
Bioinformatics Toolbox™

Reference

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Bioinformatics Toolbox™ Reference
© COPYRIGHT 2003–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 2005 Online only New for Version 2.1 (Release 14SP2+)
September 2005 Online only Revised for Version 2.1.1 (Release 14SP3)
November 2005 Online only Revised for Version 2.2 (Release 14SP3+)
March 2006 Online only Revised for Version 2.2.1 (Release 2006a)
May 2006 Online only Revised for Version 2.3 (Release 2006a+)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
April 2007 Online only Revised for Version 2.6 (Release 2007a+)
September 2007 Online only Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)
September 2010 Online only Revised for Version 3.6 (Release 2010b)
April 2011 Online only Revised for Version 3.7 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)

v

Contents

Alphabetical List
1

vi

1

Alphabetical List

1 Alphabetical List

1-2

aa2int
Convert amino acid sequence from letter to integer representation

Syntax

SeqInt = aa2int(SeqChar)

Input Arguments

SeqChar One of the following:

• String of single-letter codes specifying an amino acid sequence. For
valid letter codes, see the table Mapping Amino Acid Letter Codes
to Integers. Unknown characters are mapped to 0. Integers are
arbitrarily assigned to IUB/IUPAC letters.

• MATLAB® structure containing a Sequence field that contains an
amino acid sequence, such as returned by fastaread, getgenpept,
genpeptread, getpdb, or pdbread.

Output Arguments

SeqInt Amino acid sequence specified by a row vector of integers.

Description

SeqInt = aa2int(SeqChar) converts SeqChar, a character string of single-letter
codes specifying an amino acid sequence, to SeqInt, a row vector of integers specifying
the same amino acid sequence. For valid letter codes, see the table Mapping Amino Acid
Letter Codes to Integers.

Mapping Amino Acid Letter Codes to Integers

 aa2int

1-3

Amino Acid Code Integer

Alanine A 1

Arginine R 2

Asparagine N 3

Aspartic acid (Aspartate) D 4

Cysteine C 5

Glutamine Q 6

Glutamic acid (Glutamate) E 7

Glycine G 8

Histidine H 9

Isoleucine I 10

Leucine L 11

Lysine K 12

Methionine M 13

Phenylalanine F 14

Proline P 15

Serine S 16

Threonine T 17

Tryptophan W 18

Tyrosine Y 19

Valine V 20

Asparagine or Aspartic acid (Aspartate) B 21

Glutamine or Glutamic acid (Glutamate) Z 22

Unknown amino acid (any amino acid) X 23

Translation stop * 24

Gap of indeterminate length - 25

Unknown character (any character or
symbol not in table)

? 0

1 Alphabetical List

1-4

Examples

Converting a Simple Sequence

Convert the sequence of letters MATLAB to integers.

SeqInt = aa2int('MATLAB')

SeqInt =

 13 1 17 11 1 21

Converting a Random Sequence

1 Create a random string to represent an amino acid sequence.

SeqChar = randseq(20, 'alphabet', 'amino')

SeqChar =

 dwcztecakfuecvifchds

2 Convert the amino acid sequence from letter to integer representation.

SeqInt = aa2int(SeqChar)

SeqInt =

 Columns 1 through 13

 4 18 5 22 17 7 5 1 12 14 0 7 5

 Columns 14 through 20

 20 10 14 5 9 4 16

See Also
aminolookup | int2aa | int2nt | nt2int

 getStop

1-5

getStop
Class: BioMap

Compute stop positions of aligned read sequences from BioMap object

Syntax

Stop = getStop(BioObj)

Stop = getStop(BioObj, Subset)

Description

Stop = getStop(BioObj) returns Stop, a vector of integers specifying the stop
position of aligned read sequences with respect to the position numbers in the reference
sequence from a BioMap object.

Stop = getStop(BioObj, Subset) returns a stop position for only read sequences
specified by Subset.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

1 Alphabetical List

1-6

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Stop

Vector of integers specifying the stop position of aligned read sequences with respect to
the position numbers in the reference sequence. Stop includes the stop positions for only
read sequences specified by Subset.

Examples

Construct a BioMap object, and then compute the stop position for different sequences in
the object:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Compute the stop position of the second sequence in the object

Stop_2 = getStop(BMObj1, 2)

Stop_2 =

 37

% Compute the stop positions of the first and third sequences in

% the object

Stop_1_3 = getStop(BMObj1, [1 3])

Stop_1_3 =

 36

 39

% Compute the stop positions of all sequences in the object

Stop_All = getStop(BMObj1);

 getStop

1-7

See Also
getStart | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-8

filterByFlag
Class: BioMap

Filter sequence reads by SAM flag

Syntax

Indices = filterByFlag(BioObj, FlagName, FlagValue)

Indices = filterByFlag(BioObj, Subset, FlagName, FlagValue)

Indices = filterByFlag(..., FlagName1, FlagValue1, FlagName2,

FlagValue2, ...)

Description

Indices = filterByFlag(BioObj, FlagName, FlagValue) returns Indices, a
vector of logical indices, indicating the read sequences in BioObj, a BioMap object, with
FlagName set to FlagValue.

Indices = filterByFlag(BioObj, Subset, FlagName, FlagValue) returns
Indices, a vector of logical indices, indicating the read sequences that meet the specified
criteria from a subset of entries in a BioMap object.

Indices = filterByFlag(..., FlagName1, FlagValue1, FlagName2,

FlagValue2, ...) applies multiple flag filters in a single statement.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Subset

Either of the following to specify a subset of the elements in BioObj:

 filterByFlag

1-9

• Vector of positive integers
• Logical vector

Default:

FlagName

String specifying one of the following flags to filter by:

• 'pairedInSeq' — The read is paired in sequencing, regardless if it is mapped as a
pair.

• 'pairedInMap' — The read is mapped in a proper pair.
• 'unmappedQuery' — The read is unmapped.
• 'unmappedMate' — The mate is unmapped.
• 'strandQuery' — Strand direction of the read (0 = forward, 1 = reverse).
• 'strandMate' — Strand direction of the mate (0 = forward, 1 = reverse).
• 'readIsFirst' — The read is first in a pair.
• 'readIsSecond' — The read is second in a pair.
• 'alnNotPrimary' — The read's alignment is not primary.
• 'failedQualCheck' — The read fails platform or vendor quality checks.
• 'duplicate' — The read is a PCR or optical duplicate.

Default:

FlagValue

Logical value indicating the status of a flag. A 0 indicates false or forward, and a 1
indicates true or reverse.

Default:

Output Arguments

Indices

Vector of logical indices, indicating the read sequences in BioObj with FlagName set to
FlagValue.

1 Alphabetical List

1-10

Examples

Construct a BioMap object, and then determine the read sequences that are both mapped
in a proper pair and first in a pair:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Filter the elements using 'pairedInMap' and 'readIsFirst' flags

Indices = filterByFlag(BMObj1, 'pairedInMap', true,...

 'readIsFirst', true);

% Return the headers of the filtered elements

filtered_Headers = BMObj1.Header(Indices);

See Also
BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getAlignment

1-11

getAlignment
Class: BioMap

Construct alignment represented in BioMap object

Syntax

Alignment = getAlignment(BioObj, StartPos, EndPos)

Alignment = getAlignment(BioObj, StartPos, EndPos, R)

Alignment = getAlignment(..., 'ParameterName', ParameterValue)

[Alignment, Indices] = getAlignment(...)

Description

Alignment = getAlignment(BioObj, StartPos, EndPos) returns Alignment,
a character array containing the aligned read sequences from BioObj, a BioMap object.
The read sequences must align within a specific region of the reference sequence, which
is defined by StartPos and EndPos, two positive integers such that StartPos is less
than EndPos, and both are smaller than the length of the reference sequence.

Alignment = getAlignment(BioObj, StartPos, EndPos, R) selects the
reference where getAlignment reconstructs the alignment.

Alignment = getAlignment(..., 'ParameterName', ParameterValue) accepts
one or more comma-separated parameter name/value pairs. Specify ParameterName
inside single quotes.

[Alignment, Indices] = getAlignment(...) returns Indices, a vector of
indices specifying the read sequences that align within a specific region of the reference
sequence.

Input Arguments

BioObj

Object of the BioMap class.

1 Alphabetical List

1-12

Default:

StartPos

Positive integer that defines the start of a region of the reference sequence. StartPos
must be less than EndPos, and smaller than the total length of the reference sequence.

Default:

EndPos

Positive integer that defines the end of a region of the reference sequence. EndPos must
be greater than StartPos, and smaller than the total length of the reference sequence.

Default:

R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Parameter Name/Value Pairs

'OffsetPad'

Specifies if padding blanks are added at the beginning of each aligned sequence to
represent the offset of the start position of each aligned sequence with respect to the
reference. Choices are true or false (default).

Default:

Output Arguments

Alignment

Character array containing the aligned read sequences from BioObj that align within
a specific region of the reference sequence. Each row of the character array contains one
aligned sequence, that is, the sequence positions that fall within the specified region of
the reference sequence. Each aligned sequence can include gaps.

 getAlignment

1-13

Indices

Vector of indices specifying the read sequences from BioObj that align within a specific
region of the reference sequence.

Examples

Construct a BioMap object, and then reconstruct the alignment between positions 10 and
25 of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Construct the alignment between positions 10 and 25 of the

% reference sequence.

Alignment = getAlignment(BMObj1, 10, 25)

Alignment =

CTCATTGTAAATGTGT

CTCATTGTAAATGTGT

CTCATTGTAAATGTGT

CTCATTGTAATTTTTT

CTCATTGTAAATGTGT

 ATTGTAAATGTGT

 ATTGTAAATGTGT

 TGTAAATGTGT

 AAATGTGT

 GTGT

 GTGT

 GT

Algorithms

getAlignment assumes the reference sequence has no gaps. Therefore, positions in
reads corresponding to insertions (I) and padding (P) do not appear in the alignment.

Because soft clipped positions (S) are not associated with positions that align to the
reference sequence, they do not appear in the alignment.

A skipped position (N) appears as a . (period) in the alignment.

1 Alphabetical List

1-14

Hard clipped positions (H) do not appear in the sequences or the alignment.

See Also
BioMap | getBaseCoverage | getCompactAlignment | align2cigar |
cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getBaseCoverage

1-15

getBaseCoverage

Class: BioMap

Return base-by-base alignment coverage of reference sequence in BioMap object

Syntax

Cov = getBaseCoverage(BioObj, StartPos, EndPos)

Cov = getBaseCoverage(BioObj, StartPos, EndPos, R)

Cov = getBaseCoverage(..., Name,Value)

[Cov, BinStart] = getBaseCoverage(...)

Description

Cov = getBaseCoverage(BioObj, StartPos, EndPos) returns Cov, a row vector
of nonnegative integers. This vector indicates the base-by-base alignment coverage of a
range or set of ranges in the reference sequence in BioObj, a BioMap object. The range
or set of ranges are defined by StartPos and EndPos. StartPos and EndPos can be
two nonnegative integers such that StartPos is less than EndPos, and both integers
are smaller than the length of the reference sequence. StartPos and EndPos can also
be two column vectors representing a set of ranges (overlapping or segmented). When
StartPos and EndPos specify a segmented range, Cov contains NaN values for base
positions between segments.

Cov = getBaseCoverage(BioObj, StartPos, EndPos, R) selects the reference
where getBaseCoverage calculates the coverage.

Cov = getBaseCoverage(..., Name,Value) returns alignment coverage
information with additional options specified by one or more Name,Value pair
arguments.

[Cov, BinStart] = getBaseCoverage(...) returns BinStart, a row vector of
positive integers specifying the start position of each bin (when binning occurs).

1 Alphabetical List

1-16

Input Arguments
BioObj

Object of the BioMap class.

Default:

StartPos

Either of the following:

• Nonnegative integer that defines the start of a range in the reference sequence.
StartPos must be less than EndPos and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the start of a range in the
reference sequence.

Default:

EndPos

Either of the following:

• Nonnegative integer that defines the end of a range in the reference sequence.
EndPos must be greater than StartPos and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the end of a range in the
reference sequence.

Default:

R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 getBaseCoverage

1-17

'binWidth'

Positive integer specifying the bin width, in number of base pairs (bp). Bins are
centered within min(StartPos) and max(EndPos). Thus, the first and last bins span
approximately equally outside the range from min(StartPos) to max (EndPos).

Note: You cannot specify both binWidth and numberOfBins.

Default:

'numberOfBins'

Positive integer specifying the number of equal-width bins to use to span the requested
region. Bins are centered within min(StartPos) and max(EndPos). Thus, the first and
last bins span approximately equally outside the range from min(StartPos) to max
(EndPos).

Note: You cannot specify both binWidth and numberOfBins.

