (?<=DEV)D(?=["PEDQKR]) Caspase 7
CASP8 1 (?<=[IL]ET)D(?=["PEDQKR]) Caspase 8
CASP9 1 (?<=LEH)D Caspase 9
CASP10 1 (?<=1EA)D Caspase 10
CH-HI 1 (FY1C=["PD)O | (WC?=[""MP])) Chymotrypsin-

high specificity
CH-LO 1 ([FLYT1C=["PD) I (WC?=["VPI Chymotrypsin-
WMC=["PYD) | (H?=["DMPW])) low specificity
CLOST 1 R Clostripain
CNBR 1 M CNBR

ENTKIN 1 (?<=[DN][DN] [DN]DK Enterokinase
FACTXA 1 (?<=[AFGILTVM][DE]G)R Factor XA
FORMIC 1 D) Formic acid
GLUEND 1 E Glutamyl

endopeptidase
GRANB 1 (?<=IEP)D Granzyme B
HYDROX N(?=G) Hydroxylamine
10DOB W Todosobenzoic
acid
LYSC K Lysc
NTCB C NTCB
PEPS (C<=["HKRI[PD [RI1C=[FLWYI[*PII Pepsin
(?<=["HKR][PD [FLWY] (?=\w["P]D)) PH=1.3

1-417

1 Alphabetical List

Code Position Pattern Full Name
PEPS2 1 (?<=["HKRI[*"PD [R1C=[FLI1[PD)I Pepsin
((?<=["HKR] [P D [FL1?=\w["P]D)) PH > 2
PROEND 1 C<=[HKRDPC?=["PD) Proline
endopeptidase
PROTK 1 [AEFILTVWY] Proteinase K
STAPHP 1 (?<=["E]DE Staphylococcal
peptidase I
THERMO 1 ["DE] (?=[AFILMV]) Thermolysin
THROMB 1 (C<=\W\WG)R(?=G))| ((?<=[AFGILTWM] Thrombin
[AFGILTVWATP)R(?=["DE]["DED))
TRYPS 1 (C<=\W[KRIC=["PI)I (? Trypsin
<=W)K(?=P)) | ((?<=M)R(?=P))

cleavelookup("Code", CodeValue) displays the cleavage position, cleavage pattern,
and full name of the enzyme or compound specified by CodeValue, a string specifying an
abbreviation code.

cleavelookup("Name", NameValue) displays the cleavage position, cleavage pattern,

and abbreviation code of the enzyme or compound specified by NameValue, a string
specifying an enzyme or compound name.

Examples

Using cleavelookup with an Enzyme Name

Display the cleavage position, cleavage pattern, and abbreviation code of the enzyme
Caspase 1.

cleavelookup("name®, "CASPASE 17)
ans =

1 (?<=[FWYL]\W[HAT])D(?=[*PEDQKR]) CASP1

1-418

cleavelookup

Using cleavelookup with an Abbreviation Code

Display the cleavage position, cleavage pattern, and full name of the enzyme with a
abbreviation code of CASP1.

cleavelookup(®"code®, "CASP1")
ans =
1 (?<=[FWYL]\W[HAT])D(?=["PEDQKR]) CASPASE 1

See Also

cleave | rebasecuts | restrict

1-419

1 Alphabetical List

1-420

cluster (phytree)

Validate clusters in phylogenetic tree

Syntax

LeafClusters = cluster(Tree, Threshold)
[LeafClusters, NodeClusters] = cluster(Tree, Threshold)
[LeafClusters, NodeClusters, Branches] = cluster(Tree, Threshold)

cluster(..., "Criterion”, CriterionValue, ...)

cluster(..., "MaxClust®, MaxClustValue, ...)

cluster(..., "Distances", DistancesValue, ...)

Input Arguments

Tree Phylogenetic tree object created, such as created with the

phytree constructor function.

Threshold Scalar specifying a threshold value.

CriterionValue String specifying the criterion to determine the number of
clusters as a function of the species pairwise distances. Choices
are:

* "maximum® (default) — Maximum within cluster pairwise
distance (W,,,,). Cluster splitting stops when W,,,, <
Threshold.

+ "median® — Median within cluster pairwise distance (W,,.q).
Cluster splitting stops when W,,.q < Threshold.

* "average" — Average within cluster pairwise distance (W,,g).
Cluster splitting stops when W,,, < Threshold.

* "ratio” — Between/within cluster pairwise distance ratio,
defined as
BW,,; = (trace(B)/(k - 1)) / (trace(W)/(n - k))

where B and W are the between- and within-scatter matrices,

respectively. k is the number of clusters, and »n is the number

cluster (phytree)

of species in the tree. Cluster splitting stops when BW,,; >
Threshold.

* "gain® — Within cluster pairwise distance gain, defined as
Weain = (trace(W,)/ (trace(W) - 1) * (n - k - 1))
where W and W,;; are the within-scatter matrices for £ and
k - 1, respectively. k is the number of clusters, and » is the

number of species in the tree. Cluster splitting stops when
Weain < Threshold.

* "silhouette” — Average silhouette width (SW,,,). SWo,e
ranges from -1 to +1. Cluster splitting stops when SW,,,, >
Threshold. For more information, see si lhouette.

MaxClustValue

Positive integer specifying the maximum number of possible
clusters for the tested partitions. Default is the number of leaves
in the tree.

Tip When using the "maximum®, "median”, or "average*
criteria, set Threshold to [] (empty) to force cluster to
return MaxClustValue clusters. It does so because such metrics
monotonically decrease as k increases.

Tip When using the "ratio”, "gain”, or “silhouette*
criteria, you may find it hard to estimate an appropriate
Threshold in advance. Set Threshold to [] (empty) to find

the optimal number of clusters below MaxClustValue. Also, set
MaxClustValue to a small value to avoid expensive computation
due to testing all possible number of clusters.

DistancesValue

Matrix of pairwise distances, such as returned by the seqpdist
function, containing biological distances between each pair of
sequences. cluster substitutes this matrix for the patristic
distances in Tree. For example, this matrix can contain the real
sample pairwise distances.

1-421

1 Alphabetical List

Output Arguments

LeafClusters Column vector containing a cluster index for each species (leaf) in
Tree, a phylogenetic tree object.

NodeClusters Column vector containing the cluster index for each leaf node and
branch node in Tree.

Tip Use the LeafClusters or NodeClusters output vectors
with the handle returned by the plot method to modify graphic
elements of the phylogenetic tree object. For more information,
see “Examples” on page 1-423.

Branches Two-column matrix containing, for each step in the algorithm,
the index of the branch being considered and the value of the
criterion. Each row corresponds to a step in the algorithm. The
first column contains branch indices, and the second column
contains criterion values.

Tip To obtain the whole curve of the criterion versus the number
of clusters in Branches, set Threshold to [] (empty) and do not
specify a MaxClustValue. Be aware that computation of some
criteria can be computationally intensive.

Description

LeafClusters = cluster(Tree, Threshold) returns a column vector containing
a cluster index for each species (leaf) in a phylogenetic tree object. It determines the
optimal number of clusters as follows:

+ Starting with two clusters (k = 2), selects the partition that optimizes the criterion
specified by the "Criterion” property
* Increments £ by 1 and again selects the optimal partition

+ Continues incrementing & and selecting the optimal partition until a criterion value =
Threshold or k = the maximum number of clusters (that is, number of leaves)

* From all possible k values, selects the k value whose partition optimizes the criterion

1-422

cluster (phytree)

[LeafClusters, NodeClusters] = cluster(Tree, Threshold) returns a column
vector containing the cluster index for each leaf node and branch node in Tree.

[LeafClusters, NodeClusters, Branches] = cluster(Tree, Threshold)
returns a two-column matrix containing, for each step in the algorithm, the index of the
branch being considered and the value of the criterion. Each row corresponds to a step in
the algorithm. The first column contains branch indices, and the second column contains
criterion values.

cluster(..., "PropertyName®, PropertyValue, ...) callscluster with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:.

cluster(..., "Criterion”, CriterionValue, ...) specifies the criterion to
determine the number of clusters as a function of the species pairwise distances.

cluster(..., "MaxClust®, MaxClustValue, ...) specifies the maximum number
of possible clusters for the tested partitions. Default is the number of leaves in the tree.

cluster(..., "Distances”, DistancesValue, ...) substitutes the patristic
distances in Tree with a user-provided pairwise distance matrix.

Examples

Validate the clusters in a phylogenetic tree:

% Read sequences from a multiple alignment file into a MATLAB
% structure
gagaa = multialignread(“aagag-aln®);

% Build a phylogenetic tree from the sequences
gag_tree = seqgneighjoin(segpdist(gagaa), "equivar” ,gagaa);

% Validate the clusters in the tree and find the best partition
% using the "gain® criterion
[i.j] = cluster(gag_tree,[], criterion®,"gain”, "maxclust”,10);

% Use the returned vector of indices to color the branches of each
% cluster in a plot of the tree

1-423

1 Alphabetical List

h = plot(gag_tree);
set(h.BranchLines(j==2), "Color","b")
set(h.BranchLines(j==1),"Color~","r")

=I0]x]
]

File Edit View Insert Toolz Desktop Window Help

Do de | MRAMBDEL- 2|0 =D

B - SIVAGMGTTA
B { a - SIVAGM3
a SVmnd5440

: - snmmzs1

: Eu - svumz3o
—

: 1 Hivz

: {n 1 Hivz-mena

L i E— - Hiv-2uc

: — 1 sivsmsLazp

- a o 2Vlhoest

- = - SlIvmon

: 4 sivepz
L {n - ClVcpzUSs
: - HIVI-NDK
- q Eﬂ 1 Hiv-

L o - SIVcpzTAN1

More About

. “phytree object”

References

[1] Dudoit, S. and Fridlyan, J. (2002). A prediction-based resampling method for
estimating the number of clusters in a dataset. Genome Biology 3(7), research
0036.1-0036.21.

[2] Theodoridis, S. and Koutroumbas, K. (1999). Pattern Recognition (Academic Press),
pp. 434-435.

1-424

cluster (phytree)

[3] Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to
Cluster Analysis (New York, Wiley).

[4] Calinski, R. and Harabasz, J. (1974). A dendrite method for cluster analysis. Commun
Statistics 3, 1-27.

[6] Hartigan, J.A. (1985). Statistical theory in clustering. J Classification 2, 63—76.

See Also
phytree | plot | view | cluster | phytreeread | phytreeviewer | seqlinkage
| segneighjoin | seqpdist | silhouette

1-425

1 Alphabetical List

1-426

clustergram object

Object containing hierarchical clustering analysis data

Description

A clustergram object contains hierarchical clustering analysis data that you can view in a
heat map and dendrograms.

Create a clustergram object using the object constructor function clustergram. View a
graphical representation of the clustergram object in a heat map and dendrograms using
the view method.

The clustergram class is a subclass of the HeatMap class.

Method Summary
Following are methods of a clustergram object:

addTitle (clustergram)
Add title to clustergram
addXLabel (clustergram)
Label x-axis of clustergram
addYLabel (clustergram)
Label y-axis of clustergram
clusterGroup (clustergram)
Select cluster group
get (clustergram)
Retrieve information about clustergram
object
plot (clustergram)
Render clustergram and dendrograms for
clustergram object
set (clustergram)
Set property of clustergram object

clustergram object

view (clustergram)
View clustergram and dendrograms of
clustergram object

Property Summary

Properties for Clustering Analysis and Clustergram Creation

Property Name Description

Standardize String or number specifying the dimension for standardizing
the data values. This property transforms the standardized
values so that the mean is O and the standard deviation is 1
in the specified dimension. Choices are:

+ "column”® or 1 — Standardize along the columns of data.
* "row" or 2 — Standardize along the rows of data.

* "none"” or 3 (default) — Do not standardize.

Cluster String or number specifying the dimension for clustering the
values in the data. Choices are:

* "column® or 1 — Cluster along the columns of data only,
which results in clustered rows.

* "row" or 2 — Cluster along the rows of data only, which
results in clustered columns.

+ "all” or 3 (default) — Cluster along the columns of data,
then cluster along the rows of row-clustered data.

RowPDist String specifying the distance metric to pass to the pdist
function (Statistics Toolbox™ software) to calculate the
pairwise distances between rows. For information on choices,
see the pdist function. Default is "euclidean”.

Note: If the distance metric requires extra arguments,
then RowPDistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would use
{"minkowski*®, P}.

1-427

1 Alphabetical List

1-428

Property Name

Description

ColumnPDist

String specifying the distance metric to pass to the pdist
function (Statistics Toolbox software) to calculate the
pairwise distances between columns. For information on
choices, see the pdist function. Default is "euclidean”.