Default:

'binType'

String specifying the binning algorithm. Choices are:

• 'max' — From the bin, getBaseCoverage selects the base position with the most
reads aligned to it, then uses its alignment coverage value for the bin.

• 'min' — From the bin, getBaseCoverage selects the base position with the least
reads aligned to it, then uses its alignment coverage value for the bin.

• 'mean' — Uses the average alignment coverage, computed from all base positions
within the bin.

Default: 'max'

'complementRanges'

Specifies whether to return the alignment coverage for the base positions
between segments, instead of within segments. If true, the length of Cov is

1 Alphabetical List

1-18

numel(min(StartPos):max(EndPos)), and Cov contains NaN values for base
positions within segments.

Default: false

'Spliced'

Logical specifying whether short reads are spliced during mapping (as in mRNA-to-
genome mapping). N symbols in the Signature property of the object are not counted.

Default: false

Output Arguments

Cov

Row vector of nonnegative integers. This vector specifies the number of read sequences
that align with each base position or bin in the requested regions. A set of ranges can be
overlapping or segmented. For a range, the length of Cov is numel(StartPos:EndPos).
For a segmented range, the length of Cov is numel(min(StartPos):max(EndPos)).
Cov contains NaN values for base positions between segments. When binning occurs, the
number of elements in Cov equals the number of bins.

BinStart

Row vector of positive integers specifying the start position of each bin.
BinStart is the same length as Cov. If no binning occurs, then BinStart equals
min(StartPos):max(EndPos).

Examples

Construct a BioMap object, and then return the alignment coverage of each of the first 12
base positions of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the number of reads that align to each of

% the first 12 base positions of the reference sequence

cov = getBaseCoverage(BMObj1, 1, 12)

 getBaseCoverage

1-19

cov =

 1 1 2 2 3 4 4 4 5 5 5 5

Construct a BioMap object, and then return the alignment coverage of the range between
1 and 1000, on a bin-by-bin basis, using bins with a width of 100 bp:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the number of reads that align to each 100-bp bin

% in the 1:1000 range of the reference sequence. Also return the

% start position of each bin

[cov, bin_starts] = getBaseCoverage(BMObj1, 1, 1000, 'binWidth', 100)

cov =

 17 20 41 44 45 48 48 45 46 42

bin_starts =

 1 101 201 301 401 501 601 701 801 901

See Also
getCounts | getAlignment | BioMap | getIndex | getCompactAlignment |
align2cigar | cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-20

getCompactAlignment
Class: BioMap

Construct compact alignment represented in BioMap object

Syntax

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos)

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos, R)

CompAlignment = getCompactAlignment(..., 'ParameterName',

ParameterValue)

[CompAlignment, Indices] = getCompactAlignment(...)

[CompAlignment, Indices, Rows] = getCompactAlignment(...)

Description

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos) returns
CompAlignment, a character array containing the aligned read sequences from BioObj,
a BioMap object, in a compact format. The read sequences must align within a specific
region of the reference sequence, which is defined by StartPos and EndPos, two positive
integers such that StartPos is less than EndPos, and both are smaller than the length
of the reference sequence.

CompAlignment = getCompactAlignment(BioObj, StartPos, EndPos, R)

selects the reference where getCompactAlignment reconstructs the alignment.

CompAlignment = getCompactAlignment(..., 'ParameterName',

ParameterValue) accepts one or more comma-separated parameter name/value pairs.
Specify ParameterName inside single quotes.

[CompAlignment, Indices] = getCompactAlignment(...) returns Indices, a
vector of indices specifying the read sequences that align within a specific region of the
reference sequence.

[CompAlignment, Indices, Rows] = getCompactAlignment(...) returns Rows,
a vector of positive numbers specifying the row in CompAlignment where each read
sequence is best displayed.

 getCompactAlignment

1-21

Input Arguments

BioObj

Object of the BioMap class.

Default:

StartPos

Positive integer that defines the start of a region of the reference sequence. StartPos
must be less than EndPos, and smaller than the total length of the reference sequence.

Default:

EndPos

Positive integer that defines the end of a region of the reference sequence. EndPos must
be greater than StartPos, and smaller than the total length of the reference sequence.

Default:

R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Parameter Name/Value Pairs

'Full'

Specifies whether or not to include only the read sequences that fully align with the
defined region of the reference sequence, that is, they are completely contained within
the region, and do not extend beyond the region. Choices are true or false (default).

Default: false

'TrimAlignment'

Specifies whether or not to trim empty leading and trailing columns from the alignment.
Choices are true or false. Default is false, which does not trim the alignment, but
includes any empty leading or trailing columns, and returns an alignment always of
length EndPos – StartPos + 1.

1 Alphabetical List

1-22

Default: false

Output Arguments
CompAlignment

Character array containing the aligned read sequences from BioObj that align within
the requested region. The character array represents a compact alignment, that is each
row of the character array contains one or more aligned sequences, such that the number
of rows in the character array is minimized. Each aligned sequence includes only the
sequence positions that fall within the requested region, and each aligned sequence can
include gaps.

Indices

Vector of indices specifying the read sequences from BioObj that align within the
requested region.

Rows

Vector of positive numbers specifying the row in CompAlignment where each read
sequence is best displayed.

Examples
Construct a BioMap object, and then construct the compact alignment between positions
30 and 59 of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Construct the compact alignment between positions 30 and 59 of

% the reference sequence, and return the indices of the reads in the

% compact alignment, as well as the row each read is in.

[CompAlignment, Ind, Row] = getCompactAlignment(BMObj1, 30, 59)

CompAlignment =

TAACTCG GCCCAGCATTAGGGAGC

TAACTCGT CATTAGGGAGC

TAACTCGTCC ATTAGGGAGC

TAACTCTTCTCT TTAGGGAGC

TAACTCGTCCATGG TAGGGAGC

 getCompactAlignment

1-23

TAACTCGTCCCTGGCCCA C

TAACTCGTCCATGGCCCAG

TAACTCGTCCATTGCCCAGC

TAACTCGTCCATGGCCCAGCATT

TAACTCGTCCATGGCCCAGCATTTGGG

TAACTCGTCCATGGCCCAGCATTAGGG

TAACTCGTCCATGGCCCAGCATTAGGGAGC

TAACTCGTCCATGGCCCAGCATTAGGGATC

TAACTCGTCCATGGCCCAGCATTAGGGAGC

 AACTCGTCCATGGCCCAGCATTAGGGAGC

 GTACATGGCCCAGCATTAGGGAGC

 TCCATGGCCCAGCATTAGGGCGC

Ind =

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

Row =

 1

1 Alphabetical List

1-24

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 1

 2

 3

 4

 5

 6

Algorithms
getCompactAlignment assumes the reference sequence has no gaps. Therefore,
positions in reads corresponding to insertions (I) and padding (P) do not appear in the
alignment.

Because soft clipped positions (S) are not associated with positions that align to the
reference sequence, they do not appear in the alignment.

A skipped position (N) appears as a - (hyphen) in the alignment.

Hard clipped positions (H) do not appear in the sequences or the alignment.

See Also
getAlignment | BioMap | getBaseCoverage | align2cigar | cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

 getCompactAlignment

1-25

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-26

getCounts
Class: BioMap

Return count of read sequences aligned to reference sequence in BioMap object

Syntax
Count = getCounts(BioObj, StartPos, EndPos)

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups)

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups, R)

... = getCounts(..., Name,Value)

Description
Count = getCounts(BioObj, StartPos, EndPos) returns Count, a nonnegative
integer specifying the number of read sequences in BioObj, a BioMap object, that align
to a specific range or set of ranges in the reference sequence. The range or set of ranges
are defined by StartPos and EndPos. StartPos and EndPos can be two nonnegative
integers such that StartPos is less than EndPos, and both integers are smaller than the
length of the reference sequence. StartPos and EndPos can also be two column vectors
representing a set of ranges (overlapping or segmented).

By default, getCounts counts each read only once. Therefore, if a read spans multiple
ranges, that read instance is counted only once. When StartPos and EndPos specify
overlapping ranges, the overlapping ranges are considered as one range.

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups) specifies
Groups, a row vector of integers or strings, the same size as StartPos and EndPos. This
vector indicates the group to which each range belongs. GroupCount is a column vector
containing a number of elements equal to the number of unique elements in Groups.
GroupCount specifies the number of reads that align to each group, in the ascending
order of unique groups in Groups.

Each group is treated independently. Therefore, a read can be counted in more than one
group.

GroupCount = getCounts(BioObj, StartPos, EndPos, Groups, R) specifies a
reference for each of the segmented ranges defined by StartPos, EndPos, and Groups.

 getCounts

1-27

... = getCounts(..., Name,Value) returns counts with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

BioObj

Object of the BioMap class.

Default:

StartPos

Either of the following:

• Nonnegative integer that defines the start of a range in the reference sequence.
StartPos must be less than EndPos, and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the start of a range in the
reference sequence.

Default:

EndPos

Either of the following:

• Nonnegative integer that defines the end of a range in the reference sequence.
EndPos must be greater than StartPos, and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the end of a range in the
reference sequence.

Default:

Groups

Row vector of integers or strings, the same size as StartPos and EndPos. This vector
indicates the group to which each range belongs.

Default:

1 Alphabetical List

1-28

R

Vector of positive integers indexing the SequenceDictionary property of BioObj,
or a cell array of strings specifying the actual names of references. R must be ordered
and have the same number of elements as the unique elements in Groups. If R has the
same number of elements as Groups, then all of the entries in R for each unique value in
Groups must be the same.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Independent'

Logical that specifies whether to treat the ranges defined by StartPos and EndPos
independently. If true, Count is a column vector containing the same number of
elements as StartPos and EndPos. In this case, a read that spans multiple ranges, is
counted once in each range.

Note: This name-value pair argument is ignored when using the Groups input
argument, because getCounts assumes that each group of ranges is independent.

Default: false

'Overlap'

Specifies the minimum number of base positions that a read must overlap in a range or
set of ranges, to be counted. This value can be any of the following:

• Positive integer
• 'full' — A read must be fully contained in a range or set of ranges to be counted.
• 'start' — A read's start position must lie within a range or set of ranges to be

counted.

Default: 1

 getCounts

1-29

'Spliced'

Logical specifying whether short reads are spliced during mapping (as in mRNA-to-
genome mapping). N symbols in the Signature property of the object are not counted.

Default: false

'Method'

String specifying the method to measure the abundance of reads. Choices are:

• 'raw' — Raw counts
• 'rpkm' — Counts of reads per kilobase pairs per million aligned reads
• 'mean' — Average coverage depth computed base-by-base
• 'max' — Maximum coverage depth computed base-by-base
• 'min' — Minimum coverage depth computed base-by-base
• 'sum' — Sum of all aligned bases in all the reads

Default: 'raw'

Output Arguments

Count

Either of the following:

• When Independent is false, this value is a nonnegative integer. The integer
specifies the number of reads that align to a range or set of ranges (overlapping
or segmented) of the reference sequence in BioObj, a BioMap object. Each read is
counted only once, even if the read spans multiple ranges.

• When Independent is true, this value is a column vector of nonnegative integers.
This vector indicates the number of reads that align to the independent ranges
specified by StartPos and EndPos. This vector contains the same number of
elements as StartPos and EndPos.

GroupCount

Column vector containing a number of elements equal to the number of unique elements
in Groups. The vector specifies the number of reads that align to each group, in the order

1 Alphabetical List

1-30

of unique groups in Groups. The groups of ranges are treated independently. Therefore,
a single read can be counted in more than one group.

Examples

Construct a BioMap object, and then return the number of reads that align to at least one
base position in two ranges of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the number of reads that align to the segmented range 1:50 and 71:100

counts_1 = getCounts(BMObj1,[1;71],[50;100])

counts_1 =

 37

Construct a BioMap object, and then return the number of reads that align to at least one
base position in two independent ranges of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the number of reads that align to each of the ranges,

% 1:50 and 71:100, independent of each other

counts_2 = getCounts(BMObj1,[1;71],[50;100],'independent',true)

counts_2 =

 20

 21

Notice that the total number of reads reported in counts_2 is greater than the number
of reads reported in counts_1. This difference occurs because there are four reads that
span the two ranges, and are counted twice in the second example.

Construct a BioMap object, and then return the number of reads that align to two
separate groups of ranges of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the number of reads that align to a group containing range 30:60,

% and also the number of reads that align to a group containing range 1:10

% and range 50:60

 getCounts

1-31

counts_3 = getCounts(BMObj1,[1;30;50],[10;60;60],[2 1 2])

counts_3 =

 25

 22

Construct a BioMap object, and then return the total number of reads aligned to the
reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the number of sequences that align to the entire reference sequence

getCounts(BMObj1,min(getStart(BMObj1)),max(getStop(BMObj1)))

ans =

 1482

See Also
getIndex | getAlignment | BioMap | getBaseCoverage | getCompactAlignment
| align2cigar | cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-32

getCoverage
Class: BioMap

Compute read coverage in BioMap object

Note: getCoverage has been removed. Use getBaseCoverage, getCounts, or
getIndex instead.

Syntax
Cov = getCoverage(BioObj, StartPos, EndPos)

[Cov, Indices] = getCoverage(BioObj, StartPos, EndPos)

[Cov, Indices, Seqs] = getCoverage(BioObj, StartPos, EndPos)

... = getCoverage(BioObj, StartPos, EndPos, 'ParameterName',

ParameterValue)

Description
Cov = getCoverage(BioObj, StartPos, EndPos) returns Cov, a nonnegative
integer indicating the number of read sequences that cover (align within) a specific
region of the reference sequence in BioObj, a BioMap object. The specific region of the
reference sequence is defined by StartPos and EndPos. StartPos and EndPos can be
two nonnegative integers such that StartPos is less than EndPos, and both are smaller
than the length of the reference sequence. StartPos and EndPos can also be two column
vectors representing a collection of regions of the reference sequence. In this case, Cov
is a column vector of nonnegative integers indicating the number of read sequences that
cover each region.

[Cov, Indices] = getCoverage(BioObj, StartPos, EndPos) also returns
Indices, a vector of indices specifying the read sequences that align within a specific
region of the reference sequence.

[Cov, Indices, Seqs] = getCoverage(BioObj, StartPos, EndPos) also
returns Seqs, a cell array of strings containing the read sequences that align within a
specific region of the reference sequence.

 getCoverage

1-33

... = getCoverage(BioObj, StartPos, EndPos, 'ParameterName',

ParameterValue) accepts one or more comma-separated parameter name/value pairs.
Specify ParameterName inside single quotes.

Tips

Use the Indices output from the getCoverage method as input to other BioMap
methods. Doing so lets you determine other information about the read sequences in the
coverage region, such as header, start position, mapping quality, etc.

Input Arguments

BioObj

Object of the BioMap class.

Default:

StartPos

Either of the following:

• Nonnegative integer that defines the start of a region of the reference sequence.
StartPos must be less than EndPos, and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the start of a region of the
reference sequence.

Default:

EndPos

Either of the following:

• Nonnegative integer that defines the end of a region of the reference sequence.
EndPos must be greater than StartPos, and smaller than the total length of the
reference sequence.

1 Alphabetical List

1-34

• Column vector of nonnegative integers, each defining the end of a region of the
reference sequence.

Default:

Parameter Name/Value Pairs

'Base'

Specifies if the output Cov is computed base-by-base, that is determining the number
of nongap symbols that align with each position in the specified region of the reference
sequence. If true, Cov is a vector of positive integers corresponding to the base positions
in the specified region of the reference sequence.

Default: false

'Full'

Specifies to include only the read sequences that fully align with the defined region of the
reference sequence, that is, they are completely contained within the region, and do not
extend beyond the region.

Default: false

Output Arguments

Cov

Either of the following:

• Nonnegative integer indicating the number of read sequences that cover (align
within) a specific region of the reference sequence in BioObj.

• Column vector of nonnegative integers indicating the number of read sequences that
cover each region specified by StartPos and EndPos, when they are both column
vectors. In this case, Cov is the same length as StartPos and EndPos.

Indices

Vector of indices specifying the read sequences from BioObj that align within a specific
region of the reference sequence.

 getCoverage

1-35

Seqs

Cell array of strings containing the read sequences from BioObj that align within
a specific region of the reference sequence. Each string is a sequence read without
alignment information.

Examples

Construct a BioMap object, and then retrieve the coverage of the first 50 positions of the
reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the number of sequences that cover the first 50

% positions of the reference sequence

cov = getCoverage(BMObj1, 1, 50)

cov =

 20

Construct a BioMap object, and then retrieve the starting positions for the read
sequences that cover the first 50 positions of the reference sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the number of sequences that cover the first 50

% positions of the reference sequence

% Also retrieve the indices of these sequences

[cov, idx] = getCoverage(BMObj1, 1, 50);

% Use the indices for these sequences to determine their start

% positions

startPositions = getStart(BMObj1, idx);

Construct a BioMap object, and then retrieve the coverage of the first 50 positions of the
reference sequence, considering only read sequences that align fully within the region:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the number of sequences that cover the first 50

% positions of the reference sequence

% Consider only read sequences that align fully within the region

fullCov = getCoverage(BMObj1, 1, 50, 'full', true)

1 Alphabetical List

1-36

fullCov =

 8

Construct a BioMap object, and then retrieve the coverage for the first 10 positions of the
reference sequence, on a base-by-base basis:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the number of sequences that cover each base position of

% the first 10 positions of the reference sequence

baseCov = getCoverage(BMObj1, 1, 10, 'base', true)

baseCov =

 1

 1

 2

 2

 3

 4

 4

 4

 5

 5

See Also
getAlignment | BioMap | getCompactAlignment | align2cigar | cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getFlag

1-37

getFlag
Class: BioMap

Retrieve read sequence flags from BioMap object

Syntax

Flag = getFlag(BioObj)

Flag = getFlag(BioObj, Subset)

Description

Flag = getFlag(BioObj) returns Flag, a vector of nonnegative integers indicating
the bit-wise information that specifies the status of the 11 flags described by the SAM
format specification. Each integer corresponds to one read sequence from a BioMap
object.

Flag = getFlag(BioObj, Subset) returns flag integers for only object elements
specified by Subset.

Tips

After using the getFlag method to return the integer specifying the bit-wise information
for the SAM flags, use the bitget function to determine the status of a specific SAM
flag. For more information, see “Examples” on page 1-38.

Input Arguments

BioObj

Object of the BioMap class.

Default:

http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-38

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Flag

Vector of nonnegative integers. Each integer corresponds to one read sequence and
indicates the bit-wise information that specifies the status of the 11 flags described by
the SAM format specification. These flags describe different sequencing and alignment
aspects of a read sequence. Flag includes flag integers for only read sequences specified
by Subset.

Examples

Construct a BioMap object, and then retrieve the SAM flag values for different elements
in the object:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve integer specifying bit-wise information for 11

% SAM flags of the second element

flagValue = getFlag(BMObj1, 2)

flagValue =

 73

http://samtools.sourceforge.net/SAM1.pdf

 getFlag

1-39

% Retrieve integers specifying bit-wise information for 11

% SAM flags of the first and third elements

flagValues = getFlag(BMObj1, [1 3])

flagValues =

 73

 137

% Retrieve integers specifying bit-wise information for 11

% SAM flags of all elements

allFlagValues = getFlag(BMObj1);

% Determine the status of the fourth flag (mate is unmapped)

% for the second element, which has a flag value of 73

bitget(73, 4)

ans =

 1

Alternatives

An alternative to using the getFlag method is to use dot indexing with the Flag
property:

BioObj.Flag(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
setFlag | bitget | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-40

• SAM format specification

http://samtools.sourceforge.net/SAM1.pdf

 getIndex

1-41

getIndex
Class: BioMap

Return indices of read sequences aligned to reference sequence in BioMap object

Syntax

Indices = getIndex(BioObj, StartPos, EndPos)

Indices = getIndex(BioObj, StartPos, EndPos, R)

Indices = getIndex(..., Name,Value)

Description

Indices = getIndex(BioObj, StartPos, EndPos) returns Indices, a column
vector of indices specifying the read sequences that align to a range or set of ranges
in the reference sequence in BioObj, a BioMap object. The range or set of ranges are
defined by StartPos and EndPos. StartPos and EndPos can be two nonnegative
integers such that StartPos is less than EndPos, and both integers are smaller than the
length of the reference sequence. StartPos and EndPos can also be two column vectors
representing a set of ranges (overlapping or segmented).

getIndex includes each read only once. Therefore, if a read spans multiple ranges, the
index for that read appears only once.

Indices = getIndex(BioObj, StartPos, EndPos, R) selects the reference
associated with the range specified by StartPos and EndPos.

Indices = getIndex(..., Name,Value) returns indices with additional options
specified by one or more Name,Value pair arguments.

Tips

Use the Indices output from the getIndex method as input to other BioMap methods.
Doing so lets you retrieve other information about the reads in the range, such as header,
start position, mapping quality, sequences, etc.

1 Alphabetical List

1-42

Input Arguments

BioObj

Object of the BioMap class.

Default:

StartPos

Either of the following:

• Nonnegative integer that defines the start of a range in the reference sequence.
StartPos must be less than EndPos, and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the start of a range in the
reference sequence.

Default:

EndPos

Either of the following:

• Nonnegative integer that defines the end of a range in the reference sequence.
EndPos must be greater than StartPos, and smaller than the total length of the
reference sequence.

• Column vector of nonnegative integers, each defining the end of a range in the
reference sequence.

Default:

R

Positive integer indexing the SequenceDictionary property of BioObj, or a string
specifying the actual name of the reference.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 getIndex

1-43

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Overlap'

Specifies the minimum number of base positions that a read must overlap in a range or
set of ranges, to be included. This value can be any of the following:

• Positive integer
• 'full' — A read must be fully contained in a range or set of ranges to be counted.
• 'start' — A read's start position must lie within a range or set of ranges to be

counted.

Default: 1

'Depth'

Specifies to decimate the output indices. The coverage depth at any base position is less
than or equal to Depth, a positive integer.

Default: Inf

'Spliced'

Logical specifying whether short reads are spliced during mapping (as in mRNA-to-
genome mapping). N symbols in the Signature property of the object are not counted.

Default: false

Output Arguments
Indices

Column vector of indices specifying the reads that align to a range or set of ranges in the
specified reference sequence in BioObj, a BioMap object.

Examples
Construct a BioMap object, and then use the indices of the reads to retrieve the start
and stop positions for the reads that are fully contained in the first 50 positions of the
reference sequence:

1 Alphabetical List

1-44

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the indices of reads that are fully contained in the

% first 50 positions of the reference sequence

indices = getIndex(BMObj1, 1, 50, 'overlap', 'full');

% Use these indices to return the start and stop positions of

% the reads

starts = getStart(BMObj1, indices)

stops = getStop(BMObj1, indices)

starts =

 1

 3

 5

 6

 9

 13

 13

 15

stops =

 36

 37

 39

 41

 43

 47

 48

 49

Construct a BioMap object, and then use the indices of the reads to retrieve the
sequences for the reads whose alignments overlap a segmented range by at least one base
pair:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Return the indices of the reads that overlap the

% segmented range 98:100 and 198:200, by at least 1 base pair

indices = getIndex(BMObj1, [98;198], [100;200], 'overlap', 1);

% Use these indices to return the sequences of the reads

sequences = getSequence(BMObj1, indices);

 getIndex

1-45

See Also
getStart | getSequence | getAlignment | BioMap | getStop | getCounts |
getBaseCoverage | getCompactAlignment | align2cigar | cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-46

getInfo

Class: BioMap

Retrieve information for single element of BioMap object

Syntax

Info = getInfo(BioObj, Element)

Description

Info = getInfo(BioObj, Element) returns Info, a tab-delimited string containing
information about a single element in BioObj, a BioMap object.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Element

One of the following to specify one element in BioObj:

• Scalar specifying an element index
• Logical vector
• String containing a valid sequence header

Default:

 getInfo

1-47

Output Arguments

Info

Tab-delimited string containing information about a single element in BioObj, a BioMap
object. The string contains the information from the following properties in order:

• Header

• Flag

• Start

• MappingQuality

• Signature

• Sequence

• Quality

Examples

Construct a BioMap object, and then retrieve information for the second element in the
object:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve information for the second element in the object

element2Info = getInfo(BMObj1, 2)

element2Info =

EAS54_65:7:152:368:113 73 3 99 35M

CTAGTGGCTCATTGTAAATGTGTGGTTTAACTCGT

<<<<<<<<<<0<<<<655<<7<<<:9<<3/:<6):

See Also
BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

1 Alphabetical List

1-48

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getMappingQuality

1-49

getMappingQuality
Class: BioMap

Retrieve sequence mapping quality scores from BioMap object

Syntax

MappingQuality = getMappingQuality(BioObj)

MappingQuality = getMappingQuality(BioObj, Subset)

Description

MappingQuality = getMappingQuality(BioObj) returns MappingQuality, a
vector of integers specifying mapping quality scores for each read sequence in BioObj, a
BioMap object.

MappingQuality = getMappingQuality(BioObj, Subset) returns mapping
quality scores for only object elements specified by Subset.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

1 Alphabetical List

1-50

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

MappingQuality

MappingQuality property of a subset of elements in BioObj. MappingQuality is a
vector of integers specifying the mapping quality scores for read sequences specified by
Subset.