Note: If the distance metric requires extra arguments, then
ColumnPDistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would use
{"minkowski*, P}.

Linkage

String or two-element cell array of strings specifying the
linkage method to pass to the 1 inkage function (Statistics
Toolbox software) to create the hierarchical cluster tree for
rows and columns. If a two-element cell array of strings, this
property uses the first element for linkage between rows,
and the second element for linkage between columns. For
information on choices, see the linkage function. Default is
"average“.

Dendrogram

Scalar or two-element numeric vector or cell array of strings
specifying the "colorthreshold® property to pass to the
dendrogram function (Statistics Toolbox software) to create
the dendrogram plot. If a two-element numeric vector or
cell array, the first element is for the rows, and the second
element is for the columns. For more information, see the
dendrogram function.

OptimalLeafOrder

Enables or disables the optimal leaf ordering calculation,
which determines the leaf order that maximizes the
similarity between neighboring leaves. Choices are true
(enable) or False (disable). Default depends on the size
of Data, the matrix of data used to create the clustergram
object. If the number of rows or columns in Data exceeds
1500, default is False; otherwise, default is true.

Tip Disabling the optimal leaf ordering calculation can be
useful when working with large data sets, because this
calculation consumes a lot of memory and time.

clustergram object

Property Name

Description

Colormap

Either of the following:

* M-by-3 matrix of RGB values

+ Name or function handle of a function that returns a
colormap, such as redgreencmap or redbluecmap

Default is redgreencmap

DisplayRange

Positive scalar specifying the display range of standardized
values. Default is 3, which means there is a color variation
for values between —3 and 3, but values >3 are the same color
as 3, and values < -3 are the same color as —3.

For example, if you specify redgreencmap for the
"Colormap*® property, pure red represents values >
DisplayRangeValue, and pure green represents values <
-DisplayRangeValue.

Symmetric

Forces the color scale of the heat map to be symmetric
around zero. Choices are true (default) or False.

LogTrans

Controls the log, transform of the data from natural scale.
Choices are true or false (default).

DisplayRatio

Either of the following:

* Scalar

+ Two-element vector

This property specifies the ratio of space that the row and
column dendrograms occupy relative to the heat map. If
DisplayRatio is a scalar, it is used as the ratio for both
dendrograms. If DisplayRatio is a two-element vector,
the first element is used for the ratio of the row dendrogram
width to the heat map width, and the second element is
used for the ratio of the column dendrogram height to the
heat map height. The second element is ignored for one-
dimensional clustergrams. Default is 1/5.

ImputeFun

One of the following:

+ Name of a function that imputes missing data.

1-429

1 Alphabetical List

1-430

Property Name Description

+ Handle to a function that imputes missing data.

+ Cell array where the first element is the name of or
handle to a function that imputes missing data. The
remaining elements are property name/property value
pairs used as inputs to the function.

ShowDendrogram Shows and hides the dendrogram tree diagrams with the

clustergram. Choices are "on" (default) or "off".

Tip After displaying a clustergram in a Clustergram window,

click the Show Dendrogram button on the toolbar to

show and hide the dendrograms.

Properties for Group Labels

Property Name

Description

RowGroupMarker

Structure or structure array containing information for
annotating the groups (clusters) of rows determined by the
clustergram function. The structure or structures contain
the following fields. If a single structure, then the fields
contain a cell array of elements. If a structure array, then the
fields contain one element:

+ GroupNumber — Scalar specifying the row group number
to annotate.

* Annotation — String specifying text to annotate the row
group.

+ Collor — String or three-element vector of RGB values
specifying a color to label the row group. For more
information on specifying colors, see ColorSpec. If this
field is empty, default is "blue”.

ColumnGroupMarker

Structure or structure array containing information for
annotating the groups (clusters) of columns determined by
the clustergram function. The structure or structures
contain the following fields. If a single structure, then the

clustergram object

Property Name

Description

fields contain a cell array of elements. If a structure array,
then the fields contain one element:

* GroupNumber — Scalar specifying the column group
number to annotate.

+ Annotation — String specifying text to annotate the
column group.

+ Collor — String or three-element vector of RGB values
specifying a color to label the column group. For more
information on specifying colors, see ColorSpec. If this
field is empty, default is "blue*”.

Properties for Row and Column Labels

Property Name

Description

RowLabels

Vector of numbers or cell array of text strings to label the
rows in the dendrogram and heat map. Default is a vector
of values 1 through M, where M is the number of rows in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

ColumnLabels

Vector of numbers or cell array of text strings to label the
columns in the dendrogram and heat map. Default is a vector
of values 1 through M, where M is the number of columns in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

ColumnLabelsLocation

Read-only string specifying the location of the column labels.
For clustergram objects, it is always "bottom® (default).

RowLabelsLocation Read-only string specifying the location of the row labels. For
clustergram objects, it is always "right” (default).
RowLabelsColor Structure or structure array containing color information for

labeling the rows (y-axis) of the clustergram. The structure or
structures contain the following fields. If a single structure,
then the fields contain a cell array of elements. If a structure
array, then the fields contain one element:

+ Labels — String specifying a row label listed in the
RowLabels vector.

1-431

1 Alphabetical List

1-432

Property Name

Description

+ Colors — String or three-element vector of RGB values
specifying a color for the row label specified in the Labels
field. For more information on specifying colors, see
ColorSpec. If this field is empty, default colors are
assigned to the row label.

ColumnLabelsColor

Structure or structure array containing color information

for labeling the columns (x-axis) of the clustergram. The
structure or structures contain the following fields. If a single
structure, then the fields contain a cell array of elements. If a
structure array, then the fields contain one element:

+ Labels — String specifying a column label listed in the
ColumnLabels vector.

+ Colors — String or three-element vector of RGB values
specifying a color for the column label specified in the
Labels field. For more information on specifying colors,
see ColorSpec. If this field is empty, default colors are
assigned to the column label.

LabelsWithMarkers

Controls the display of colored markers instead of colored
text for the row labels and column labels. Choices are true
or Talse (default).

RowLabelsRotate

Numeric value in degrees rotation specifying the orientation
of row (y-axis) labels. Default is O degrees, which is
horizontal. Positive values cause counterclockwise rotation.

ColumnLabelsRotate

Numeric value in degrees rotation specifying the
orientation of column (x-axis) labels. Default is 90 degrees,
which is vertical. Values greater than 90 degrees cause
counterclockwise rotation.

Properties for Annotating Data
Property Name Description
Annotate Controls the display of intensity values on each area of the

heat map. Choices are true or false (default).

clustergram object

Property Name Description

Tip After displaying a clustergram in a Clustergram window,

click the Annotate @ button on the toolbar to show and
hide the intensity values.

AnnotPrecision Positive integer specifying the precision of the intensity
values when displayed on the heat map. Default is 2.

AnnotColor String or three-element vector of RGB values specifying a
color, which is used for the text of the intensity values when
displayed on the heat map. Default is "white". For more
information on specifying colors, see ColorSpec.

Examples

Note: The following examples use the get and set methods with property names and
values of a clustergram object. When supplying a PropertyName, be aware that it is case
sensitive.

Determining Properties and Property Values of a Clustergram Object
Display all properties and their current values of a clustergram object, CGobj:
get(CGobj)

Return all properties and their current values of CGobj, a clustergram object, to
CGstruct, a scalar structure, in which each field name is a property of a clustergram
object, and each field contains the value of that property:

CGstruct = get(CGobj)
Return the value of a specific property of a clustergram object, CGobj, using either:

PropertyValue = get(CGobj, “PropertyName=)

PropertyValue = CGobj .PropertyName

Return the value of specific properties of a clustergram object, CGobj:

1-433

1 Alphabetical List

1-434

[Property1Value, Property2Value, ...] = get(CGobj,
"PropertyiName®, “Property2Name®, ...)

Determining Possible Values of Clustergram Obiject Properties

Display possible values for all properties that have a fixed set of property values in a
clustergram object, CGobj:

set(CGobj)

Display possible values for a specific property that has a fixed set of property values in a
clustergram object, CGobj:

set(CGobj, T“PropertyName-®)

Specifying Properties of a Clustergram Obiject

Set a specific property of a clustergram object, CGobj, using either:
set(CGobj, "PropertyName®, PropertyValue)

CGobj .PropertyName = PropertyValue

Set multiple properties of a clustergram object, CGobj:

set(CGobj, “PropertyiName®, PropertyiValue,
"Property2Name*®, Property2Value, ...)

More About

. “HeatMap object”

See Also
clustergram | addXLabel | clusterGroup | plot | set | addTitle | addYLabel
| get | view | display

clustergram

clustergram

Compute hierarchical clustering, display dendrogram and heat map, and create
clustergram object

Syntax

CGobj = clustergram(Data)

CGobj = clustergram(Data, ..."RowLabels®, RowLabelsValue, ...)

CGobj = clustergram(Data, -.."ColumnLabels®, ColumnLabelsValue, ...)
CGobj = clustergram(Data, ..."Standardize®, StandardizeValue, ...)
CGobj = clustergram(Data, ..."Cluster®, ClusterValue, ...)

CGobj = clustergram(Data, -..."RowPDist", RowPDistValue, ...)

CGobj = clustergram(Data, -.."ColumnPDist®, ColumnPDistValue, ...)
CGobj = clustergram(Data, ..."Linkage", LinkageValue, ...)

CGobj = clustergram(Data, ..."Dendrogram®, DendrogramValue, ...)
CGobj = clustergram(Data, -..."OptimalLeafOrder"”,
OptimalleafOrderValue, ...)

CGobj = clustergram(Data, ..."Colormap®, ColormapValue, ...)

CGobj = clustergram(Data, ..."DisplayRange®, DisplayRangeValue, ...)
CGobj = clustergram(Data, ..."Symmetric®, SymmetricValue, ...)

CGobj = clustergram(Data, ..."LogTrans®, LogTransValue, ...)

CGobj = clustergram(Data, ..."DisplayRatio®, DisplayRatioValue, ...)
CGobj = clustergram(Data, -..."ImputeFun®, ImputeFunValue, ...)

CGobj = clustergram(Data, ... RowGroupMarker®,

RowGroupMarkerValue, ...)

CGobj = clustergram(Data, -..."ColumnGroupMarker®,
ColumnGroupMarkerValue, ...)

Arguments

Data DataMatrix object or numeric matrix of data. If

the matrix contains gene expression data, typically
each row corresponds to a gene and each column
corresponds to a sample.

1-435

1 Alphabetical List

1-436

RowLabelsValue

Vector of numbers or cell array of text strings to label
the rows in the dendrogram and heat map. Default

1s a vector of values 1 through M, where M is the
number of rows in Data.

Note: If the number of row labels is 200 or more, the
labels do not appear in the clustergram plot unless
you zoom in on the plot.

ColumnLabelsValue

Vector of numbers or cell array of text strings to label
the columns in the dendrogram and heat map. Default
1s a vector of values 1 through N, where N is the
number of columns in Data.

Note: If the number of column labels is 200 or more,
the labels do not appear in the clustergram plot unless
you zoom in on the plot.

StandardizeValue

String or number specifying the dimension for
standardizing the values in Data. The clustergram
function transforms the standardized values so that
the mean is O and the standard deviation is 1 in the
specified dimension. Choices are:

+ “column® or 1 — Standardize along the columns
of data.
* "row" or 2 — Standardize along the rows of data.

* "none” or 3 (default) — Do not standardize.

clustergram

ClusterValue

String or number specifying the dimension for
clustering the values in Data. Choices are:

+ "column” or 1 — Cluster along the columns of
data only, which results in clustered rows.

* "row" or 2 — Cluster along the rows of data only,
which results in clustered columns.

+ "all" or 3 (default) — Cluster along the columns
of data, then cluster along the rows of row-
clustered data.

RowPDistValue

String, function handle, or cell array specifying

the distance metric to pass to the pdist function
(Statistics Toolbox software) to calculate the pairwise
distances between rows. For information on choices,
see the pdist function. Default is "euclidean®.

Note: If the distance metric requires extra arguments,
then RowistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would
use {"minkowski®, P}.

ColumnPDistValue

String, function handle, or cell array specifying

the distance metric to pass to the pdist function
(Statistics Toolbox software) to use to calculate the
pairwise distances between columns. For information
on choices, see the pdist function. Default is
“"euclidean”.

Note: If the distance metric requires extra arguments,
then ColumnPDistValue is a cell array. For example,
to use the Minkowski distance with exponent P, you
would use {"minkowski*®, P}.