Examples

Construct a BioMap object, and then retrieve the mapping quality scores for different
elements in the object:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the mapping quality property of the second element in

% the object

MQ_2 = getMappingQuality(BMObj1, 2)

MQ_2 =

 99

% Retrieve the mapping quality properties of the first and third

% elements in the object

MQ_1_3 = getMappingQuality(BMObj1, [1 3])

MQ_1_3 =

 99

 99

% Retrieve the mapping quality properties of all elements in the

% object

MQ_All = getMappingQuality(BMObj1);

 getMappingQuality

1-51

Alternatives

An alternative to using the getMappingQuality method is to use dot indexing with the
MappingQuality property:

BioObj.MappingQuality(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
BioMap | setMappingQuality

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-52

getMatePosition
Class: BioMap

Retrieve mate positions of read sequences from BioMap object

Syntax

MatePos = getMatePosition(BioObj)

MatePos = getMatePosition(BioObj,Subset)

Description

MatePos = getMatePosition(BioObj) returns MatePos, a vector of nonnegative
integers specifying the mate positions of read sequences with respect to the position
numbers in the reference sequence from a BioMap object.

MatePos = getMatePosition(BioObj,Subset) returns mate positions for only read
sequences specified by Subset.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

 getMatePosition

1-53

Note: If you use a cell array of header strings to specify Subset, be aware that a repeated
header specifies all elements with that header.

Default:

Output Arguments

MatePos

MatePosition property of all or a subset of elements in BioObj. MatePos is a vector of
nonnegative integers specifying the mate positions of read sequences with respect to the
position numbers in the reference sequence. MatePos includes the mate positions for only
read sequences specified by Subset.

Not all values in the MatePosition vector represent valid mate positions, for example,
mates that map to a different reference sequence or mates that do not map. To determine
if a mate position is valid, use the filterByFlag method with the 'pairedInMap' flag.

Examples

Construct a BioMap object, and then retrieve the mate position for different sequences in
the object:

% Construct a BioMap object from a SAM file and determine the header for the 17th element

BMObj1 = BioMap('ex1.sam');

BMObj1.Header(17)

ans =

 'EAS114_32:5:78:583:499'

% Retrieve the MatePosition property of the 17th element in the object using the header

MatePos_17 = getMatePosition(BMObj1,{'EAS114_32:5:78:583:499'})

MatePos_17 =

 229

 37

1 Alphabetical List

1-54

Notice the previous example returned two mate positions. This is because the
header EAS114_32:5:78:583:499 is a repeated header in the BMObj1 object. The
getMatePosition method returns mate positions for all elements in the object with
that header.

% Retrieve the MatePosition properties of the 37th and 47th elements in

% the object

MatePos_37_47 = getMatePosition(BMObj1, [37 47])

MatePos_37_47 =

 95

 283

% Retrieve the MatePosition properties of all elements in the object

MatePos_All = getMatePosition(BMObj1);

Alternatives

An alternative to using the getMatePosition method is to use dot indexing with the
MatePosition property:

BioObj.MatePosition(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
filterByFlag | BioMap | setMatePosition

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getReference

1-55

getReference
Class: BioMap

Retrieve reference sequence from BioMap object

Syntax

Ref = getReference(BioObj)

Description

Ref = getReference(BioObj) returns the name of the reference sequence from a
BioMap object. This is the Reference property of the object.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

Output Arguments

Ref

Reference property of BioObj, the BioMap object. It is a string specifying the name of
the reference sequence.

Examples

Construct a BioMap object, and then retrieve the reference sequence from the object:

1 Alphabetical List

1-56

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the reference sequence from the object

refSeq = getReference(BMObj1)

refSeq =

seq1

Alternatives

An alternative to using the getReference method is to use dot indexing with the
Reference property:

BioObj.Reference

See Also
setReference | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getSignature

1-57

getSignature
Class: BioMap

Retrieve signature (alignment information) from BioMap object

Syntax

Signature = getSignature(BioObj)

Signature = getSignature(BioObj, Subset)

Description

Signature = getSignature(BioObj) returns Signature, a cell array of CIGAR-
formatted strings, each representing how a read sequence in a BioMap object aligns to
the reference sequence.

Signature = getSignature(BioObj, Subset) returns signature strings for only
object elements specified by Subset.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

1 Alphabetical List

1-58

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Signature

Signature property of a subset of elements in BioObj. Signature is a cell array of
CIGAR-formatted strings, each representing how read sequences, specified by Subset,
align to the reference sequence.

Examples

Construct a BioMap object, and then retrieve the signatures for different elements in the
object:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the signature property of the second element in

% the object

Sig_2 = getSignature(BMObj1, 2)

Sig_2 =

 '35M'

% Retrieve the signature properties of the first and third

% elements in the object

Sig_1_3 = getSignature(BMObj1, [1 3])

Sig_1_3 =

 '36M'

 '35M'

% Retrieve the signature properties of all elements in the object

Sig_All = getSignature(BMObj1);

 getSignature

1-59

Alternatives

An alternative to using the getSignature method is to use dot indexing with the
Signature property:

BioObj.Sgnature(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
setSignature | BioMap | getAlignment

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-60

getStart
Class: BioMap

Retrieve start positions of aligned read sequences from BioMap object

Syntax

Start = getStart(BioObj)

Start = getStart(BioObj, Subset)

Description

Start = getStart(BioObj) returns Start, a vector of integers specifying the start
position of aligned read sequences with respect to the position numbers in the reference
sequence from a BioMap object.

Start = getStart(BioObj, Subset) returns a start position for only read sequences
specified by Subset.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

 getStart

1-61

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Start

Start property of a subset of elements in BioObj. It is a vector of integers specifying
the start position of aligned read sequences with respect to the position numbers in the
reference sequence. It includes the start positions for only read sequences specified by
Subset.

Examples

Construct a BioMap object, and then retrieve the start position for different sequences in
the object:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Retrieve the start property of the second element in the object

Start_2 = getStart(BMObj1, 2)

Start_2 =

 3

% Retrieve the start properties of the first and third elements in

% the object

Start_1_3 = getStart(BMObj1, [1 3])

Start_1_3 =

 1

 5

% Retrieve the start properties of all elements in the object

Start_All = getStart(BMObj1);

1 Alphabetical List

1-62

Alternatives

An alternative to using the getStart method is to use dot indexing with the Start
property:

BioObj.Start(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
setStart | BioMap | getStop

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getSummary

1-63

getSummary
Class: BioMap

Print summary of BioMap object

Syntax

getSummary(BioObj)

ds = getSummary(BioObj)

Description

getSummary(BioObj) prints a summary of a BioMap object. The summary includes the
names of references, the number of sequences mapped to each reference, and the genomic
range that the sequences cover in each reference.

ds = getSummary(BioObj) returns the summary information in a dataset array.

Input Arguments

BioObj

Object of the BioMap class.

Output Arguments

ds

dataset array containing the summary of the BioMap object, BioObj. The dataset array
has an observation (row) for each reference in BioObj, and two variables (columns): the
number of sequences mapped to each reference and the genomic range that the sequences
cover in each reference.

getSummary stores additional metadata for the BioMap object in the UserData property
of ds, which you can access using ds.Properties.UserData.

1 Alphabetical List

1-64

Examples

Construct a BioMap object, and then display a summary of the object:

% Construct a BioMap object from a SAM file

BMObj2 = BioMap('ex2.sam');

getSummary(BMObj2)

BioMap summary:

 Name: ''

 Container_Type: 'Data is file indexed.'

 Total_Number_of_Sequences: 3307

 Number_of_References_in_Dictionary: 2

 Number_of_Sequences Genomic_Range

 seq1 1501 1 1569

 seq2 1806 1 1567

See Also
BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 setFlag

1-65

setFlag
Class: BioMap

Set read sequence flags for BioMap object

Syntax

NewObj = setFlag(BioObj, Flag)

NewObj = setFlag(BioObj, MappingQuality, Subset)

Description

NewObj = setFlag(BioObj, Flag) returns NewObj, a new BioMap object,
constructed from BioObj, an existing BioMap object, with the Flag property set to Flag,
a vector of nonnegative integers indicating the bit-wise information that specifies the
status of each of the 11 flags described by the SAM format specification.

NewObj = setFlag(BioObj, MappingQuality, Subset) returns NewObj, a
new BioMap object, constructed from BioObj, an existing BioMap object, with the
Flag property of a subset of the elements set to Flag, a vector of nonnegative integers
indicating the bit-wise information that specifies the status of each of the 11 flags
described by the SAM format specification. It sets the Flag property for only the object
elements specified by Subset.

Tips

To update the Flag property in an existing BioMap object, use the same object as the
input BioObj and the output NewObj.

Input Arguments

BioObj

Object of the BioMap class.

http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-66

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
Flag property.

Default:

Flag

Vector of nonnegative integers. Each integer corresponds to one read sequence and
indicates the bit-wise information that specifies the status of each of the 11 flags
described by the SAM format specification. These flags describe different sequencing and
alignment aspects of a read sequence.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Flag and Subset. If you use a cell array of header strings to specify Subset, be aware
that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioMap class.

Examples
Construct a BioMap object, and then set a subset of the flags:

http://samtools.sourceforge.net/SAM1.pdf

 setFlag

1-67

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Set the Flag property of the second element to a new value

BMObj1 = setFlag(BMObj1, 75, 2);

Alternatives

An alternative to using the setFlag method to update an existing object is to use dot
indexing with the Flag property:

BioObj.Flag(Indices) = NewFlag

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewFlag is a
vector of nonnegative integers indicating the bit-wise information that specifies the
status of each of the 11 flags described by the SAM format specification. Each integer
corresponds to one read sequence in a BioMap object. Indices and NewFlag must have
the same number and order of elements.

See Also
getFlag | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-68

setMappingQuality
Class: BioMap

Set sequence mapping quality scores for BioMap object

Syntax

NewObj = setMappingQuality(BioObj, MappingQuality)

NewObj = setMappingQuality(BioObj, MappingQuality, Subset)

Description

NewObj = setMappingQuality(BioObj, MappingQuality) returns NewObj,
a new BioMap object, constructed from BioObj, an existing BioMap object, with the
MappingQuality property set to MappingQuality, a vector of integers specifying the
mapping quality scores for read sequences.

NewObj = setMappingQuality(BioObj, MappingQuality, Subset) returns
NewObj, a new BioMap object, constructed from BioObj, an existing BioMap object, with
the MappingQuality property of a subset of the elements set to MappingQuality, a
vector of integers specifying the mapping quality scores for read sequences. It sets the
mapping quality scores for only the object elements specified by Subset.

Tips

To update mapping quality scores in an existing BioMap object, use the same object as
the input BioObj and the output NewObj.

Input Arguments

BioObj

Object of the BioMap class.

 setMappingQuality

1-69

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
MappingQuality property.

Default:

MappingQuality

Vector of integers specifying the mapping quality scores for read sequences.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements
in MappingQuality and Subset. If you use a cell array of header strings to specify
Subset, be aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioMap class.

Examples

Construct a BioMap object, and then set a subset of the mapping quality scores:

% Construct a BioMap object from a SAM file

1 Alphabetical List

1-70

BMObj1 = BioMap('ex1.sam');

% Set the Mapping Quality property of the second element to a new

% value

BMObj1 = setMappingQuality(BMObj1, 74, 2);

Alternatives

An alternative to using the setMappingQuality method to update an existing object is
to use dot indexing with the MappingQuality property:

BioObj.MappingQuality(Indices) = NewMappingQuality

In the previous syntax, Indices is a vector of positive integers or a logical
vector. Indices cannot be a cell array of strings containing sequence headers.
NewMappingQuality is a vector of integers specifying the mapping quality scores for
read sequences. Indices and NewQuality must have the same number and order of
elements.

See Also
BioMap | getMappingQuality

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 setMatePosition

1-71

setMatePosition
Class: BioMap

Set mate positions of read sequences in BioMap object

Syntax

NewObj = setMatePosition(BioObj,MatePos)

NewObj = setMatePosition(BioObj,MatePos,Subset)

Description

NewObj = setMatePosition(BioObj,MatePos) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the MatePosition
property set to MatePos, a vector of nonnegative integers specifying the mate positions of
the read sequences with respect to the position numbers in the reference sequence.

NewObj = setMatePosition(BioObj,MatePos,Subset) returns NewObj, a
new BioMap object, constructed from BioObj, an existing BioMap object, with the
MatePosition property of a subset of the elements set to MatePos, a vector of
nonnegative integers specifying the mate positions of the read sequences with respect to
the position numbers in the reference sequence. The setMatePosition method sets the
mate positions for only the object elements specified by Subset.