1-437

1 Alphabetical List

LinkageValue

String or two-element cell array of strings specifying
the linkage method to pass to the 1 inkage function
(Statistics Toolbox software) to create the hierarchical
cluster tree for rows and columns. If a two-element
cell array of strings, the clustergram function uses
the first element for linkage between rows, and the
second element for linkage between columns. For
information on choices, see the 1inkage function.
Default is "average”.

Tip To specify the linkage method for only one
dimension, set the other dimension to " *.

DendrogramValue

Scalar or two-element numeric vector or cell array of
strings specifying the "colorthreshold® property to
pass to the dendrogram function (Statistics Toolbox
software) to create the dendrogram plot. If a two-
element numeric vector or cell array, the first element
is for the rows, and the second element is for the
columns. For more information, see the dendrogram
function.

Tip To specify the "colorthreshold® property for
only one dimension, set the other dimension to " *.

OptimallLeafOrderValue

Enables or disables the optimal leaf ordering
calculation, which determines the leaf order that
maximizes the similarity between neighboring leaves.
Choices are true (enable) or False (disable). Default
depends on the size of Data. If the number of rows

or columns in Data exceeds 1500, default is false;
otherwise, default is true.

Note: Disabling the optimal leaf ordering calculation
can be useful when working with large data sets,
because this calculation consumes a lot of memory
and time.

1-438

clustergram

ColormapValue

Either of the following:

* M-by-3 matrix of RGB values

+ Name of or handle to a function that returns
a colormap, such as redgreencmap or
redbluecmap

Default is redgreencmap, in which red represents
values above the mean, black represents the mean,
and green represents values below the mean of a row
(gene) across all columns (samples).

DisplayRangeValue

Positive scalar that specifies the display range of
standardized values. Default is 3, which means there
1s a color variation for values between —3 and 3, but
values >3 are the same color as 3, and values < -3 are
the same color as —3.

For example, if you specify redgreencmap for the
"Colormap*® property, pure red represents values
>DisplayRangeValue, and pure green represents
values <-DisplayRangeValue.

SymmetricValue

Forces the color scale of the heat map to be symmetric
around zero. Choices are true (default) or False.

LogTransValue

Controls the logy transform of Data from natural
scale. Choices are true or false (default).

1-439

1 Alphabetical List

1-440

DisplayRatioValue

Either of the following:

+ Scalar

+ Two-element vector

This property specifies the ratio of space that the
row and column dendrograms occupy relative to the
heat map. If DisplayRatioValue is a scalar, the
clustergram function uses it as the ratio for both
dendrograms. If DisplayRatioValue is a two-
element vector, the clustergram function uses the
first element for the ratio of the row dendrogram
width to the heat map width, and the second element
for the ratio of the column dendrogram height to the
heat map height. The clustergram function ignores
the second element for one-dimensional clustergrams.
Default is 1/5.

ImputeFunValue

One of the following:

+ Name of a function that imputes missing data.
* Handle to a function that imputes missing data.

+ Cell array where the first element is the name
of or handle to a function that imputes missing
data. The remaining elements are property name/
property value pairs used as inputs to the function.

Caution If data points are missing, use the
" ImputeFun® property. Otherwise, the clustergram
function errors.

clustergram

RowGroupMarkerValue

Structure or structure array containing information
for annotating the groups (clusters) of rows
determined by the clustergram function. The
structure or structures contain the following fields.

If a single structure, then the fields contain a cell
array of elements. If a structure array, then the fields
contain a single element.

+ GroupNumber — Scalar specifying the row group
number to annotate.

+ Annotation — String specifying text to annotate
the row group.

+ Collor — String or three-element vector of RGB
values specifying a color, which the clustergram
function uses to label the row group. For more
information on specifying colors, see ColorSpec. If
this field is empty, default is "blue”.

ColumnGroupMarkerValue

Structure or structure array containing information
for annotating the groups (clusters) of columns
determined by the clustergram function. The
structure or structures contain the following fields.

If a single structure, then the fields contain a cell
array of elements. If a structure array, then the fields
contain a single element.

* GroupNumber — Scalar specifying the column
group number to annotate.

+ Annotation — String specifying text to annotate
the column group.

+ Color — String or three-element vector of RGB
values specifying a color, which the clustergram
function uses to label the column group. For more
information on specifying colors, see ColorSpec. If
this field is empty, default is "blue”.

1-441

1 Alphabetical List

1-442

Description

CGobj = clustergram(Data) performs hierarchical clustering analysis on the
values in Data, a DataMatrix object or numeric matrix. It creates CGobj, an object
containing the analysis data, and displays a dendrogram and heat map. It uses
hierarchical clustering with Euclidean distance metric and average linkage to generate
the hierarchical tree. It clusters first along the columns (producing row-clustered data),
and then along the rows in the matrix Data. If Data contains gene expression data,
typically the rows correspond to genes and the columns correspond to samples.

CGobj = clustergram(Data, -..."PropertyName®, PropertyValue, ...) calls
clustergram with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Enclose each PropertyName in single
quotation marks. Each PropertyName is case insensitive. These property name/property
value pairs are as follows:

CGobj = clustergram(Data, -..."RowLabels", RowLabelsValue, ...) uses
the contents of RowLabelsValue, a vector of numbers or cell array of text strings, as
labels for the rows in the dendrogram and heat map. Default is a vector of values 1
through M, where M is the number of rows in Data.

CGobj = clustergram(Data, -..."ColumnLabels®, ColumnLabelsValue, ...)
uses the contents of ColumnLabelsValue, a vector of numbers or cell array of text
strings, as labels for the columns in the dendrogram and heat map. Default is a vector of
values 1 through M, where M is the number of columns in Data.

CGobj = clustergram(Data, ..."Standardize®, StandardizeValue, ...)
specifies the dimension for standardizing the values in Data. The clustergram function
transforms the standardized values so that the mean is O and the standard deviation is 1
in the specified dimension. StandardizeValue can be:

+ "column® or 1 — Standardize along the columns of data.
* "row" or 2 (default) — Standardize along the rows of data.
* "none"” or 3 — Do not standardize.

CGobj = clustergram(Data, ..."Cluster®, ClusterValue, ...) specifies the
dimension for clustering the values in Data. ClusterValue can be:

+ "column” or 1 — Cluster along the columns of data only, which results in clustered
rOws.

* "row" or 2 — Cluster along the rows of data only, which results in clustered columns.

clustergram

+ T"all~ or 3 (default) — Cluster along the columns of data, then cluster along the rows
of row-clustered data.

CGobj = clustergram(Data, -..."RowPDist", RowPDistValue, ...) specifies
the distance metric to pass to the pdist function (Statistics Toolbox software) to use
to calculate the pairwise distances between rows. RowPDistValue is a string, function
handle, or cell array. For information on choices, see the pdist function. Default is
"euclidean”.

CGobj = clustergram(Data, -..."ColumnPDist®, ColumnPDistValue, ...)
specifies the distance metric to pass to the pdist function (Statistics Toolbox software)
to use to calculate the pairwise distances between columns. ColumnPDistValue is a
string, function handle, or cell array. For information on choices, see the pdist function.
Default is "euclidean®.

Note: If the distance metric requires extra arguments, then RowPDistValue or
ColumnPDistValue is a cell array. For example, to use the Minkowski distance with
exponent P, you would use {"minkowski®, P}.

CGobj = clustergram(Data, ..."Linkage", LinkageValue, ...) specifies the
linkage method to pass to the Iinkage function (Statistics Toolbox software) to use to
create the hierarchical cluster tree for rows and columns. LinkageValue is a string or
two-element cell array of strings. If a two-element cell array of strings, the clustergram
function uses first element for linkage between rows, and the second element for linkage
between columns. For information on choices, see the 1 inkage function. Default is
"average”.

Tip To specify the linkage method for only one dimension, set the other dimension to " *.

CGobj = clustergram(Data, ..."Dendrogram®, DendrogramValue, ...)
specifies the "colorthreshold” property to pass to the dendrogram function
(Statistics Toolbox software) to create the dendrogram plot. DendrogramValue

is a scalar or two-element numeric vector or cell array of strings that specifies the
"colorthreshold” property. If a two-element numeric vector or cell array, the first
element is for the rows, and the second element is for the columns. For more information,
see the dendrogram function.

1-443

1 Alphabetical List

1-444

Tip To specify the "colorthreshold”® property for only one dimension, set the other
dimension to " ".

CGobj = clustergram(Data, ..."OptimalLeafOrder"®,
OptimallLeafOrderValue, ...) enables or disables the optimal leaf ordering
calculation, which determines the leaf order that maximizes the similarity between
neighboring leaves. Choices are true (enable) or false (disable). Default depends on the
size of Data. If the number of rows or columns in Data exceeds 1500, default is False;
otherwise, default is true.

Tip Disabling the optimal leaf ordering calculation can be useful when working with
large data sets, because this calculation consumes a lot of memory and time.

CGobj = clustergram(Data, ..."Colormap", ColormapValue, ...) specifies
the colormap to use to create the clustergram. The colormap controls the colors used

to display the heat map. ColormapValue is either an M-by-3 matrix of RGB values or
the name of or handle to a function that returns a colormap, such as redgreencmap or
redbluecmap. Default is redgreencmap.

Note: In redgreencmap, red represents values above the mean, black represents the
mean, and green represents values below the mean of a row (gene) across all columns
(samples). In redbluecmap, red represents values above the mean, white represents
the mean, and blue represents values below the mean of a row (gene) across all columns
(samples).

CGobj = clustergram(Data, ... DisplayRange®, DisplayRangeValue, ...)
specifies the display range of standardized values. DisplayRangeValue must be a
positive scalar. Default is 3, which means there is a color variation for values between —3
and 3, but values >3 are the same color as 3, and values < -3 are the same color as —3.

For example, if you specify redgreencmap for the "Colormap® property, pure
red represents values > DisplayRangeValue, and pure green represents values <
—-DisplayRangeValue.

clustergram

CGobj = clustergram(Data, ..."Symmetric®, SymmetricValue, ...) controls
whether the color scale of the heat map is symmetric around zero. SymmetricValue can
be true (default) or False.

CGobj = clustergram(Data, -..."LogTrans", LogTransValue, ...) controls
the log, transform of Data from natural scale. Choices are true or false (default).

CGobj = clustergram(Data, ..."DisplayRatio”, DisplayRatioValue, ...)
specifies the ratio of space that the row and column dendrograms occupy relative to the
heat map. If DisplayRatioValue is a scalar, the clustergram function uses it as

the ratio for both dendrograms. If DisplayRatioValue is a two-element vector, the
clustergram function uses the first element for the ratio of the row dendrogram width
to the heat map width, and the second element for the ratio of the column dendrogram
height to the heat map height. The clustergram function ignores the second element for
one-dimensional clustergrams. Default is 1/5.

CGobj = clustergram(Data, ..."ImputeFun®, ImputeFunValue, ...)
specifies a function and optional inputs that impute missing data. ImputeFunValue can
be any of the following:

+ Name of a function that imputes missing data.

* Handle to a function that imputes missing data.

* Cell array where the first element is the name of or handle to a function that imputes
missing data. The remaining elements are property name/property value pairs used
as inputs to the function.

Tip If data points are missing, use the " ImputeFun® property. Otherwise, the
clustergram function errors.

CGobj = clustergram(Data, -.."RowGroupMarker"®,

RowGroupMarkerValue, ...) specifies a structure or structure array containing
information for annotating the groups (clusters) of rows determined by the clustergram
function.

CGobj = clustergram(Data, -..."ColumnGroupMarker®,
ColumnGroupMarkerValue, ...) specifies a structure or structure array containing
information for annotating the groups of columns determined by the clustergram
function.

1-445

1 Alphabetical List

1-446

Tip If necessary, view row labels (right) and column labels (bottom) by clicking the Zoom

o
In __*. button on the toolbar to zoom the clustergram.

Examples

The following example uses data from an experiment (DeRisi et al., 1997) that used DNA
microarrays to study temporal gene expression of almost all genes in Saccharomyces
cerevisiae (yeast) during the metabolic shift from fermentation to respiration. Expression
levels were measured at seven time points during the diauxic shift.