Tips

• To update mate positions in an existing BioMap object, use the same object as the
input BioObj and the output NewObj.

Input Arguments

BioObj

Object of the BioMap class.

1 Alphabetical List

1-72

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
MatePosition property.

Default:

MatePos

Vector of nonnegative integers specifying the mate positions of the read sequences with
respect to the position numbers in the reference sequence.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
MatePos and Subset. If you use a cell array of header strings to specify Subset, be aware
that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioMap class.

Examples

Construct a BioMap object, and then set a subset of the sequence mate position values:

 setMatePosition

1-73

% Construct a BioMap object from a SAM file and determine the header for the second element

BMObj1 = BioMap('ex1.sam');

BMObj1.Header(2)

ans =

 'EAS54_65:7:152:368:113'

% Set the MatePosition property of the second element to a new value of 5

BMObj1 = setMatePosition(BMObj1, 5, {'EAS54_65:7:152:368:113'});

% Set the MatePosition properties of the first and third elements in

% the object to 6 and 7 respectively

BMObj1 = setMatePosition(BMObj1, [6 7], [1 3]);

% Set the MatePosition property of all elements in the object to zero

y = zeros(1,BMObj1.NSeqs);

BMObj1 = setMatePosition(BMObj1,y);

Alternatives

An alternative to using the setMatePosition method to update an existing object is to
use dot indexing with the MatePosition property:

BioObj.MatePosition(Indices) = NewMatePos

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewMatePos is a
vector of integers specifying the mate positions of the read sequences with respect to the
position numbers in the reference sequence. Indices and NewMatePos must have the
same number and order of elements.

See Also
BioMap | getMatePosition

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-74

• SAM format specification

http://samtools.sourceforge.net/SAM1.pdf

 setReference

1-75

setReference
Class: BioMap

Set name of reference sequence for BioMap object

Syntax

NewObj = setReference(BioObj, Reference)

Description

NewObj = setReference(BioObj, Reference) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the Reference
property set to Reference, a string specifying the name of the reference sequence.

Tips

Rename the reference sequence of an existing BioMap object, by using the same object as
the input BioObj and the output NewObj.

Input Arguments

BioObj

Object of the BioMap class.

Default:

Reference

String specifying the name of the reference sequence.

Default:

1 Alphabetical List

1-76

Output Arguments

NewObj

Object of the BioMap class.

Examples

Construct a BioMap object, and then set the reference sequence to a new sequence:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Create a random reference sequence

newRefSeq = randseq(50);

% Set the Reference property of the object

BMObj1 = setReference(BMObj1, newRefSeq);

Alternatives

An alternative to using the setReference method to update an existing object is to use
dot indexing with the Reference property:

BioObj.Reference = NewReference

In the previous syntax, NewReference is a string of single-letter codes specifying a
reference sequence.

See Also
getReference | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 setSignature

1-77

setSignature

Class: BioMap

Set signature (alignment information) for BioMap object

Syntax

NewObj = setSignature(BioObj, Signature)

NewObj = setSignature(BioObj, Signature, Subset)

Description

NewObj = setSignature(BioObj, Signature) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the Signature
property set to Signature, a cell array of CIGAR-formatted strings, each representing
how a read sequence aligns to the reference sequence.

NewObj = setSignature(BioObj, Signature, Subset) returns NewObj, a
new BioMap object, constructed from BioObj, an existing BioMap object, with the
Signature property of a subset of the elements set to Signature, a cell array of
CIGAR-formatted strings, each representing how read sequences, specified by Subset,
align to the reference sequence. It sets the signature for only the object elements
specified by Subset.

Tips

• To update signatures in an existing BioMap object, use the same object as the input
BioObj and the output NewObj.

• If you modify sequences or start positions in an object, you may need to use the
setSignature method to modify the Signature property of modified sequences
accordingly.

1 Alphabetical List

1-78

Input Arguments

BioObj

Object of the BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
Signature property.

Default:

Signature

Cell array of CIGAR-formatted strings, each representing how a read sequence aligns to
the reference sequence. Signature strings can be empty.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Signature and Subset. If you use a cell array of header strings to specify Subset, be
aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioMap class.

 setSignature

1-79

Examples

Construct a BioMap object, and then set a subset of the signatures:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Set the Signature property of the second element to a new value

BMObj1 = setSignature(BMObj1, {'36M'}, 2);

Alternatives

An alternative to using the setSignature method to update an existing object is to use
dot indexing with the Signature property:

BioObj.Signature(Indices) = NewSignature

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewSignature
is a string or a cell array of CIGAR-formatted strings, each representing how a read
sequence aligns to the reference sequence. Signature strings can be empty. Indices and
NewSignature must have the same number and order of elements.

See Also
getSignature | setStart | BioMap | setSequence | getAlignment

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-80

setStart

Class: BioMap

Set start positions of aligned read sequences in BioMap object

Syntax

NewObj = setStart(BioObj, Start)

NewObj = setStart(BioObj, Start, Subset)

Description

NewObj = setStart(BioObj, Start) returns NewObj, a new BioMap object,
constructed from BioObj, an existing BioMap object, with the Start property set to
Start, a vector of positive integers specifying the start positions of the aligned read
sequences with respect to the position numbers in the reference sequence. Modifying the
Start property shifts the aligned sequences.

NewObj = setStart(BioObj, Start, Subset) returns NewObj, a new BioMap
object, constructed from BioObj, an existing BioMap object, with the Start property
of a subset of the elements set to Start, a vector of positive integers specifying the
start positions of the aligned read sequences with respect to the position numbers in the
reference sequence. It sets the start positions for only the object elements specified by
Subset.

Tips

• To update start positions in an existing BioMap object, use the same object as the
input BioObj and the output NewObj.

• If you modify sequences or signatures in an object, you may need to use the setStart
method to modify the Start property to shift the alignment of modified sequences
accordingly.

 setStart

1-81

Input Arguments

BioObj

Object of the BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
Start property.

Default:

Start

Vector of positive integers specifying the start positions of the aligned read sequences
with respect to the position numbers in the reference sequence.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Start and Subset. If you use a cell array of header strings to specify Subset, be aware
that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioMap class.

1 Alphabetical List

1-82

Examples

Construct a BioMap object, and then set a subset of the sequence start values:

% Construct a BioMap object from a SAM file

BMObj1 = BioMap('ex1.sam');

% Set the Start property of the second element to a new value

BMObj1 = setStart(BMObj1, 5, 2);

Alternatives

An alternative to using the setStart method to update an existing object is to use dot
indexing with the Start property:

BioObj.Start(Indices) = NewStart

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewStart is a
vector of integers specifying the start positions of the aligned read sequences with respect
to the position numbers in the reference sequence. Indices and NewStart must have
the same number and order of elements.

See Also
getStart | setSignature | BioMap | setSequence

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 BioMap class

1-83

BioMap class

Superclasses: BioRead

Contain sequence, quality, alignment, and mapping data

Description

The BioMap class contains data from short-read sequences, including sequence headers,
read sequences, quality scores for the sequences, and data about how each sequence
aligns to a given reference. This data is typically obtained from a high-throughput
sequencing instrument.

Construct a BioMap object from short-read sequence data. Each element in the object has
a sequence, header, quality score, and alignment/mapping information associated with it.
Use the object properties and methods to explore, access, filter, and manipulate all or a
subset of the data, before analyzing or viewing the data.

Construction

BioMapobj = BioMap constructs BioMapobj, which is an empty BioMap object.

BioMapobj = BioMap(File) constructs BioMapobj, a BioMap object, from File, a
SAM- or BAM-formatted file whose reads are ordered by start position in the reference
sequence. The data remains in the source file, and the BioMap object accesses it using
one or two auxiliary index files. For a SAM-formatted file, MATLAB uses or creates one
index file that must have the same name as the source file, but with an .idx extension.
For a BAM-formatted file, MATLAB uses or creates two index files that must have the
same name as the source file, but with *.bai and *.linearindex extensions. If the
index files are not found in the same folder as the source file, the BioMap constructor
function creates the index files in that folder.

When you pass in an unordered BAM-formatted file, the constructor automatically orders
the file and writes the data to an ordered file using the same base name and extension
with an added string “.ordered” before the extension. The new file is indexed and used to
instantiate the new BioMap object.

1 Alphabetical List

1-84

Note: Because the data remains in the source file and is accessed using the index files:

• Do not delete the source file (SAM or BAM).

• Do not delete the index files (*.idx,*.bai, or *.linearindex).
• You cannot modify BioMapobj properties.

Tip To determine the number of reference sequences included in your source file, use the
saminfo or baminfo function. Use SAMtools to check if the reads in your source file are
ordered by position in the reference sequence, and also to reorder them, if needed.

BioMapobj = BioMap(Struct) constructs BioMapobj, a BioMap object, from Struct, a
MATLAB structure containing sequence and alignment information, such as returned by
the samread or bamread function. The data from Struct remains in memory, which lets
you modify the BioMapobj properties.

BioMapobj = BioMap(___ ,'Name',Value) constructs the BioMap object using
any of previous input arguments and additional options, specified as name-value pair
arguments as follows.

BioMapobj = BioMap(___ ,'SelectReference',SelectRefValue) selects one
or more references when the source data contains sequences mapped to more than
one reference. By default, the constructor includes all of the references in the header
dictionary of the source file. When the header dictionary is not available, the constructor
defaults to including all reference names found in the source data. SelectRefValue is
either a string of a cell array of strings. By using this option, you can prevent the BioMap
constructor from creating auxiliary index files for references that you will not use in your
analysis.

BioMapobj = BioMap(File,'InMemory',InMemoryValue) specifies whether to
place the data in memory or leave the data in the source file. Leaving the data in the
source file and accessing via an index file is more memory efficient, but does not let you
modify properties of BioMapobj. Choices are true or false (default). If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Tip Set the 'InMemory' name-value pair argument to true if you want to modify the
properties of BioMapobj.

http://samtools.sourceforge.net/

 BioMap class

1-85

BioMapobj = BioMap(___ ,'IndexDir',IndexDirValue) specifies the path to the
folder where the index files (*.idx,*.bai, or *.linearindex) either exist or will be
created.

Tip Use the 'IndexDir' name-value pair argument if you do not have write access to the
folder where the source file is located.

BioMapobj = BioMap(___ ,'Sequence',SequenceValue) constructs BioMapobj,
a BioMap object, from SequenceValue, a cell array of strings containing the letter
representations of nucleotide sequences. This name-value pair works only if the data is
read into memory.

BioMapobj = BioMap(___ ,'Header',HeaderValue) constructs BioMapobj, a
BioMap object, from HeaderValue, a cell array of strings containing header text for
nucleotide sequences. This name-value pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,'Quality',QualityValue) constructs BioMapobj,
a BioMap object, from QualityValue, a cell array of strings containing the ASCII
representation of per-base quality scores for nucleotide sequences. This name-value pair
works only if the data is read into memory.

BioMapobj = BioMap(___ ,'Reference',ReferenceValue) constructs BioMapobj,
a BioMap object, and sets the Reference property to ReferenceValue, a cell array of
strings containing the name of the reference sequences. This name-value pair works only
if the data is read into memory.

BioMapobj = BioMap(___ ,'Signature',SignatureValue) constructs BioMapobj,
a BioMap object, from SignatureValue, a cell array of strings containing information
describing the alignment of each read sequence with the reference sequence. This name-
value pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,'Start',StartValue) constructs BioMapobj, a BioMap
object, from StartValue, a vector of positive integers specifying the position in the
reference sequence where the alignment of each read sequence starts. This name-value
pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,'Flag',FlagValue) constructs BioMapobj, a BioMap
object, from FlagValue, a vector of positive integers indicating the bit-wise information
for the status of the 11 flags specified by the SAM format specification. These flags

1 Alphabetical List

1-86

describe different sequencing and alignment aspects of the read sequences. This name-
value pair works only if the data is read into memory.

BioMapobj = BioMap(___ ,'MappingQuality',MappingQualityValue)

constructs BioMapobj, a BioMap object, from MappingQualityValue, a vector of positive
integers specifying the mapping quality for each read sequence. This name-value pair
works only if the data is read into memory.

BioMapobj = BioMap(___ ,'MatePosition',MatePositionValue) constructs
BioMapobj, a BioMap object, from MatePositionValue, a vector of nonnegative integers
specifying the mate position for each read sequence. This name-value pair works only if
the data is read into memory.

Input Arguments

File

String specifying a SAM- or BAM-formatted file that contains only one reference
sequence and whose reads are ordered by start position in the reference sequence.

Default:

Struct

MATLAB structure containing sequence and alignment information, such as returned by
the samread or bamread function. The structure must have a one-based start position.

Default:

SelectRefValue

String or cell array of strings specifying the name of the reference sequences in File or
Struct. Use saminfo or baminfo to see a complete list of reference sequences in File.