1 Load the MAT-file, provided with Bioinformatics Toolbox, that contains filtered yeast
data.

load Tilteredyeastdata

This MAT-file includes three variables, which are added to the MATLABWorkspace:
yeastvalues — A matrix of gene expression data from Saccharomyces cerevisiae
(yeast) during the metabolic shift from fermentation to respiration

+ genes — A cell array of GenBank accession numbers for labeling the rows in
yeastvalues

+ times — A vector of time values for labeling the columns in yeastvalues

2 Create a clustergram object and display the heat map from the gene expression data
in the first 30 rows of the yeastvalues matrix and standardize along the rows of
data.

cgo = clustergram(yeastvalues(1:30,:),"Standardize”, "Row")
Clustergram object with 30 rows of nodes and 7 columns of nodes.

clustergram

u Clustergram 1 E'@

File Tools Desktop Window Help k]l

R0« 0RED

h?%]
-%a

3 Use the set method and the genes and times vectors to add meaningful row and
column labels to the clustergram.

L S T T U

(¥e))

set(cgo, "RowLabels”,genes(1:30), "ColumnLabels”, times)

1-447

1 Alphabetical List

1-448

u Clustergram 1 E'@

File Tools Desktop Window Help k]l

@ RE ST? @@

0.47(%alue:-0.10,Ztd:0 95
W CLOBOC
2035

Add a color bar to the clustergram by clicking the Insert Colorbar D button on the
toolbar.

-2

View a data tip containing the intensity value, row label, and column label for

L
a specific area of the heat map by clicking the Data Cursor | 'EI | button on the
toolbar, then clicking an area in the heat map. To delete this data tip, right-click it,
then select Delete Current Datatip.

Display intensity values for each area of the heat map by clicking the Annotate

@ button on the toolbar. Click the Annotate button again to remove the intensity
values.

clustergram

Tip If the amount of data is large enough, the cells within the clustergram are too
small to display the intensity annotations. Zoom the clustergram to see the intensity

annotations.

Remove the dendrogram tree diagrams from the figure by clicking the Show

Dendrogram

display the dendrograms.

| button on the toolbar. Click the Show Dendrogram button again to

Use the get method to display the properties of the clustergram object, cgo:

get(cgo)

Cluster:
RowPDist:
ColumnPDist:
Linkage:

“ALL"
{"Euclidean"}
{"Euclidean"}
{"Average"}

Dendrogram: {}

OptimalLeafOrder:
LogTrans:
DisplayRatio:
RowGroupMarker :
ColumnGroupMarker :
ShowDendrogram:
ColumnLabels:
RowLabels:
ColumnLabelsRotate:
RowLabelsRotate:
ColumnLabelsLocation:
RowLabelsLocation:
Standardize:
Symmetric:
DisplayRange:
Colormap:

1
0
[0.2000 0.2000]
]
(]
“on-
{~9.5" -
{30x1 cell}
90
0
"bottom”
"right”
“ROW*®
1

0" "11.5" "13.5" *"15.5°

3
[11x3 double]

ImputeFun: []

Annotate:
AnnotPrecision:
AnnotColor:
ColumnLabelsColor:
RowLabelsColor:
LabelsWithMarkers:

"off"

Slmlm| < N

"20.5" "18.5"}

Change the clustering parameters by changing the linkage method and changing the
color of the groups of nodes in the dendrogram whose linkage is less than a threshold

of 3.

set(cgo, "Linkage*", "complete”, "Dendrogram”,3)

1-449

1 Alphabetical List

n Clustergram 1 E'@

File Tools Desktop Window Help k]l

8RR [02E

0 o w0 w w0 0 w
(7] — o L (o] o
— — —] —

10 Place the cursor on a branch node in the dendrogram to highlight (in blue) the group
associated with it. Press and hold the mouse button to display a data tip listing the
group number and the nodes (genes or samples) in the group.

2

-2

1-450

clustergram

11

n Clustergram 1

2
15
1
05
i
05
-1
15
&

File Tools Desktop Window Help

N)Y =)

Group 18 (3 nodes)
Y OROZ2TN
WALOZEC
W ALOET W

Right-click a branch node in the dendrogram to display a menu of options.

1-451

1 Alphabetical List

1-452

File Tools Desktop Window Help

8RR (DR

’—!_‘;I—!_'ﬁ!__\

0. Set Group Color
Print Group te Figure
’ Copy Group to Mew Clustergram
=l Export Group to Workspace

Export Group Info to Workspace

w : w o 0
(7] — o L (o]
— — —]

185

u Clustergram 1 E'@

The following options are available:

+ Set Group Color — Change the cluster group color.

Print Group to Figure — Print the group to a Figure window.

Copy Group to New Clustergram — Copy the group to a new Clustergram

window.

MATLAB Workspace.

column groups.

Export Group to Workspace — Create a clustergram object of the group in the

Export Group Info to Workspace — Create a structure containing information
about the group in the MATLAB Workspace. The structure contains these fields:

GroupNames — Cell array of text strings containing the names of the row or

clustergram

+ RowNodeNames — Cell array of text strings containing the names of the row

nodes.

+ ColumnNodeNames — Cell array of text strings containing the names of the

column nodes.

+ ExprValues — An M-by-N matrix of intensity values, where M and N are
the number of row nodes and of column nodes respectively. If the matrix
contains gene expression data, typically each row corresponds to a gene and
each column corresponds to sample.

12 Create a clustergram object in the MATLAB Workspace of Group 18 by right-clicking
it, then selecting Export Group to Workspace. In the Export to Workspace dialog
box, type Groupls8, then click OK.

13 Use the get method to display the properties of the clustergram object, Group18.

get(Groupl8)

Cluster:

RowPDist:
ColumnPDist:
Linkage:
Dendrogram:
OptimalLeafOrder:
LogTrans:
DisplayRatio:
RowGroupMarker :
ColumnGroupMarker :
ShowDendrogram:
ColumnLabels:
RowLabels:
ColumnLabelsRotate:
RowLabelsRotate:
ColumnLabelsLocation:
RowLabelsLocation:
Standardize:
Symmetric:
DisplayRange:
Colormap:
ImputeFun:
Annotate:
AnnotPrecision:
AnnotColor:
ColumnLabelsColor:
RowLabelsColor:
LabelsWithMarkers:

“ALL"
{"Euclidean"}
{"Euclidean"}
"complete”

3

1

0

[0.2000 0.2000]
0

[l

“on*

{" 9.5" - 0"
{3x1 cell}

90

0

"bottom*
"right”

“ROW*®

1

3

[11x3 double]
[l

"off"

2

w
0
01
0

"11.5% r"13.5" F15.5"

"20.5" "18.5"}

14 Use the view method to view the clustergram (dendrograms and heat map) of the
clustergram object, Group18.

view(Groupl8)

1-453

1 Alphabetical List

n Clustergram 2 E'@

File Tools Desktop Window Help k]l

N 0E |0 E

YARDZTYY
= YALOZBC
ALOB T
0 o w0 w0 w0 w w0
(7] — o o o) oo
— — — o —

15 View all the gene expression data using a diverging red and blue colormap and
standardize along the rows of data.

cgo_all = clustergram(yeastvalues, "Colormap”,redbluecmap, "Standardize”, "Row")
Clustergram object with 614 rows of nodes and 7 columns of nodes.

1-454

clustergram

File

u Clustergram 3 EI

Tocls Desktop Window Help k]l

NEEY T L)

!

i Tl

|

E—
o =+ ') w [

16 Create structure arrays to specify marker colors and annotations for two groups of
rows (510 and 593) and two groups of columns (4 and 5).

17

rm =

cm =

struct("GroupNumber*,{510,593%}, "Annotation” ,{"A","B"}, ...
“Color™,{"b"," m"});
struct("GroupNumber® ,{4,5}, "Annotation” ,{"Timel","Time2"}, ...
"Color",{[1 1 0],[0.6 0.6 1]});

Use the "RowGroupMarker® and "ColumnGroupMarker® properties to add the
color markers and annotations to the clustergram.

set(cgo_all, "RowGroupMarker” ,rm, "ColumnGroupMarker® ,cm)

1-455

1 Alphabetical List

1-456

n Clustergram 3

Lo o5

File Tools Desktop Window Help k]l

NEEY T

-;:I’-"."Il!ﬂl‘.“ 'I = A

- m—
b

—
==

More About

18 Click the color column markers to display the annotations.

“clustergram object”

References

14863-8.

[1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for
hierarchical clustering. Bioinformatics 17, Suppl 1:522 — 9. PMID: 11472989.

[2] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis
and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95,

clustergram

[3] DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science 278, 680—686s.

[4] Golub, T.R., Slonim, D.K., and Tamayo, P., et al. (1999). Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring.
Science 286 (15), 531-5317.

See Also
redbluecmap | addXLabel | clustergroup | plot | set | redgreencmap |
addTitle | addYLabel | get | view | cluster | dendrogram | linkage | pdist

1-457

1 Alphabetical List

1-458

clusterGroup (clustergram)

Select cluster group

Syntax

clusterGroup(CGobj1, GroupIndex, Dim)

CGobj2 = clusterGroup(CGobj1, GroupIndex, Dim)

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, "InfoOnly",
InfoOnlyValue)

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, “Color-,
ColorValue)

Input Arguments

CGobj 1 Clustergram object created with the function clustergram.
GroupIndex Positive integer specifying a group index for a cluster in CGobj 1.
Dim String specifying the dimension of the cluster group. Choices are

"column® or "row".

InfoOnlyValue Controls the return of a structure (instead of a clustergram object)
containing information about the cluster group. Choices are true
or Talse (default).

ColorValue Color to highlight the dendrogram of the selected cluster group.
Specify the color with one of the following:

* Three-element numeric vector of RGB values

* String containing a predefined single-letter color code

+ String containing a predefined color name

For example, to use cyan, enter [0 1 1], "c", or "cyan”. For
more information on specifying colors, see ColorSpec.

clusterGroup (clustergram)

Output Arguments

CGobj2 Clustergram object created from the selected cluster group in
CGobj1.

CGStruct Structure containing information about the cluster group in the
following fields:

* GroupNames — Cell array of text strings containing the names
of the row or column groups in the selected cluster group.

* RowNodeNames — Cell array of text strings containing the
names of the row nodes in the selected cluster group.

+ ColumnNodeNames — Cell array of text strings containing the
names of the column nodes in the selected cluster group.

* ExprValues — An M-by-N matrix of intensity values, where
M and N are the number of row nodes and of column nodes
respectively in the selected cluster group. If the matrix contains
gene expression data, typically each row corresponds to a gene
and each column corresponds to a sample.

Description

clusterGroup(CGobj1, GroupIndex, Dim) selects and highlights a cluster group in
the Clustergram window, specified by a clustergram object, group index, and dimension.

CGobj2 = clusterGroup(CGobj1, GroupIndex, Dim) creates a clustergram
object from the specified cluster group. This syntax is equivalent to selecting the Export
Group to Workspace command from the context menu after right-clicking a group in
the Clustergram window.

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, "InfoOnly"®,
InfoOnlyValue) controls the return of a structure (instead of a clustergram object)
containing information about the cluster group. Choices are true or false (default).
Setting this property to true is equivalent to selecting the Export Group Info

to Workspace command from the context menu after right-clicking a group in the
Clustergram window.

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, "“Color™,
ColorValue) specifies a color for the dendrogram of the selected cluster group.

1-459

1 Alphabetical List

Examples

Select and highlight column cluster Group 4 in the Clustergram window, from the
clustergram object created in the first two steps of the “Examples” on page 1-446 section
of the clustergram function reference page.

clusterGroup(cgo,4, “column®)

) Clustergram 1 _|EI|£|
File Tools Desktop Window Help o

S E 0Bl
More About

. “clustergram object”

T o e S A

See Also

clustergram | set | view | get

1-460

codonbias

codonbias

Calculate codon frequency for each amino acid coded for in nucleotide sequence

Syntax
CodonFreq = codonbias(SeqNT)
CodonFreq = codonbias(SegNT, ..."GeneticCode",
GeneticCodeValue,
CodonFreq = codonbias(SeqNT, ..."Frame®, FrameValue, ...)
CodonFreq = codonbias(SeqgNT, ..."Reverse®, ReverseValue, ...)
CodonFreq = codonbias(SegNT, ..."Ambiguous®, AmbiguousValue, ...)
CodonFreq = codonbias(SegNT, ..."Pie", PieValue, ...)
Input Arguments
SegNT One of the following:
+ String of codes specifying a nucleotide sequence
+ Row vector of integers specifying a nucleotide sequence
+ MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned
by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank
Valid characters include A, C, G, T, and U.
codonbias does not count ambiguous nucleotides or gaps.
GeneticCodeValue Integer or string specifying a genetic code number or
code name from the table Genetic Code. Default is 1 or
"Standard".
Tip If you use a code name, you can truncate the name to
the first two letters of the name.

1-461

1 Alphabetical List

1-462

FrameValue

Integer specifying a reading frame in the nucleotide
sequence. Choices are 1 (default), 2, or 3.

ReverseValue

Controls the return of the codon frequency for the reverse
complement sequence of the nucleotide sequence specified
by SegNT. Choices are true or false (default).

AmbiguousValue

String specifying how to treat codons containing
ambiguous nucleotide characters (R, Y, K,M, S, W, B, D, H, V,
or N). Choices are:

+ "ignore” (default) — Skips codons containing
ambiguous characters

* "prorate® — Counts codons containing ambiguous
characters and distributes them proportionately in the
appropriate codon fields. For example, the counts for
the codon ART are distributed evenly between the AAT
and AGT fields.

+ "warn® — Skips codons containing ambiguous
characters and displays a warning.

PieValue

Controls the creation of a figure of 20 pie charts, one for
each amino acid. Choices are true or false (default).

Output Arguments

CodonFreq MATLAB structure containing a field for each amino acid,
each of which contains the associated codon frequencies as
percentages.

Description

Many amino acids are coded by two or more nucleic acid codons. However, the probability
that a specific codon (from all possible codons for an amino acid) is used to code an amino
acid varies between sequences. Knowing the frequency of each codon in a protein coding
sequence for each amino acid is a useful statistic.

codonbias

CodonFreq = codonbias(SeqNT) calculates the codon frequency in percent for
each amino acid coded for in SegNT, a nucleotide sequence, and returns the results in
CodonFreq, a MATLAB structure containing a field for each amino acid.

CodonFreq = codonbias(SegNT, ..."PropertyName®, PropertyValue, ...)
calls codonbias with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

CodonFreq = codonbias(SegNT, ..."GeneticCode",

GeneticCodeValue, ...) specifies a genetic code. Choices for GenetidCodeValue
are an integer or string specifying a code number or code name from the table Genetic
Code. If you use a code name, you can truncate the name to the first two characters of the
name. Default is 1 or "Standard”.

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

CodonFreq = codonbias(SegNT, ..."Frame®, FrameValue, ...) calculatesthe
codon frequency in the reading frame specified by FrameValue, which can be 1 (default),
2, or 3.

CodonFreq = codonbias(SegNT, ..."Reverse”, ReverseValue, ...) controls
the return of the codon frequency for the reverse complement of the nucleotide sequence
specified by SegNT. Choices are true or false (default).

CodonFreq = codonbias(SegNT, ..."Ambiguous®, AmbiguousValue, ...)
specifies how to treat codons containing ambiguous nucleotide characters. Choices are
"ignore” (default), "prorate”, and "warn-.

CodonFreq = codonbias(SegNT, ..."Pie", PieValue, ...) controlsthe
creation of a figure of 20 pie charts, one for each amino acid. Choices are true or false
(default).

Genetic Code

Code Number Code Name
1 Standard

1-463

1 Alphabetical List

Code Number Code Name

2 Vertebrate Mitochondrial
3 Yeast Mitochondrial
4 Mold, Protozoan, Coelenterate Mitochondrial, and

Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

Ciliate, Dasycladacean, and Hexamita Nuclear

Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial
Examples

Calculate Codon Frequency for Each Amino Acid

Import a nucleotide sequence from the GenBank database into the MATLAB software.
For example, retrieve the DNA sequence that codes for a human insulin receptor.

S = getgenbank("M10051%);

Calculate the codon frequency for each amino acid coded for by the DNA sequence, and
then plot the results.

cb = codonbias(S.Sequence, "PIE" ,true)

1-464

codonbias

J Figure 1 _ o] x|

File Edit View Insert Tools Desktop Window Help ~

IR

Arg Asn

Ala Asp Cys
GC, CT AGEGT -
3 . .AT .GT
AG
T GA TG
GC
C i AA
lle

Gln Glu Gly His
c . GGLuECT T A6
. . @W
GG
AT
G AG c@ A
Leu Lys Met Fhe Pro
CIATG CC CT
CT &N
T
G . CG
G ATG
Ser Thr Trp Tyr Wal
AG cT ACAACT GL&eTT
A T GT!
G G TA
TC AC
C TGG G
Get the codon frequency for the alanine (A) amino acid.
cb_Ala
ans =

Codon: {"GCA" "GCC" "GCG" "GCT"}
Freq: [0.1600 0.3867 0.2533 02000]

See Also

aminolookup | codoncount | geneticcode | nt2aa

1-465

1 Alphabetical List

1-466

codoncount

Count codons in nucleotide sequence

Syntax

Codons = codoncount(SegNT)
[Codons, CodonArray]l = codoncount(SeqNT)

codoncount(SegNT, ..."Frame®, FrameValue, ...)
codoncount(SegNT, ..."Reverse", ReverseValue, ...)
codoncount(SegNT, ..."Ambiguous®, AmbiguousValue, ...)
codoncount(SegNT, ...T"Figure", FigureValue, ...)

S codoncount(SegNT, ..."GeneticCode", GeneticCodeValue, ...)

Input Arguments

SeqNT

One of the following:

+ String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers

+ Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes

MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned

by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank

Examples: "ACGT" or [1 2 3 4]

FrameValue

Integer specifying a reading frame in the nucleotide sequence.
Choices are 1 (default), 2, or 3.

ReverseValue

Controls the return of the codon count for the reverse
complement sequence of the nucleotide sequence specified by
SeqNT. Choices are true or false (default).

codoncount

AmbiguousValue String specifying how to treat codons containing ambiguous
nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N). Choices
are:

"ignore"” (default) — Skips codons containing ambiguous
characters

"bundle® — Counts codons containing ambiguous
characters and reports the total count in the Ambiguous
field of the Codons output structure.

+ "prorate” — Counts codons containing ambiguous
characters and distributes them proportionately in the
appropriate codon fields containing standard nucleotide
characters. For example, the counts for the codon ART are
distributed evenly between the AAT and AGT fields.

+ "warn®" — Skips codons containing ambiguous characters
and displays a warning.

FigureValue Controls the display of a heat map of the codon counts. Choices
are true or false (default).

GeneticCodeValue Integer or string specifying a genetic code number or

code name from the table Genetic Code. Default is 1 or
"Standard®. You can also specify "None".

Tip If you use a code name, you can truncate the name to the
first two letters of the name.

Output Arguments

Codons MATLAB structure containing fields for the 64 possible codons
(AAA, AAC, AAG, ..., TTG, TTT), which contain the codon counts in
SeqNT.

CodonArray A 4-by-4-by-4 array containing the raw count data for each codon.

The three dimensions correspond to the three positions in the
codon, and the indices to each element are represented by 1 = A, 2
= C,3 = G,and 4 = T. For example, the element (2,3,4) in the
array contains the number of CGT codons.

1-467

1 Alphabetical List

1-468

Description

Codons = codoncount(SeqNT) counts the codons in SegNT, a nucleotide sequence,
and returns the codon counts in Codons, a MATLAB structure containing fields for the
64 possible codons (AAA, AAC, AAG, ..., TTG, TTT).

* For sequences that have codons containing the character U, these codons are added to
the corresponding codons containing a T.

+ If the sequence contains gaps indicated by a hyphen (-), then codons containing gaps
are ignored.

+ If the sequence contains unrecognized characters, then codons containing these
characters are ignored, and the following warning message appears:

Warning: Unknown symbols appear in the sequence. These will be ignored.

[Codons, CodonArray] = codoncount(SeqNT) returns CodonArray, a 4-by-4-by-4
array containing the raw count data for each codon. The three dimensions correspond to
the three positions in the codon, and the indices to each element are represented by 1 =
A2 = C,3 = G,and 4 = T. For example, the element (2,3,4) in the array contains
the number of CGT codons.

... = codoncount(SeqNT, ..."PropertyName®, PropertyValue, ...) calls
codoncount with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = codoncount(SegNT, ..."Frame®, FrameValue, ...) counts the codons in
the reading frame specified by FrameValue, which can be 1 (default), 2, or 3.

... = codoncount(SegNT, ..."Reverse", ReverseValue, ...) controlsthe
return of the codon count for the reverse complement sequence of SeqgNT. Choices are
true or false (default).

... = codoncount(SegNT, ..."Ambiguous®, AmbiguousValue, ...) specifies
how to treat codons containing ambiguous nucleotide characters. Choices are:

+ "ignore"” (default)
* “bundle*

* "prorate”
+ “warn”

codoncount

... = codoncount(SegNT, ..."Figure®", FigureValue, ...) controlsthe
display of a heat map of the codon counts. Choices are true or false (default).

... = codoncount(SegNT, ..."GeneticCode", GeneticCodeValue, ...)
controls the overlay of a grid on the heat map figure. The grid groups the synonymous
codons according to GeneticCodeValue.

Examples

+ Count the codons in a nucleotide sequence.

codons = codoncount(“AAACGTTA®)

codons =

AAA: 1 ATC: 0 CGG: O GCT: O TCA: O
AAC: O ATG: O CGT: 1 GGA: O TCC: O
AAG: O ATT: O CTA: O GGC: O TCG: O
AAT: O CAA: 0 CTC: O GGG: O TCT: O
ACA: O CAC: 0 CTG: O GGT: O TGA: O
ACC: O CAG: 0 CTT: O GTA: O TGC: O
ACG: O CAT: 0 GAA: O GTC: O TGG: O
ACT: O CCA: 0 GAC: O GTG: O TGT: O
AGA: O CCC: 0 GAG: O GTT: O TTA: O
AGC: O CCG: 0 GAT: O TAA: O TTC: O
AGG: O CCT: 0 GCA: O TAC: O TTG: O
AGT: O CGA: 0 GCC: O TAG: O TTT: O
ATA: O CGC: 0 GCG: O TAT: O

* Count the codons in the second frame for the reverse complement of a sequence.

r2codons = codoncount("AAACGTTA", "Frame”®,2, "Reverse”,true)

r2codons =
AAA: O ATC: O CGG: O GCT: O TCA: O
AAC: 1 ATG: O CGT: O GGA: 0O TCC: O
AAG: O ATT: O CTA: O GGC: O TCG: O
AAT: O CAA: 0 CTC: O GGG: O TCT: O
ACA: O CAC: 0 CTG: O GGT: O TGA: O
ACC: O CAG: 0 CTT: O GTA: O TGC: O
ACG: O CAT: 0 GAA: O GTC: 0O TGG: O
ACT: O CCA: 0 GAC: O GTG: O TGT: O

1-469

1 Alphabetical List

AGA: O CCC: 0 GAG: O GTT:- 1 TTA: O
AGC: O CCG: 0 GAT: O TAA: O TTC: O
AGG: O CCT: 0 GCA: O TAC: O TTG: O
AGT: O CGA: 0 GCC: O TAG: O TTIT: O
ATA: O CGC: 0 GCG: O TAT: O

+ Create a heat map of the codons in a random nucleotide sequence and overlay a grid
that groups the synonymous codons according to the Standard genetic code.

a = randseq(1000);
codoncount(a, "“Figure®, true);

1-470

codoncount

) Figure 1 =10l %]

File Edit View Insert Tools Desktop Window Help N

NDdde | k|RAODLRL- 20| =

11
L 140

[_9
18

Genetic Code: Standard

See Also

aacount | basecount | baselookup | codonbias | dimercount | nmercount |
ntdensity | seqcomplement | seqrcomplement | seqreverse | seqwordcount

1471

1 Alphabetical List

colnames (DataMatrix)

Retrieve or set column names of DataMatrix object

Syntax

ReturnColNames = colnames(DMObj)
ReturnColNames = colnames(DMObj, ColIndices)
DMObjNew = colnames(DMObj, ColIndices, ColNames)

Input Arguments

DMOb j DataMatrix object, such as created by DataMatrix (object
constructor).

ColIndices One or more columns in DMOb j, specified by any of the following:

* Positive integer

* Vector of positive integers

+ String specifying a column name
+ Cell array of strings

+ Logical vector

ColNames Column names specified by any of the following:

* Numeric vector
+ Cell array of strings
* Character array

+ Single string, which is used as a prefix for column names,
with column numbers appended to the prefix

+ Logical true or false (default). If true, unique column
names are assigned using the format col1, col2, col3, etc.
If false, no column names are assigned.

1-472

colnames (DataMatrix)

Note: The number of elements in CoINames must equal the
number of elements in ColIndices.

Output Arguments

ReturnColNames String or cell array of strings containing column names in DMObj .

DMOb j New DataMatrix object created with names specified by ColIndices
and ColNames.

Description

ReturnColNames = colnames(DMObj) returns ReturnColNames, a cell array of
strings specifying the column names in DMObj, a DataMatrix object.

ReturnColNames = colnames(DMObj, ColIndices) returns the column names
specified by ColIndices. ColIndices can be a positive integer, vector of positive
integers, string specifying a column name, cell array of strings, or a logical vector.

DMObjNew = colnames(DMObj, ColIndices, ColNames) returns DMObjNew, a
DataMatrix object with columns specified by ColIndices set to the names specified by
ColNames. The number of elements in ColIndices must equal the number of elements
in ColNames.