InMemoryValue

Logical specifying whether to place the data in memory or leave the data in the source
file. Leaving the data in the source file and accessing it via an index file is more memory
efficient, but does not let you modify properties of the BioMap object. If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Default: false

 BioMap class

1-87

IndexDirValue

String specifying the path to the folder where the index file either exists or will be
created.

Default: Folder where File is located

SequenceValue

Cell array of strings containing the letter representations of nucleotide sequences.
This information populates the BioMap object's Sequence property. The samread and
bamread functions return this information in the Sequence field of the output structure.

Default:

QualityValue

Cell array of strings containing the ASCII representation of per-base quality scores for
nucleotide sequences. This information populates the BioMap object's Quality property.
The samread and bamread functions return this information in the Quality field of the
output structure.

Default:

HeaderValue

Cell array of strings containing header text for nucleotide sequences. This information
populates the BioMap object's Header property. The samread and bamread functions
return this information in the QueryName field of the return structure.

Default:

NameValue

String describing the BioMap object. This information populates the object's Name
property.

Default: ' ', an empty string

ReferenceValue

Cell array of strings containing the names of the reference sequences. This information
populates the object's Reference property. The samread function returns this

1 Alphabetical List

1-88

information in the ReferenceName field of the SAMStruct output argument. The
bamread function returns this information in the Reference field of the HeaderStruct
output structure.

Default:

SignatureValue

Cell array of strings containing information describing the alignment of each read
sequence with the reference sequence. The samread and bamread functions return
this information in the CigarString field of the return structure. This information
populates the object's Signature property.

Default:

StartValue

Vector of positive integers specifying the position in the reference sequence where the
alignment of each read sequence starts. This information populates the object's Start
property. The samread and bamread functions return this information in the Position
field of the output structure.

Default:

FlagValue

Vector of positive integers indicating the bit-wise information for the status of the 11
flags specified by the SAM format specification. These flags describe different sequencing
and alignment aspects of the read sequences. This information populates the object's
Flag property. The samread and bamread functions return this information in the Flag
field of the output structure.

Default:

MappingQualityValue

Vector of positive integers specifying the mapping quality for each read sequence.
This information populates the object's MappingQuality property. The samread and
bamread functions return this information in the MappingQuality field of the output
structure.

Default:

 BioMap class

1-89

MatePositionValue

Vector of nonnegative integers specifying the mate position for each read sequence. This
information populates the object's MatePosition property. The samread and bamread
functions return this information in the MatePosition field of the output structure.

Default:

Properties

Flag

Flags associated with all read sequences represented in the BioMap object.

Vector of positive integers such that there is an integer for each read sequence in the
object. Each integer indicates the bit-wise information that specifies the status of the
11 flags described by the SAM format specification. These flags describe different
sequencing and alignment aspects of a read sequence. A one-to-one relationship exists
between the number and order of elements in Flag and Sequence, unless Flag is an
empty vector.

Header

Headers associated with all read sequences represented in the BioMap object.

Cell array of strings, such that there is a header for each read sequence in the object.
Header strings can be empty. A one-to-one relationship exists between the number and
order of elements in Header and Sequence, unless Header is an empty cell array.

MatePosition

Positions of the mates for all read sequences represented in the BioMap object.

Vector of nonnegative integers such that there is an integer for each read sequence in the
object. Each integer indicates the position of the corresponding mate sequence, relative to
the reference sequence. A one-to-one relationship exists between the number and order of
elements in MatePosition and Sequence, unless MatePosition is an empty vector.

Not all values in the MatePosition vector represent valid mate positions, for example,
mates that map to a different reference sequence or mates that do not map. To determine
if a mate position is valid, use the filterByFlag method with the 'pairedInMap' flag.

http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-90

MappingQuality

Mapping quality scores associated with all read sequences represented in the BioMap
object.

Vector of integers, such that there is a mapping quality score for each read sequence in
the object. A one-to-one relationship exists between the number and order of elements in
MappingQuality and Sequence, unless MappingQuality is an empty vector.

Name

Description of the BioMap object.

Single string describing the BioMap object.

Default: ' ', an empty string

NSeqs

Number of sequences in the BioMap object.

This information is read only.

Quality

Per-base quality scores associated with all read sequences represented in the BioMap
object.

Cell array of strings, such that there is a quality string for each read sequence in the
object. Each quality string is an ASCII representation of per-base quality scores for a
read sequence. Quality strings can be empty. A one-to-one relationship exists between
the number and order of elements in Quality and Sequence, unless Quality is an
empty cell array.

Reference

Reference sequences in the BioMap object.

BioMapobj.NSeqs-by-1 cell array of strings specifying the names of the reference
sequences.

The reference sequences are the sequences against which the read sequences are aligned.

Sequence

Read sequences in the BioMap object.

 BioMap class

1-91

Cell array of strings containing the letter representations of the read sequences.

SequenceDictionary

Cell array of strings that catalogs the names of the references available in the BioMap
object.

This information is read only.

Signature

Alignment information associated with all read sequences represented in the BioMap
object.

Cell array of CIGAR strings, such that there is alignment information for each read
sequence in the object. Each string represents how a read sequence aligns to the
reference sequence. Signature strings can be empty. A one-to-one relationship exists
between the number and order of elements in Signature and Sequence, unless
Signature is an empty cell array.

Start

Start positions of all aligned read sequences represented in the BioMap object.

Vector of integers, such that there is a start position for each read sequence in the object.
Each integer specifies the start position of the aligned read sequence with respect to the
position numbers in the reference sequence. A one-to-one relationship exists between the
number and order of elements in Start and Sequence, unless Start is an empty vector.

Methods

getStop
Compute stop positions of aligned read
sequences from BioMap object

filterByFlag
Filter sequence reads by SAM flag

getAlignment
Construct alignment represented in
BioMap object

1 Alphabetical List

1-92

getBaseCoverage
Return base-by-base alignment coverage of
reference sequence in BioMap object

getCompactAlignment
Construct compact alignment represented
in BioMap object

getCounts
Return count of read sequences aligned to
reference sequence in BioMap object

getFlag
Retrieve read sequence flags from BioMap
object

getIndex
Return indices of read sequences aligned to
reference sequence in BioMap object

getInfo
Retrieve information for single element of
BioMap object

getMappingQuality
Retrieve sequence mapping quality scores
from BioMap object

getMatePosition
Retrieve mate positions of read sequences
from BioMap object

getReference
Retrieve reference sequence from BioMap
object

getSignature
Retrieve signature (alignment information)
from BioMap object

getStart
Retrieve start positions of aligned read
sequences from BioMap object

getSummary
Print summary of BioMap object

 BioMap class

1-93

setFlag
Set read sequence flags for BioMap object

setMappingQuality
Set sequence mapping quality scores for
BioMap object

setMatePosition
Set mate positions of read sequences in
BioMap object

setReference
Set name of reference sequence for BioMap
object

setSignature
Set signature (alignment information) for
BioMap object

setStart
Set start positions of aligned read
sequences in BioMap object

Inherited Methods

combine
Combine two objects

get
Retrieve property of object

getHeader
Retrieve sequence headers from object

getQuality
Retrieve sequence quality scores from
object

getSequence
Retrieve sequences from object

getSubsequence
Retrieve partial sequences from object

1 Alphabetical List

1-94

getSubset
Create object containing subset of elements
from object

plotSummary
Plot summary statistics of BioRead object

set
Set property of object

setHeader
Set sequence headers for object

setQuality
Set sequence quality scores for object

setSequence
Set sequences for object

setSubsequence
Set partial sequences for object

setSubset
Set elements for object

write
Write contents of BioRead or BioMap object
to file

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

BioMap objects support dot . indexing to extract, assign, and delete data.

 BioMap class

1-95

Examples

Construct a BioMap object

This example shows how to construct a BioMap object from a SAM file and from a
structure.

Construct a BioMap object from a SAM-formatted file that is provided with
Bioinformatics Toolbox™ and set the Name property.

BMObj1 = BioMap('ex1.sam', 'Name', 'MyObject')

BMObj1 =

 BioMap with properties:

 SequenceDictionary: 'seq1'

 Reference: [1501x1 File indexed property]

 Signature: [1501x1 File indexed property]

 Start: [1501x1 File indexed property]

 MappingQuality: [1501x1 File indexed property]

 Flag: [1501x1 File indexed property]

 MatePosition: [1501x1 File indexed property]

 Quality: [1501x1 File indexed property]

 Sequence: [1501x1 File indexed property]

 Header: [1501x1 File indexed property]

 NSeqs: 1501

 Name: 'MyObject'

Construct a structure containing information from a SAM file.

SAMStruct = samread('ex1.sam');

Construct a BioMap object from this structure.

BMObj2 = BioMap(SAMStruct)

BMObj2 =

 BioMap with properties:

1 Alphabetical List

1-96

 SequenceDictionary: {'seq1'}

 Reference: {1501x1 cell}

 Signature: {1501x1 cell}

 Start: [1501x1 uint32]

 MappingQuality: [1501x1 uint8]

 Flag: [1501x1 uint16]

 MatePosition: [1501x1 uint32]

 Quality: {1501x1 cell}

 Sequence: {1501x1 cell}

 Header: {1501x1 cell}

 NSeqs: 1501

 Name: ''

See Also
BioIndexedFile | BioRead | saminfo | samread | baminfo | bamread |
bamindexread | align2cigar | cigar2align

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification
• SAMtools

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/

 aa2nt

1-97

aa2nt
Convert amino acid sequence to nucleotide sequence

Syntax

SeqNT = aa2nt(SeqAA)

SeqNT = aa2nt(SeqAA, ...'GeneticCode', GeneticCodeValue, ...)

SeqNT = aa2nt(SeqAA, ...'Alphabet' AlphabetValue, ...)

Input Arguments

SeqAA One of the following:

• String of single-letter codes specifying an amino
acid sequence. For valid letter codes, see the table
Mapping Amino Acid Letter Codes to Integers. Unknown
characters are mapped to 0.

• Row vector of integers specifying an amino acid sequence.
For valid integers, see the table Mapping Amino Acid
Integers to Letter Codes.

• MATLAB structure containing a Sequence field that
contains an amino acid sequence, such as returned by
fastaread, getgenpept, genpeptread, getpdb, or
pdbread.

Examples: 'ARN' or [1 2 3]
GeneticCodeValue Integer or string specifying a genetic code number or

code name from the table Genetic Code. Default is 1 or
'Standard'.

Tip If you use a code name, you can truncate the name to the
first two letters of the name.

AlphabetValue String specifying a nucleotide alphabet. Choices are:

1 Alphabetical List

1-98

• 'DNA' (default) — Uses the symbols A, C, G, and T.
• 'RNA' — Uses the symbols A, C, G, and U.

Output Arguments

SeqNT Nucleotide sequence specified by a character string of letter
codes.

Description

SeqNT = aa2nt(SeqAA) converts an amino acid sequence, specified by SeqAA, to a
nucleotide sequence, returned in SeqNT, using the standard genetic code.

In general, the mapping from an amino acid to a nucleotide codon is not a one-to-
one mapping. For amino acids with multiple possible nucleotide codons, this function
randomly selects a codon corresponding to that particular amino acid. For the ambiguous
characters B and Z, one of the amino acids corresponding to the letter is selected
randomly, and then a codon sequence is selected randomly. For the ambiguous character
X, a codon sequence is selected randomly from all possibilities.

SeqNT = aa2nt(SeqAA, ...'PropertyName', PropertyValue, ...) calls aa2nt
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

SeqNT = aa2nt(SeqAA, ...'GeneticCode', GeneticCodeValue, ...) specifies
a genetic code to use when converting an amino acid sequence to a nucleotide sequence.
GeneticCodeValue can be an integer or string specifying a code number or code name
from the table Genetic Code. Default is 1 or 'Standard'. The amino acid to nucleotide
codon mapping for the Standard genetic code is shown in the table Standard Genetic
Code.