More About

. “DataMatrix object”

See Also

DataMatrix | rownames

1-473

1 Alphabetical List

combine

Class: bioma.data.ExptData
Package: bioma.data

Combine two ExptData objects

Syntax

NewEDObj = combine(EDObj1, EDObj2)

Description
NewEDObj = combine(EDObj1, EDObj2) combines data from two ExptData objects
and returns a new ExptData object. The number and names of features (rows) in both

ExptData objects must match. The number and names of samples (columns) in both
ExptData objects must match.

Input Arguments
EDObj#
Object of the bioma.data.ExptData class.

Default:

See Also
bioma.data.ExptData

How To
“Representing Expression Data Values in ExptData Objects”

1-474

combine

combine

Class: bioma.data.MetaData
Package: bioma.data

Combine two MetaData objects

Syntax

NewMDObj = combine(MDObj1, MDObj2)

Description

NewMDObj = combine(MDObj1, MDObj2) combines data from two MetaData objects
and returns a new MetaData object. The sample or feature names in the two MetaData
objects being combined must be unique. The variable names in the two MetaData objects
can be unique or the same. If a variable name is common to the two MetaData objects,
then the variable occupies one column in the new MetaData object. Variable names
unique to either of the two MetaData objects occupy their own column and contain values
only for the samples or features where the variable is present.

Input Arguments
MDOb j #
Object of the bioma.data.MetaData class.

Default:

See Also

bioma.data.MetaData

How To
. “Representing Sample and Feature Metadata in MetaData Objects”

1-475

1 Alphabetical List

1-476

combine

Class: bioma.data. MIAME
Package: bioma.data

Combine two MIAME objects

Syntax

NewMIAMEObj = combine(MIAMEObj1, MIAMEObj2)

Description

NewMIAMEObj = combine(MIAMEObj1, MIAMEObj2) combines data from two MIAME
objects and returns a new MIAME object. The combine method concatenates the
properties of the two objects together.

Input Arguments

MIAMEODb j#
Object of the bioma.data.MIAME class.

Default:

Examples

Construct two MIAME objects, and then combine them:

% Create a MATLAB structure containing GEO Series data
geoStructl = getgeodata("GSE4616");

% Create a second MATLAB structure containing GEO Series data
geoStruct2 = getgeodata("GSE11287");

% Import bioma.data package to make constructor function

% available

import bioma.data.*

combine

% Construct MIAME object from the Ffirst structure
MIAMEObj1 = MIAME(geoStructl);

% Construct MIAME object from the second structure
MIAMEObj2 = MIAME(geoStruct?2);

% Combine the two MIAME objects

newMIAMEObj = combine(MIAMEObj1, MIAMEObj2)

See Also
bioma.data.MIAME

How To
. “Representing Experiment Information in a MIAME Object”

1-477

1 Alphabetical List

1-478

combine

Class: BioRead

Combine two objects

Syntax

NewObj combine(Bio0Obj1, BioObj2)
NewObj = combine(BioObj1, BioObj2, Name,Value)

Description

NewObj = combine(BioObj1, Bio0Obj2) combines data from two objects of the same
class and returns a new object. The combine method concatenates the properties of the
two objects.

NewObj = combine(BioObj1, BioObj2, Name,Value) combines data from two
objects of the same class with additional options specified by one or more Name,Value
pair arguments.

Input Arguments
BioObj#
Object of the BioRead or BioMap class.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

combine

"Name*

String describing NewObj . This string populates the Name property of NewObj .

Default:

Output Arguments

NewOb j

Object of the BioRead or BioMap class.

Examples

Construct two BioRead objects, and then combine them:

% Create two structures with data from a FASTQ file

structl = fastqread("SRR005164 1 50.fastq", "blockread”,
"trimheaders”, true);

struct2 = fastqread("SRR005164 1 50.fastq", "blockread",
"trimheaders”, true);

% Construct two BioRead objects from the two structures

BRObj1 = BioRead(structl);

BRObj2 = BioRead(struct2);

[1 10],.-.

[11 20], ...

% Combine the two BioRead objects and set the Name property

% of the new object

NewBRObj = combine(BRObjl, BRObj2, "Name®, "BRObjl + BRObj2%)

NewBRObj =
BioRead with properties:

Quality: {20x1 cell}
Sequence: {20x1 cell}
Header: {20x1 cell}
NSeqs: 20
Name: *"BRObj1l + BRObj2*

See Also
BioRead | BioMap

1-479

1 Alphabetical List

How To
. “Manage Short-Read Sequence Data in Objects”

Related Links

. Sequence Read Archive

. SAM format specification

1-480

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

conncomp (biograph)

conncomp (biograph)

Find strongly or weakly connected components in biograph object

Syntax

[S, C1 = conncomp(BGObj)

[S, C] = conncomp(BGObj, ... Directed", DirectedValue, ...)

[S, C] = conncomp(BGObj, ..."Weak", WeakValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).

DirectedValue Property that indicates whether the graph is directed or
undirected. Enter false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is
true.
A DFS-based algorithm computes the connected components.
Time complexity is O(N+E), where N and E are number of nodes
and edges respectively.

WeakValue Property that indicates whether to find weakly connected

components or strongly connected components. A weakly
connected component is a maximal group of nodes that are
mutually reachable by violating the edge directions. Set
WeakValue to true to find weakly connected components.
Default is False, which finds strongly connected components.
The state of this parameter has no effect on undirected graphs
because weakly and strongly connected components are the same
in undirected graphs. Time complexity is O(N+E), where N and E
are number of nodes and edges respectively.

1-481

1 Alphabetical List

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[S, C] = conncomp(BGObj) finds the strongly connected components of an N-by-N
adjacency matrix extracted from a biograph object, BGObj using Tarjan's algorithm. A
strongly connected component is a maximal group of nodes that are mutually reachable
without violating the edge directions. The N-by-N sparse matrix represents a directed
graph; all nonzero entries in the matrix indicate the presence of an edge.

The number of components found is returned in S, and C is a vector indicating to which
component each node belongs.

Tarjan's algorithm has a time complexity of O(N+E), where N and E are the number of
nodes and edges respectively.

[S, C] = conncomp(BGObj, ..."PropertyName®, PropertyValue, ...) calls
conncomp with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property value pairs are as
follows:

[S, C] = conncomp(BGObj, ... Directed", DirectedValue, ...) indicates
whether the graph is directed or undirected. Set DirectedValue to false for an
undirected graph. This results in the upper triangle of the sparse matrix being ignored.
Default is true. A DFS-based algorithm computes the connected components. Time
complexity is O(N+E), where N and E are number of nodes and edges respectively.

[S, C] = conncomp(BGObj, ..."Weak®", WeakValue, ...) indicates whether
to find weakly connected components or strongly connected components. A weakly
connected component is a maximal group of nodes that are mutually reachable by
violating the edge directions. Set WeakValue to true to find weakly connected
components. Default is false, which finds strongly connected components. The state
of this parameter has no effect on undirected graphs because weakly and strongly
connected components are the same in undirected graphs. Time complexity is O(N+E),
where N and E are number of nodes and edges respectively.

1-482

conncomp (biograph)

Note: By definition, a single node can be a strongly connected component.

Note: A directed acyclic graph (DAG) cannot have any strongly connected components
larger than one.

More About

“biograph object”

References

[1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms. STAM Journal on
Computing 1(2), 146-160.

[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also

biograph | allshortestpaths | isomorphism | maxflow | shortestpath |
traverse | graphconncomp | isdag | isspantree | minspantree | topoorder

1-483

1 Alphabetical List

1-484

cpgisland

Locate CpG islands in DNA sequence

Syntax
cpgStruct = cpgisland(SeqDNA)
cpgStruct = cpgisland(SeqDNA, ..._"Window", WindowValue, ...)
cpgStruct = cpgisland(SeqDNA, ..."Minlsland®, MinIslandValue, ...)
cpgStruct = cpgisland(SeqDNA, ..."GCmin", GCminValue, ...)
cpgStruct = cpgisland(SeqDNA, ..."CpGoe", CpGoeValue, ...)
cpgStruct = cpgisland(SeqDNA, ..."Plot", PlotValue, ...)
Input Arguments
SeqDNA One of the following:
+ String of codes specifying a DNA nucleotide sequence
+ Row vector of integers specifying a DNA nucleotide sequence
+ MATLAB structure containing a Sequence field that
contains a DNA nucleotide sequence, such as returned by
fastaread, fastqread, emblread, getembl, genbankread,
or getgenbank
Valid characters include A, C, G, and T.
cpgisland does not count ambiguous nucleotides or gaps.
WindowValue Integer specifying the window size for calculating GC content and
CpGobserved/CpGexpected ratios. Default is 100 bases. A smaller
window size increases the noise in a plot.
MinIslandValue Integer specifying the minimum number of consecutive marked
bases to report as a CpG island. Default is 200 bases.
GCminValue Value specifying the minimum GC percent in a window needed to
mark a base. Choices are a value between 0 and 1. Default is 0.5.

cpgisland

CpGoeValue Value specifying the minimum CpGobserved/CpGexpected ratio
in each window needed to mark a base. Choices are a value
between 0 and 1. Default is 0.6. This ratio is defined as:

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

PlotValue Controls the plotting of GC content, CpGoe content, CpG islands
greater than the minimum island size, and all potential CpG
1slands for the specified criteria. Choices are true or false
(default).

Output Arguments

cpgStruct MATLAB structure containing the starting and ending bases of
the CpG islands greater than the minimum island size.

Description

cpgStruct = cpgisland(SeqDNA) searches SeqDNA, a DNA nucleotide sequence, for
CpG islands with a GC content greater than 50% and a CpGobserved/CpGexpected ratio
greater than 60%. It marks bases meeting this criteria within a moving window of 100
DNA bases and then returns the results in cpgStruct, a MATLAB structure containing
the starting and ending bases of the CpG islands greater than the minimum island size
of 200 bases.

cpgStruct = cpgisland(SeqDNA, .._"PropertyName®, PropertyValue, ...)
calls cpgisland with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

cpgStruct = cpgisland(SeqDNA, ..."Window", WindowValue, ...) specifies
the window size for calculating GC content and CpGobserved/CpGexpected ratios.
Default is 100 bases. A smaller window size increases the noise in a plot.

cpgStruct = cpgisland(SeqDNA, .._"Minlsland®, MinIslandValue, -..)
specifies the minimum number of consecutive marked bases to report as a CpG island.
Default is 200 bases.

1-485

1 Alphabetical List

cpgStruct = cpgisland(SeqDNA, ..."GCmin", GCminValue, ...) specifies the
minimum GC percent in a window needed to mark a base. Choices are a value between O
and 1. Default is 0.5.

cpgStruct = cpgisland(SeqDNA, ..."CpGoe®", CpGoeValue, ...) specifies
the minimum CpGobserved/CpGexpected ratio in each window needed to mark a base.
Choices are a value between 0 and 1. Default is 0. 6. This ratio is defined as:

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

cpgStruct = cpgisland(SeqDNA, ..."Plot", PlotValue, ...) controls the
plotting of GC content, CpGoe content, CpG islands greater than the minimum island
size, and all potential CpG islands for the specified criteria. Choices are true or false
(default).

Examples

1 Import a nucleotide sequence from the GenBank database. For example, retrieve a
sequence from Homo sapiens chromosome 12.

S = getgenbank(*AC156455%);
2 Calculate the CpG islands in the sequence and plot the results.

cpgisland(S.Sequence, "PLOT", true)
ans =

Starts: [4510 29359]
Stops: [5468 29604]

The CpG islands greater than 200 bases in length are listed and a plot displays.

1-486

cpgisland

Figure 1 E=S Hch =

File Edit View Insert Tools Desktop Window Help k]

j_jlﬂu.:j h +\-_\-{ﬂ?@¥._£v@_1 DE E

GC content

See Also

basecount | ntdensity | seqgshoworfs

1-487

1 Alphabetical List

1-488

crossvalind

Generate cross-validation indices

Syntax

Indices = crossvalind("Kfold", N, K)

[Train, Test] crossvalind("HoldOut®, N, P)

[Train, Test] = crossvalind("LeaveMOut®, N, M)

[Train, Test] = crossvalind("Resubstitution®, N, [P,QD)
[---1 = crossvalind(Method, Group, ...)

[---1 = crossvalind(Method, Group, ..., "Classes”, C)
[---1 = crossvalind(Method, Group, ..., "Min®", MinValue)
Description

Indices = crossvalind("Kfold", N, K) returns randomly generated indices for

a K-fold cross-validation of N observations. Indices contains equal (or approximately
equal) proportions of the integers 1 through K that define a partition of the N
observations into K disjoint subsets. Repeated calls return different randomly generated
partitions. K defaults to 5 when omitted. In K-fold cross-validation, K-1 folds are used for
training and the last fold is used for evaluation. This process is repeated K times, leaving
one different fold for evaluation each time.