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

 aa2nt

1-99

SeqNT = aa2nt(SeqAA, ...'Alphabet' AlphabetValue, ...) specifies a
nucleotide alphabet. AlphabetValue can be 'DNA', which uses the symbols A, C, G, and
T, or 'RNA', which uses the symbols A, C, G, and U. Default is 'DNA'.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Standard Genetic Code

Amino Acid Name Amino Acid Code Nucleotide Codon

Alanine A GCT GCC GCA GCG

Arginine R CGT CGC CGA CGG AGA AGG

Asparagine N ATT AAC

1 Alphabetical List

1-100

Amino Acid Name Amino Acid Code Nucleotide Codon

Aspartic acid
(Aspartate)

D GAT GAC

Cysteine C TGT TGC

Glutamine Q CAA CAG

Glutamic acid
(Glutamate)

E GAA GAG

Glycine G GGT GGC GGA GGG

Histidine H CAT CAC

Isoleucine I ATT ATC ATA

Leucine L TTA TTG CTT CTC CTA CTG

Lysine K AAA AAG

Methionine M ATG

Phenylalanine F TTT TTC

Proline P CCT CCC CCA CCG

Serine S TCT TCC TCA TCG AGT AGC

Threonine T ACT ACC ACA ACG

Tryptophan W TGG

Tyrosine Y TAT, TAC

Valine V GTT GTC GTA GTG

Asparagine or Aspartic
acid (Aspartate)

B Random codon from D and N

Glutamine or
Glutamic acid
(Glutamate)

Z Random codon from E and Q

Unknown amino acid
(any amino acid)

X Random codon

Translation stop * TAA TAG TGA

Gap of indeterminate
length

- ---

 aa2nt

1-101

Amino Acid Name Amino Acid Code Nucleotide Codon

Unknown character
(any character or
symbol not in table)

? ???

Examples

• Convert an amino acid sequence to a nucleotide sequence using the standard genetic
code.

aa2nt('MATLAP')

ans =

ATGGCGACGTTAGCGCCG

• Convert an amino acid sequence to a nucleotide sequence using the Vertebrate
Mitochondrial genetic code.

aa2nt('MATLAP', 'GeneticCode', 2)

ans =

ATGGCAACTCTAGCGCCT

• Convert an amino acid sequence to a nucleotide sequence using the Echinoderm
Mitochondrial genetic code and the RNA alphabet.

aa2nt('MATLAP','GeneticCode','ec','Alphabet','RNA')

ans =

AUGGCCACAUUGGCACCU

• Convert an amino acid sequence with the ambiguous character B.

aa2nt('abcd')

Warning: The sequence contains ambiguous characters.

ans =

GCCACATGCGAC

1 Alphabetical List

1-102

See Also
aminolookup | baselookup | geneticcode | nt2aa | revgeneticcode |
seqviewer | rand

 aacount

1-103

aacount
Count amino acids in sequence

Syntax

AAStruct = aacount(SeqAA)

AAStruct = aacount(SeqAA, ...'Ambiguous', AmbiguousValue, ...)

AAStruct = aacount(SeqAA, ...'Gaps', GapsValue, ...)

AAStruct = aacount(SeqAA, ...'Chart', ChartValue, ...)

Input Arguments

SeqAA One of the following:

• String of single-letter codes specifying an amino acid
sequence. For valid letter codes, see the table Mapping
Amino Acid Letter Codes to Integers. Unknown characters
are mapped to 0.

• Row vector of integers specifying an amino acid sequence.
For valid integers, see the table Mapping Amino Acid
Integers to Letter Codes.

• MATLAB structure containing a Sequence field that
contains an amino acid sequence, such as returned by
fastaread, getgenpept, genpeptread, getpdb, or
pdbread.

Examples: 'ARN' or [1 2 3]
AmbiguousValue String specifying how to treat ambiguous amino acid characters

(B, Z, or X). Choices are:

• 'ignore' (default) — Skips ambiguous characters
• 'bundle' — Counts ambiguous characters and reports the

total count in the Ambiguous field.
• 'prorate' — Counts ambiguous characters and distributes

them proportionately in the appropriate fields. For example,

1 Alphabetical List

1-104

the counts for the character B are distributed evenly between
the D and N fields.

• 'individual' — Counts ambiguous characters and reports
them in individual fields.

• 'warn' — Skips ambiguous characters symbols and displays
a warning.

GapsValue Specifies whether gaps, indicated by a hyphen (-), are counted
or ignored. Choices are true or false (default).

ChartValue String specifying a chart type. Choices are 'pie' or 'bar'.

Output Arguments

AAStruct 1-by-1 MATLAB structure containing fields for the standard
20 amino acids (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y,
and V).

Description

AAStruct = aacount(SeqAA) counts the number of each type of amino acid in
SeqAA, an amino acid sequence, and returns the counts in AAStruct, a 1-by-1 MATLAB
structure containing fields for the standard 20 amino acids (A, R, N, D, C, Q, E, G, H, I, L, K,
M, F, P, S, T, W, Y, and V).

• Ambiguous amino acid characters (B, Z, or X), gaps, indicated by a hyphen (-), and
end terminators (*) are ignored by default.

• Unrecognized characters are ignored and cause the following warning message.

Warning: Unknown symbols appear in the sequence. These will be ignored.

AAStruct = aacount(SeqAA, ...'PropertyName', PropertyValue, ...) calls
aacount with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

 aacount

1-105

AAStruct = aacount(SeqAA, ...'Ambiguous', AmbiguousValue, ...)

specifies how to treat ambiguous amino acid characters (B, Z, or X). Choices are:

• 'ignore' (default)
• 'bundle'

• 'prorate'

• 'individual'

• 'warn'

AAStruct = aacount(SeqAA, ...'Gaps', GapsValue, ...) specifies whether
gaps, indicated by a hyphen (-), are counted or ignored. Choices are true or false
(default).

AAStruct = aacount(SeqAA, ...'Chart', ChartValue, ...) creates a chart
showing the relative proportions of the amino acids. ChartValue can be 'pie' or
'bar'.

Examples

1 Create an amino acid sequence.

Seq = 'MATLAB';

2 Count the amino acids in the sequence and return the results in a structure.
AA = aacount(Seq)

AA =

 A: 2

 R: 0

 N: 0

 D: 0

 C: 0

 Q: 0

 E: 0

 G: 0

 H: 0

 I: 0

 L: 1

 K: 0

 M: 1

 F: 0

 P: 0

1 Alphabetical List

1-106

 S: 0

 T: 1

 W: 0

 Y: 0

 V: 0

3 Get the count for alanine (A) residues.

AA.A

ans =

 2

4 Use the fastaread function to read the sequence for the human p53 tumor protein
into a MATLAB structure.

p53 = fastaread('p53aa.txt')

p53 =

 Header: 'gi|8400738|ref|NP_000537.2| tumor protein p53 [Homo sapiens]'

 Sequence: [1x393 char]

5 Count the amino acids in the sequence, return the results in a structure, and display
the results in a pie chart.

AA = aacount(p53, 'chart', 'pie');

 aacount

1-107

See Also
aminolookup | atomiccomp | basecount | codoncount | dimercount |
isoelectric | molweight | proteinplot | proteinpropplot | seqviewer

1 Alphabetical List

1-108

abstract

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set abstract describing experiment in ExpressionSet object

Syntax

Abstract = abstract(ESObj)

NewESObj = abstract(ESObj, NewAbstract)

Description

Abstract = abstract(ESObj) returns a string containing the abstract information
describing the experiment from a MIAME object in an ExpressionSet object.

NewESObj = abstract(ESObj, NewAbstract) replaces the abstract information
in the MIAME object in ESObj, an ExpressionSet object, with NewAbstract, a string
containing new abstract information, and returns NewESObj, a new ExpressionSet
object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewAbstract

String containing new abstract information.

Default:

 abstract

1-109

Output Arguments

Abstract

String containing the abstract information describing the experiment from a MIAME
object in an ExpressionSet object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the abstract
information.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
abstract information stored in the MIAME object stored in the ExpressionSet object:
% Retrieve abstract text from the MIAME object

Abstract = abstract(ESObj)

See Also
bioma.ExpressionSet | bioma.data.MIAME

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-110

addTitle (clustergram)
Add title to clustergram

Syntax

addTitle(CGObject, Title)

addTitle(CGObject, Title, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

H = addTitle(CGObject)

Input Arguments

CGObject Clustergram object created with the function clustergram.
Title String used as the title in the Clustergram window.

Output Arguments

H Handle to a MATLAB text object used as the title for the
clustergram.

Description

addTitle(CGObject, Title) adds a title above the clustergram displayed in the
Clustergram window.

addTitle(CGObject, Title, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) specifies text object properties for the
title. For more information on the property name/property value pairs you can use to
modify the text, see Text Properties.

H = addTitle(CGObject) returns the handle to the text object used as the title for the
clustergram.

 addTitle (clustergram)

1-111

Examples

Supply a title for the clustergram object created in the first two steps of the “Examples”
on page 1-446 section of the clustergram function reference page. Use 14-point, italic
text for the title.

addTitle(cgo, 'Expression Levels During Diauxic Shift', ...

 'FontSize', 14, 'FontAngle', 'Italic')

Return a handle to the title text object, then use the set function to change the font size
to 16 points.

h = addTitle(cgo)

set(h, 'FontSize', 16)

More About
• “clustergram object”

See Also
clustergram | addYLabel | plot | set | addXLabel | get | view

1 Alphabetical List

1-112

addTitle (HeatMap)
Add title to heat map

Syntax

addTitle(HMObject, Title)

addTitle(HMObject, Title, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

H = addTitle(HMObject)

Input Arguments

HMObject HeatMap object created with the function HeatMap.
Title String used as the title in the HeatMap window.

Output Arguments

H Handle to a MATLAB text object used as the title for the heat map.

Description

addTitle(HMObject, Title) adds a title above the heat map displayed in the
HeatMap window.

addTitle(HMObject, Title, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) specifies text object properties for the
title. For more information on the property name/property value pairs you can use to
modify the text, see Text Properties.

H = addTitle(HMObject) returns the handle to the text object used as the title for the
heat map.

 addTitle (HeatMap)

1-113

Examples

Supply a title for the HeatMap object created in the “Examples” on page 1- section
of the HeatMap function reference page. Use 14-point, italic text for the title.

addTitle(hmo, 'Example Heat Map', 'FontSize', 14, ...

 'FontAngle','Italic')

Return a handle to the title text object, then use the set function to change the font size
to 16 points.

h = addTitle(hmo)

set(h, 'FontSize', 16)

More About
• “HeatMap object”

See Also
HeatMap | addYLabel | view | addXLabel | plot

1 Alphabetical List

1-114

addXLabel (clustergram)
Label x-axis of clustergram

Syntax

addXLabel(CGObject, Label)

addXLabel(CGObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

H = addXLabel(CGObject)

Input Arguments

CGObject Clustergram object created with the function clustergram.
Label String used as the x-axis label in the Clustergram window.

Output Arguments

H Handle to a MATLAB text object used as the x-axis label for the
clustergram.

Description

addXLabel(CGObject, Label) adds a label below the x-axis of a clustergram
displayed in the Clustergram window.

addXLabel(CGObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) specifies text object properties for the x-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addXLabel(CGObject) returns the handle to the text object used as the x-axis
label for the clustergram.

 addXLabel (clustergram)

1-115

Examples

Supply an x-axis label for the clustergram object created in the first two steps of the
“Examples” on page 1-446 section of the clustergram function reference page. Use
12-point, italic text for the label.

addXLabel(cgo, 'Diauxic Shift Times', 'FontSize', 12, ...

 'FontAngle', 'Italic')

Return a handle to the x-axis label text object, then use the set function to change the
font size to 14 points.

h = addXLabel(cgo)

set(h, 'FontSize', 14)

More About
• “clustergram object”

See Also
clustergram | addYLabel | plot | set | addTitle | get | view

1 Alphabetical List

1-116

addXLabel (HeatMap)
Label x-axis of heat map

Syntax

addXLabel(HMObject, Label)

addXLabel(HMObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

H = addXLabel(HMObject)

Input Arguments

HMObject HeatMap object created with the function HeatMap.
Label String used as the x-axis label in the HeatMap window.

Output Arguments

H Handle to a MATLAB text object used as the x-axis label for the
heat map.

Description

addXLabel(HMObject, Label) adds a label below the x-axis of a heat map displayed
in the HeatMap window.

addXLabel(HMObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) specifies text object properties for the x-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addXLabel(HMObject) returns the handle to the text object used as the x-axis
label for the heat map.

 addXLabel (HeatMap)

1-117

Examples

Supply an x-axis label for the HeatMap object created in the “Examples” on page 1-
section of the HeatMap function reference page. Use 12-point, italic text for the label.

addXLabel(hmo, 'Times', 'FontSize', 12, 'FontAngle', 'Italic')

Return a handle to the x-axis label text object, then use the set function to change the
font size to 14 points.

h = addXLabel(hmo)

set(h, 'FontSize', 14)

More About
• “HeatMap object”

See Also
HeatMap | addYLabel | view | addTitle | plot

1 Alphabetical List

1-118

addYLabel (clustergram)
Label y-axis of clustergram

Syntax

addYLabel(CGObject, Label)

addYLabel(CGObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

H = addYLabel(CGObject)

Input Arguments

CGObject Clustergram object created with the function clustergram.
Label String used as the y-axis label in the Clustergram window.

Output Arguments

H Handle to a MATLAB text object used as the y-axis label for the
clustergram.