[Train, Test] = crossvalind("HoldOut®, N, P) returns logical index vectors
for cross-validation of N observations by randomly selecting P*N (approximately)
observations to hold out for the evaluation set. P must be a scalar between 0 and 1. P
defaults to 0.5 when omitted, corresponding to holding 50% out. Using holdout cross-
validation within a loop is similar to K-fold cross-validation one time outside the loop,
except that non-disjointed subsets are assigned to each evaluation.

[Train, Test] = crossvalind("LeaveMOut®, N, M), where Mis an integer,
returns logical index vectors for cross-validation of N observations by randomly selecting
M of the observations to hold out for the evaluation set. M defaults to 1 when omitted.
Using "LeaveMOut*® cross-validation within a loop does not guarantee disjointed
evaluation sets. To guarantee disjointed evaluation sets, use "Kfold" instead.

crossvalind

[Train, Test] = crossvalind("Resubstitution®, N, [P,Q]) returns logical
index vectors of indices for cross-validation of N observations by randomly selecting P*N
observations for the evaluation set and Q*N observations for training. Sets are selected
in order to minimize the number of observations that are used in both sets. P and Q are
scalars between 0 and 1. Q=1-P corresponds to holding out (100*P)%, while P=Q=1
corresponds to full resubstitution. [P,Q] defaults to [1,1] when omitted.

[---1 = crossvalind(Method, Group, ...) takesthe group structure of the data
into account. Group is a grouping vector that defines the class for each observation.
Group can be a numeric vector, a string array, or a cell array of strings. The partition

of the groups depends on the type of cross-validation: For K-fold, each group is divided
into K subsets, approximately equal in size. For all others, approximately equal numbers
of observations from each group are selected for the evaluation set. In both cases the
training set contains at least one observation from each group.

[---1 = crossvalind(Method, Group, ..., "Classes®, C) restricts the
observations to only those values specified in C. C can be a numeric vector, a string array,
or a cell array of strings, but it is of the same form as Group. If one output argument is
specified, it contains the value O for observations belonging to excluded classes. If two
output arguments are specified, both will contain the logical value false for observations
belonging to excluded classes.

[---1 = crossvalind(Method, Group, ..., "Min", MinValue) sets the
minimum number of observations that each group has in the training set. Min defaults to
1. Setting a large value for Min can help to balance the training groups, but adds partial
resubstitution when there are not enough observations. You cannot set Min when using
K-fold cross-validation.

Examples

Note: The crossvalind function creates random partitions, which depend on the state
of the default random stream. Therefore, your results from the following examples will
vary from those shown.

Create a 10-fold cross-validation to compute classification error.

load fisheriris
indices = crossvalind("Kfold",species,10);

1-489

1 Alphabetical List

1-490

cp = classperf(species);

for i = 1:10
test = (indices == i); train = ~test;
class = classify(meas(test, :),meas(train, :),species(train,:));
classperf(cp,class,test)

end

cp-ErrorRate

ans =
0.0200

Approximate a leave-one-out prediction error estimate.

load carbig

x = Displacement; y = Acceleration;

N = length(x);

sse = 0;

for i = 1:100
[train,test] = crossvalind("LeaveMOut®,N,1);
yhat = polyval(polyfit(x(train),y(train),2),x(test));
sse = sse + sum((yhat - y(test))."2);

end
CVerr = sse / 100
CVerr =

4.9750

Divide cancer data 60/40 without using the "Benign™ observations. Assume groups are
the true labels of the observations.

labels = {"Cancer”, "Benign”, "Control "};

groups = labels(ceil(rand(100,1)*3));

[train,test] = crossvalind("holdout®,groups,0.6, "classes”, ...

{"Control*,"Cancer"});
sum(test) % Total groups allocated for testing

ans =
35
sum(train) % Total groups allocated for training

ans =

crossvalind

26

More About

“knnclassify”

See Also

classperf | classify | grp2idx | svmclassify

1-491

1 Alphabetical List

1-492

cytobandread

Read cytogenetic banding information

Syntax
CytoStruct = cytobandread(File)
Input Arguments
File String specifying a file containing cytogenetic G-banding data, such
as an NCBI ideogram text file or a UCSC Genome Browser cytoband
text file.
Output Arguments
CytoStruct Structure containing cytogenetic G-banding data in the following
fields:
ChromLabels
BandStartBPs
BandEndBPs
BandLabels
GieStains
Description

CytoStruct = cytobandread(File) reads File, which is a string specifying a file
containing cytogenetic G-banding data, and returns CytoStruct, which is a structure
containing the following fields.

Field Description
ChromLabels Cell array containing the chromosome label (number or letter)
on which each band is located.

cytobandread

Field Description

BandStartBPs Column vector containing the number of the base pair at the
start of each band.

BandEndBPs Column vector containing the number of the base pair at the
end of each band.

BandLabels Cell array containing the FISH label of each band, for

example, p32.3.

GieStains Cell array containing the Giemsa staining result for each
band. Possible stain results depend on the species. For
example, for Homo sapiens, the possibilities are:

* gneg

* gpos25
* gpos50
* gpos75
* gpos100
+ acen

+ stalk

+ gvar

Tip You can download files containing cytogenetic G-banding data from the NCBI or

UCSC Genome Browser ftp site. For example, you can download the cytogenetic banding
data for Homo sapiens from:

ftp://ftp_ncbi._nIm_nih.gov/genomes/H_sapiens/mapview/ideogram.gz
or

ftp://hgdownload.cse.ucsc.edu/goldenPath/hgl8/database/cytoBandldeo.txt.gz

Examples

Read the cytogenetic banding information for Homo sapiens into a structure.

hs_cytobands = cytobandread("hs_cytoBand.txt")

1-493

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

1 Alphabetical List

1-494

hs_cytobands =

ChromLabels:
BandStartBPs:
BandEndBPs:
BandLabels:
GieStains:

See Also

chromosomeplot

{862x1
[862x1
[862x1
{862x1
{862x1

cell}
int32]
int32]
cell}
cell}

DataMatrix object

DataMatrix object

Data structure encapsulating data and metadata from microarray experiment so that it
can be indexed by gene or probe identifiers and by sample identifiers

Description

A DataMatrix object is a data structure encapsulating measurement data and feature
metadata from a microarray experiment so that it can be indexed by gene or probe
identifiers and by sample identifiers. A DataMatrix object stores experimental data
in a matrix, with rows typically corresponding to gene names or probe identifiers, and
columns typically corresponding to sample identifiers. A DataMatrix object also stores
metadata, such as the gene names or probe identifiers and sample identifiers, in row
names and column names.

You create a DataMatrix object using the object constructor function DataMatrix.

Property Summary

Properties of a DataMatrix Object

Property Description
Name String that describes the DataMatrix object. Default is " *.
RowNames Empty array or cell array of strings that specifies the names

for the rows, typically gene names or probe identifiers. The
number of elements in the cell array must equal the number
of rows in the matrix. Default is an empty array.

ColNames Empty array or cell array of strings that specifies the names
for the columns, typically sample identifiers. The number of

elements in the cell array must equal the number of columns
in the matrix.

NRows Read-only. Positive number that specifies the number of rows
in the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

1-495

1 Alphabetical List

1-496

Property

Description

NCols

Read-only. Positive number that specifies the number of
columns in the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

NDims

Read-only. Positive number that specifies the number of
dimensions in the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

ElementClass

Read-only. String that specifies the class type of the elements

in the DataMatrix object, such as single or double.

Note: You cannot modify this property directly. You can
access it using the get method.

Method Summary

General Methods of a DataMatrix Object

Method Description

colnames Retrieve or set column names of DataMatrix object.

disp Display DataMatrix object.

display Display DataMatrix object, printing DataMatrix object
name. To invoke this method, enter the name of a
DataMatrix object at the command prompt.

dmwrite Write DataMatrix object to text file.

double Convert DataMatrix object to double-precision array.

get Retrieve information about DataMatrix object.

isempty Determine if DataMatrix object is empty.

isfinite Determine if DataMatrix object elements are finite.

DataMatrix object

Method Description

isinf Determine if DataMatrix object elements are infinite.

ishan Determine if DataMatrix object elements are NaN.

isscalar Determine if DataMatrix object is scalar.

isequal Test DataMatrix objects for equality.

isequaln Test DataMatrix objects for equality, treating NaNs as
equal.

isvector Determine if DataMatrix object is vector.

length Return length of DataMatrix object.

ndims Return number of dimensions in DataMatrix object.

numel Return number of elements in DataMatrix object.

plot Draw 2-D line plot of DataMatrix object.

rownames Retrieve or set row names of DataMatrix object.

set Set property of DataMatrix object.

single Convert DataMatrix object to single-precision array.

size Return size of DataMatrix object.

Methods for Manipulating the Data in a DataMatrix Object

Method Description

cat Concatenate DataMatrix objects. The horzcat and vertcat
methods implement special cases.

horzcat Concatenate DataMatrix objects horizontally.

sortcols Sort columns of DataMatrix object in ascending or descending
order.

sortrows Sort rows of DataMatrix object in ascending or descending
order.

subsasgn Subscripted assignment for DataMatrix object. To invoke

this method, use parentheses or dot indexing described in
“Accessing Data in DataMatrix Objects”.

1-497

1 Alphabetical List

Method Description

subsref Subscripted reference for DataMatrix object. To invoke
this method, use parentheses or dot indexing described in
“Accessing Data in DataMatrix Objects”.

transpose Transpose DataMatrix object.

vertcat Concatenate DataMatrix objects vertically.

Descriptive Statistics and Statistical Learning Methods

Method Description

kmeans K-means clustering.

max Return maximum values in DataMatrix object.

mean Return average or mean values in DataMatrix object.

median Return median values in DataMatrix object.

min Return minimum values in DataMatrix object.

nanmax Return maximum values in DataMatrix object ignoring NaN
values.

nanmean Return average or mean values in DataMatrix object ignoring
NaN values.

nanmedian Return median values in DataMatrix object ignoring NaN
values.

nanmin Return minimum values in DataMatrix object ignoring NaN
values.

nanstd Return standard deviation values in DataMatrix object
ignoring NaN values.

nansum Return sum of elements in DataMatrix object ignoring NaN
values.

nanvar Return variance values in DataMatrix object ignoring NaN
values.

pca Principal component analysis on data.

pdist Pairwise distance.

std Return standard deviation values in DataMatrix object.

sum Return sum of elements in DataMatrix object.

1-498

DataMatrix object

Method

Description

var

Return variance values in DataMatrix object.

Unary Methods — Exponential

Method Description

exp Exponential.

log Natural logarithm.

logl0 Common (base 10) logarithm.

l1og2 Base 2 logarithm and dissect floating-point numbers into
exponent and mantissa.

pow?2 Base 2 power and scale floating-point numbers.

sgrt Square root.

Unary Methods — Integer

Method Description

ceil Round DataMatrix object toward infinity.

fix Round DataMatrix object toward zero.

floor Round DataMatrix object toward minus infinity.
round Round DataMatrix object to nearest integer.

Unary Methods — Custom

Method

Description

dmarrayfun

Apply function to each element in DataMatrix object.

Binary Methods — Arithmetic Operator

Operator Method Description

+ plus Add DataMatrix objects

- minus Subtract DataMatrix objects.

e times Multiply DataMatrix objects.

-/ rdivide Right array divide DataMatrix objects.
\ Idivide Left array divide DataMatrix objects.

1-499

1 Alphabetical List

1-500

Operator Method Description
A power Array power DataMatrix objects.
Binary Methods — Relational Operator
Operator Method Description
< It Test DataMatrix objects for less than.
<= le Test DataMatrix objects for less than or equal to.
> gt Test DataMatrix objects for greater than.
>= ge Test DataMatrix objects for greater than or equal to.
== eq Test DataMatrix objects for equality.
== ne Test DataMatrix objects for inequality.

Binary Methods — Custom

Method Description

dmbsxfun Apply element-by-element binary operation to two DataMatrix

objects with singleton expansion enabled.

Examples

Determining Properties and Property Values of a DataMatrix Obiject

You can display all properties and their current values of a DataMatrix object, DMobj, by
using the following syntax:

get(DMobj)

You can return all properties and their current values of DMobj, a DataMatrix object,
to DMstruct, a scalar structure in which each field name is a property of a DataMatrix
object, and each field contains the value of that property, by using the following syntax:

DMstruct = get(DMobj)

You can return the value of a specific property of a DataMatrix object, DMobj, by using
either of the following syntaxes:

PropertyValue = get(DMObj, “PropertyName®)

DataMatrix object

PropertyValue = DMObj .PropertyName

You can return the value of specific properties of a DataMatrix object, DMobj, by using
the following syntax:

[Property1Value, Property2Value, ...] = get(DMobj,
"PropertyiName®, “Property2Name®, ...)

Determining Possible Values of DataMatrix Object Properties

You can display possible values for all properties that have a fixed set of property values
in a DataMatrix object, DMobj, by using the following syntax:

set(DMobj)

You can display possible values for a specific property that has a fixed set of property
values in a DataMatrix object, DMobj, by using the following syntax:

set(DMObj, “PropertyName®)
Specifying Properties of a DataMatrix Object

You can set a specific property of a DataMatrix object, DMObj, by using either of the
following syntaxes:

DMObj = set(DMObj, “PropertyName®, PropertyValue)
DMObj .PropertyName = PropertyValue

You can set multiple properties of a DataMatrix object, DMobj, by using the following
syntax:

set(DMobj, “PropertyNameil®, PropertyValuel,
“PropertyName2®, PropertyValue2, ...)

Note: For more examples of creating and using DataMatrix objects, see “Representing
Expression Data Values in DataMatrix Objects”.

See Also

DataMatrix | disp | dnbsxfun | double | ge | get | horzcat | isequaln | le |
It | mean | min | ndims | ne | plot | plus | rdivide | set | sortcols | std |
sum | var | colnames | dmarrayfun | dmwrite | eq | gt | isequal | Idivide |

1-501

1 Alphabetical List

max | median | minus | numel | power | rownames | single | sortrows | times |
vertcat

1-502

DataMatrix

DataMatrix

Create DataMatrix object

Syntax

DMobj = DataMatrix(Matrix)

DMobj = DataMatrix(Matrix, RowNames, ColumnNames)

DMobj = DataMatrix("File", FileName)

DMobj = DataMatrix(..., "RowNames®, RowNamesValue, ...)

DMobj = DataMatrix(..., "ColNames®", ColNamesValue, ...)

DMobj = DataMatrix(..., "Name®, NameValue, ...)

DMobj = DataMatrix("File", FileName, ..."Delimiter”,

DelimiterValue, ...)

DMobj = DataMatrix("File", FileName, ..."HLine", HLineValue, ...)

DMobj = DataMatrix("File", FileName, ..."Rows", RowsValue, ...)

DMobj = DataMatrix("File", FileName, .._."Columns”,

ColumnsValue, ...)

Arguments

Matrix Two-dimensional numeric or logical array.

RowNames Row names for the DataMatrix object, specified by a numeric
vector, character array, or cell array of strings, whose elements
are equal in number to the number of rows in Matrix.
RowNames are typically gene names or probe identifiers from a
microarray experiment.

Note: The row names do not need to be unique.

ColumnNames Column names for the DataMatrix object, specified by a
numeric vector, character array, or cell array of strings, whose
elements are equal in number to the number of columns in
Matrix. ColumnNames are typically sample identifiers from a
microarray experiment.

1-503

1 Alphabetical List

Note: The column names do not need to be unique.

FileName

String specifying a file name or a path and file name of a tab-
delimited TXT or XLS file that contains table-oriented data
and metadata.

Note: Typically, the first row of the table contains column
names, the first column contains row names, and the numeric
data starts at the 2,2 position. The DataMatrix function will
detect if the first column does not contain row names, and read
data from the first column. However, if the first row does not
contain header text (column names), set the HLine property to
0.

RowNamesValue,
ColNamesValue

Row names or column names for the DataMatrix object.
Choices are:

+ Numeric vector, character array, or a cell array of strings,
whose elements are equal in number to the number of rows
or number of columns of numeric data in the input matrix.

+ A single string, which is used as a prefix for row or column
names. Numbers will be appended to the prefix.

true — Unique row or column names will be assigned
using the formats rowl, row2, row3, etc., or coll, col2,
col 3, etc.

+ Ffalse — Default. No row or column names are assigned.

Note: The row or column names do not need to be unique.

NameValue

String specifying a name for the DataMatrix object. Default is

1-504

DataMatrix

DelimiterValue

String specifying a delimiter symbol to use for the input file.
Typical choices are:

+ "\t" (default)

HLineValue

Positive integer that specifies which row of the input file
contains the column header text (column names). Default is 1.

When creating the DataMatrix object DMobj, the DataMatrix
function loads data from (HLineValue + 1) to the end of the
file.

Tip If the input file does not contain column header text
(column names), set HLineValue to O.

RowsValue,
ColumnsValue

A subset of rows or columns in Fi le, for the DataMatrix
function to use to create the DataMatrix object. Choices are:

Cell array of strings

* Character array

* Numeric or logical vector

Description

A DataMatrix object encapsulates measurement data and feature metadata from a
microarray experiment so that it can be indexed by gene names or probe identifiers
and by sample identifiers. For examples of creating and using DataMatrix objects, see
“Representing Expression Data Values in DataMatrix Objects”.

Note: The DataMatrix constructor function is part of the microarray object package. To
make it available, type the following in the MATLAB command line:

import bioma.data.*

1-505

1 Alphabetical List

1-506

Otherwise, use bioma.data.DataMatrix instead of DataMatrix, in the following
syntaxes.

DMobj = DataMatrix(Matrix) creates a DataMatrix object, DMobj, from Matrix, a
two-dimensional numeric or logical array. Matrix can also be a DataMatrix object.

DMobj = DataMatrix(Matrix, RowNames, ColumnNames) creates a DataMatrix
object, DMobj, from Matrix, a two-dimensional numeric or logical array, with row
names and column names specified by RowNames and ColumnNames. RowNames

and ColumnNames can be a numeric vector, character array, or cell array of strings,
whose elements are equal in number to the number of rows and number of columns,
respectively, in Matrix. RowNames are typically gene names or probe identifiers, while
ColumnNames are typically sample identifiers.

Note: The row or column names do not need to be unique.

DMobj = DataMatrix("File", FileName) creates a DataMatrix object, DMobj, from
FileName, a string specifying a file name or a path and file name of a tab-delimited TXT
or XLsS file that contains table-oriented data and metadata.

Note: Typically, the first row of the table contains column names, the first column
contains row names, and the numeric data starts at the 2,2 position. The DataMatrix
function will detect if the first column does not contain row names, and read data from
the first column. However, if the first row does not contain header text (column names),
set the HLine property to O.

DMobj = DataMatrix(..., "PropertyName®, PropertyValue, ...) calls
DataMatrix with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

DMobj = DataMatrix(..., "RowNames", RowNamesValue, ...) specifies row
names for DMobj. RowNamesValue can be any of the following:

+ Numeric vector, character array, or a cell array of strings, whose elements are equal
in number to the number of rows of numeric data in the input matrix.

DataMatrix

+ A single string, which is used as a prefix for row names. Row numbers will be
appended to the prefix.

+ true — Unique row names will be assigned using the format rowl, row2, row3, etc.

+ false — Default. No row names are assigned.

Note: The row names do not need to be unique.

DMobj = DataMatrix(..., "ColNames®", ColNamesValue, ...) specifies column
names for DMobj. ColNamesValue can be any of the following:

+ Numeric vector, character array, or a cell array of strings, whose elements are equal
in number to the number of columns of numeric data in the input matrix.

+ A single string, which is used as a prefix for column names. Column numbers will be
appended to the prefix.

+ true — Unique column names will be assigned using the format coll, col2, col3,
etc.

+ Ffalse — Default. No column names are assigned.

Note: The column names do not need to be unique.

DMobj = DataMatrix(..., "Name®", NameValue, ...) specifies a name for DMobj.
Defaultis " ".

DMobj = DataMatrix("File", FileName, ..."Delimiter”,
DelimiterValue, ...) specifies a delimiter symbol to use for the input file. Typical
choices are:

+ "\t" (default)

S
DMobj = DataMatrix("File", FileName, ..."HLine", HLineValue, ...)
specifies which row of the input file contains the column header text (column names).

1-507

1 Alphabetical List

1-508

HLineValue is a positive integer. Default is 1. When creating the DataMatrix object
DMobj, the DataMatrix function loads data from (HLineValue + 1) to the end of the
file.

Tip If the input file does not contain column header text (column names), set
HLineValue to O.

DMobj = DataMatrix("File®, FileName, ..."Rows", RowsValue, ...)
specifies a subset of row names in Fi le for the DataMatrix function to use to create
DMobj. RowsValue can be a cell array of strings, a character array, or a numeric or
logical vector.

DMobj = DataMatrix("File", FileName, ..."Columns”,

ColumnsValue, ...) specifies a subset of column names in File for the DataMatrix
function to use to create DMobj. ColumnsValue can be a cell array of strings, a character
array, or a numeric or logical vector.

Examples

For examples of creating and using DataMatrix objects, see “Representing Expression
Data Values in DataMatrix Objects”.

More About

. “DataMatrix object”

See Also

disp | dmbsxfun | double | ge | get | horzcat | isequaln | le | It | mean |
min | ndims | ne | plot | plus | rdivide | set | sortcols | std | sum | var |
colnames | dmarrayfun | dnwrite | eq | gt | isequal | Idivide | max | median
| minus | numel | power | rownames | single | sortrows | times | vertcat

dayhoff

dayhoff

Return Dayhoff scoring matrix

Syntax

ScoringMatrix = dayhoff

Description

ScoringMatrix = dayhoff returns a PAM250 type scoring matrix. The order of amino
acids in the matrixis AR NDCQEGHILKMFPSTWYVBZX™

See Also

blosum | gonnet | localalign | nuc44 | nwalign | pam | swalign

1-509

1 Alphabetical List

1-510

dimercount

Count dimers in nucleotide sequence

Syntax

Dimers = dimercount(SegNT)

[Dimers, Percent] = dimercount(SeqNT)

... = dimercount(SegNT, “Ambiguous®, AmbiguousValue)
.- dimercount(SeqNT, "Chart®, ChartValue)

Input Arguments

SeqgNT One of the following:

+ String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers.

* Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes.

MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned

by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank

Examples: "ACGT" or [1 2 3 4]

AmbiguousValue String specifying how to treat dimers containing ambiguous
nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N). Choices
are:

"ignore” (default) — Skips dimers containing ambiguous
characters

* "bundle® — Counts dimers containing ambiguous
characters and reports the total count in the Ambiguous

field of the Dimers output structure.

dimercount

+ "prorate® — Counts dimers containing ambiguous
characters and distributes them proportionately in the
appropriate dimer fields containing standard nucleotide
characters. For example, the counts for the dimer AR are
distributed evenly between the AA and AG fields.

"warn® — Skips dimers containing ambiguous characters
and displays a warning.

ChartValue

String specifying a chart type. Choices are "pie” or "bar”.

Output Arguments

Dimers

MATLAB structure containing the fields AA, AC, AG, AT, CA, CC, CG, CT,
GA, GC, GG, GT, TA, TC, TG, and TT, which contain the dimer counts in
SeqgNT.

Percent

A 4-by-4 matrix with the relative proportions of the dimers in SeqNT.
The rows correspond to A, C, G, and T in the first element of the dimer,
and the columns correspond to A, C, G, and T in the second element of
the dimer.

Description

Dimers = dimercount(SegNT) counts the nucleotide dimers in SeqgNT, a nucleotide
sequence, and returns the dimer counts in Dimers, a MATLAB structure containing the
fields AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT.

* For sequences that have dimers with the character U, these dimers are added to the
corresponding dimers containing a T.

+ If the sequence contains gaps indicated by a hyphen (-), the gaps are ignored, and the
two characters on either side of the gap are counted as a dimer.

+ If the sequence contains unrecognized characters, then dimers containing these
characters are ignored, and the following warning message appears:

Warning: Unknown symbols appear in the sequence. These will be ignored.

[Dimers, Percent] = dimercount(SegNT) returns Percent, a 4-by-4 matrix with
the relative proportions of the dimers in SegNT. The rows correspond to A, C, G, and T in

1-511

1 Alphabetical List

1-512

the first element of the dimer, and the columns correspond to A, C, G, and T in the second
element of the dimer.

... = dimercount(SegNT, "Ambiguous®, AmbiguousValue) specifies how to treat
dimers containing ambiguous nucleotide characters. Choices are:

+ T"ignore” (default)
* "bundle-

* "prorate”

- "warn®

... = dimercount(SegNT, "Chart®, ChartValue) creates a chart showing the
relative proportions of the dimers. ChartValue can be "pie” or "bar”.

Examples

Count the dimers in a