Description

addYLabel(CGObject, Label) adds a label to the left of the y-axis of a clustergram
displayed in the Clustergram window.

addYLabel(CGObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) specifies text object properties for the y-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addYLabel(CGObject) returns the handle to the text object used as the y-axis
label for the clustergram.

 addYLabel (clustergram)

1-119

Examples

Supply a y-axis label for the clustergram object created in the first two steps of the
“Examples” on page 1-446 section of the clustergram function reference page. Use
12-point, italic text for the label.

addYLabel(cgo, 'Genes', 'FontSize', 12, 'FontAngle', 'Italic')

Return a handle to the y-axis label text object, then use the set function to change the
font size to 14 points.

h = addYLabel(cgo)

set(h, 'FontSize', 14)

More About
• “clustergram object”

See Also
clustergram | addXLabel | plot | set | addTitle | get | view

1 Alphabetical List

1-120

addYLabel (HeatMap)
Label y-axis of heat map

Syntax

addYLabel(HMObject, Label)

addYLabel(HMObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

H = addYLabel(HMObject)

Input Arguments

HMObject HeatMap object created with the function HeatMap.
Label String used as the y-axis label in the HeatMap window.

Output Arguments

H Handle to a MATLAB text object used as the y-axis label for the
heat map.

Description

addYLabel(HMObject, Label) adds a label to the left of the y-axis of a heat map
displayed in the HeatMap window.

addYLabel(HMObject, Label, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) specifies text object properties for the y-
axis label. For more information on the property name/property value pairs you can use
to modify the text, see Text Properties.

H = addYLabel(HMObject) returns the handle to the text object used as the y-axis
label for the heat map.

 addYLabel (HeatMap)

1-121

Examples

Supply a y-axis label for the HeatMap object created in the “Examples” on page 1-
section of the HeatMap function reference page. Use 12-point, italic text for the label.

addYLabel(hmo, 'Samples', 'FontSize', 12, 'FontAngle', 'Italic')

Return a handle to the y-axis label text object, then use the set function to change the
font size to 14 points.

h = addYLabel(hmo)

set(h, 'FontSize', 14)

More About
• “HeatMap object”

See Also
HeatMap | addXLabel | view | addTitle | plot

1 Alphabetical List

1-122

affygcrma
Perform GC Robust Multi-array Average (GCRMA) procedure on Affymetrix microarray
probe-level data

Syntax

Expression = affygcrma(CELFiles, CDFFile, SeqFile)

Expression = affygcrma(ProbeStructure, Seq)

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ...'CELPath',

CELPathValue, ...)

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ...'CDFPath',

CDFPathValue, ...)

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ...'SeqPath',

SeqPathValue, ...)

Expression = affygcrma(..., 'ChipIndex', ChipIndexValue, ...)

Expression = affygcrma(..., 'OpticalCorr', OpticalCorrValue, ...)

Expression = affygcrma(..., 'CorrConst', CorrConstValue, ...)

Expression = affygcrma(..., 'Method', MethodValue, ...)

Expression = affygcrma(..., 'TuningParam', TuningParamValue, ...)

Expression = affygcrma(..., 'GSBCorr', GSBCorrValue, ...)

Expression = affygcrma(..., 'Median', MedianValue, ...)

Expression = affygcrma(..., 'Output', OutputValue, ...)

Expression = affygcrma(..., 'Showplot', ShowplotValue, ...)

Expression = affygcrma(..., 'Verbose', VerboseValue, ...)

Input Arguments

CELFiles Any of the following:

• String specifying a single CEL file name.
• '*', which reads all CEL files in the current folder.
• ' ', which opens the Select CEL Files dialog box from

which you select the CEL files. From this dialog box, you
can press and hold Ctrl or Shift while clicking to select
multiple CEL files.

 affygcrma

1-123

• Cell array of CEL file names.
CDFFile Either of the following:

• String specifying a CDF file name.
• ' ', which opens the Select CDF File dialog box from

which you select the CDF file.
SeqFile Either of the following:

• String specifying a file name of a sequence file (tab-
separated or FASTA) that contains the following
information for a specific type of Affymetrix® GeneChip®

array:

• Probe set IDs
• Probe x-coordinates
• Probe y-coordinates
• Probe sequences in each probe set
• Affymetrix GeneChip array type (FASTA file only)

The sequence file (tab-separated or FASTA) must be on
the MATLAB search path or in the Current Folder (unless
you use the SeqPath property). In a tab-separated file,
each row represents a probe; in a FASTA file, each header
represents a probe.

• An N-by-25 matrix of sequence information, such as
returned by affyprobeseqread.

Seq An N-by-25 matrix of sequence information, such as returned
by affyprobeseqread.

ProbeStructure MATLAB structure containing information from the CEL
files, including probe intensities, probe indices, and probe set
IDs, returned by the celintensityread function.

CELPathValue String specifying the path and folder where the files specified
in CELFiles are stored.

CDFPathValue String specifying the path and folder where the file specified
in CDFFile is stored.

1 Alphabetical List

1-124

SeqPathValue String specifying a folder or path and folder where SeqFile
is stored.

ChipIndexValue Positive integer specifying a chip. This chip's sequence
information and mismatch probe intensity data is used to
compute probe affinities. Default is 1.

OpticalCorrValue Controls the use of optical background correction on the
input probe intensity values. Choices are true (default) or
false.

CorrConstValue Value that specifies the correlation constant, rho, for log
background intensity for each PM/MM probe pair. Choices
are any value # 0 and # 1. Default is 0.7.

MethodValue String that specifies the method to estimate the signal.
Choices are 'MLE', a faster, ad hoc Maximum Likelihood
Estimate method, or 'EB', a slower, more formal, empirical
Bayes method. Default is 'MLE'.

TuningParamValue Value that specifies the tuning parameter used by the
estimate method. This tuning parameter sets the lower
bound of signal values with positive probability. Choices are
a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this
parameter, see Wu et al., 2004.

GSBCorrValue Specifies whether to perform gene-specific binding (GSB)
correction using probe affinity data. Choices are true
(default) or false. If there is no probe affinity information,
this property is ignored.

MedianValue Specifies the use of the median of the ranked values instead
of the mean for normalization. Choices are true or false
(default).

 affygcrma

1-125

OutputValue Specifies the scale of the returned gene expression values.
Choices are:

• 'log'

• 'log2'

• 'log10'

• 'linear'

• @functionname

In the last instance, the data is transformed as defined by the
function functionname. Default is 'log2'.

ShowplotValue Controls the display of a plot showing the log2 of mismatch
(MM) probe intensity values from a specified chip (CEL file),
versus that chip's MM probe affinities. The plot also shows
the LOWESS fit for computing NSB data of the specified
chip. Choices are true, false, or I, an integer specifying a
chip. If set to true, the first chip is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

VerboseValue Controls the display of the status of the reading of files and
GCRMA processing. Choices are true (default) or false.

Output Arguments

Expression DataMatrix object containing the log2 gene expression
values that have been background adjusted, normalized,
and summarized using the GC Robust Multi-array Average
(GCRMA) procedure.

Each row in Expression corresponds to a gene (probe set),
and each column corresponds to an Affymetrix CEL file.

1 Alphabetical List

1-126

Description

Expression = affygcrma(CELFiles, CDFFile, SeqFile) reads the specified
Affymetrix CEL files, the associated CDF library file (created from Affymetrix GeneChip
arrays for expression or genotyping assays), and the associated sequence file or matrix.
It then processes the probe intensity values using GCRMA background adjustment,
quantile normalization, and median-polish summarization procedures, then returns
Expression, a DataMatrix object containing the log2 based gene expression values in
a matrix, the probe set IDs as row names, and the CEL file names as column names.
Note that each row in Expression corresponds to a gene (probe set), and each column
corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip.
All chips should be of the same type.)

CELFiles is a string or cell array of CEL file names. CDFFile is a string specifying a
CDF file name. If you set CELFiles to '*', then it reads all CEL files in the current
folder. If you set CELFiles or CDFFile to ' ', then it opens the Select Files dialog box
from which you select the CEL files or CDF file. From this dialog box, you can press and
hold Ctrl or Shift while clicking to select multiple CEL files. SeqFile is a file or matrix
containing sequence information for probes on a specific type of Affymetrix GeneChip
array.

Note: For details on the reading of files and GCRMA processing, see
celintensityread, affyprobeseqread, affyprobeaffinities, gcrma,
gcrmabackadj, quantilenorm, and rmasummary.

Expression = affygcrma(ProbeStructure, Seq) uses GCRMA background
adjustment, quantile normalization, and median-polish summarization procedures to
process the probe intensity values in ProbeStructure. ProbeStructure is a MATLAB
structure containing information from the CEL files, including probe intensities, probe
indices, and probe set IDs, returned by the celintensityread function. Seq is a matrix
containing sequence information for probes on a specific type of Affymetrix GeneChip
array.

Expression = affygcrma(..., 'PropertyName', PropertyValue, ...) calls
affygcrma with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

 affygcrma

1-127

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ...'CELPath',

CELPathValue, ...) specifies a path and folder where the files specified by CELFiles
are stored.

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ...'CDFPath',

CDFPathValue, ...) specifies a path and folder where the file specified by CDFFile is
stored.

Expression = affygcrma(CELFiles, CDFFile, SeqFile, ...'SeqPath',

SeqPathValue, ...) specifies a path and folder where the file specified by SeqFile is
stored.

Expression = affygcrma(..., 'ChipIndex', ChipIndexValue, ...)

computes probe affinities from MM probe intensity data using sequence information and
mismatch probe intensity values from the chip specified by ChipIndexValue. Default
ChipIndexValue is 1.

Expression = affygcrma(..., 'OpticalCorr', OpticalCorrValue, ...)

controls the use of optical background correction on the input probe intensity values.
Choices are true (default) or false.

Expression = affygcrma(..., 'CorrConst', CorrConstValue, ...) specifies
the correlation constant, rho, for background intensity for each PM/MM probe pair.
Choices are any value # 0 and # 1. Default is 0.7.

Expression = affygcrma(..., 'Method', MethodValue, ...) specifies the
method to estimate the signal. Choices are 'MLE', a faster, ad hoc Maximum Likelihood
Estimate method, or 'EB', a slower, more formal, empirical Bayes method. Default is
'MLE'.

Expression = affygcrma(..., 'TuningParam', TuningParamValue, ...)

specifies the tuning parameter used by the estimate method. This tuning parameter sets
the lower bound of signal values with positive probability. Choices are a positive value.
Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see Wu et al., 2004.

Expression = affygcrma(..., 'GSBCorr', GSBCorrValue, ...) specifies
whether to perform gene-specific binding (GSB) correction using probe affinity data.

1 Alphabetical List

1-128

Choices are true (default) or false. If there is no probe affinity information, this
property is ignored.

Expression = affygcrma(..., 'Median', MedianValue, ...) specifies the use
of the median of the ranked values instead of the mean for normalization. Choices are
true or false (default).

Expression = affygcrma(..., 'Output', OutputValue, ...) specifies the
scale of the returned gene expression values. OutputValue can be:

• 'log'

• 'log2'

• 'log10'

• 'linear'

• @functionname

In the last instance, the data is transformed as defined by the function functionname.
Default is 'log2'.

Expression = affygcrma(..., 'Showplot', ShowplotValue, ...) controls
the display of a plot showing the log2 of mismatch (MM) probe intensity values from a
specified chip (CEL file), versus that chip's MM probe affinities. The plot also shows the
LOWESS fit for computing NSB data of the specified chip. Choices are true, false, or I,
an integer specifying a chip. If set to true, the first chip is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

Expression = affygcrma(..., 'Verbose', VerboseValue, ...) controls the
display of the status of the reading of files and GCRMA processing. Choices are true
(default) or false.

Examples

The following example assumes that you have the HG_U95Av2.CDF library file stored
at D:\Affymetrix\LibFiles\HGGenome, and that your current folder points to a
location containing CEL files and a sequence file associated with this CDF library file.
In this example, the affygcrma function reads all the CEL files and the sequence

 affygcrma

1-129

file in the current folder and a CDF file in a specified folder. It also performs GCRMA
background adjustment, quantile normalization, and summarization procedures on the
PM probe intensity values, and returns a DataMatrix object, containing the metadata
and processed data.
Expression = affygcrma('*', 'HG_U95Av2.CDF','HG-U95Av2_probe_tab',...

 'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');

References

[1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the Bright Mismatches:
Labeling and Effective Binding in Oligonucleotide Arrays. Physical Review E 68,
011906.

[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of
the American Statistical Association 99(468), 909–917.

[3] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory
for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol.
12(6), 882–93.

[4] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of
Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working
Papers 73.

[5] Wu, Z., and Irizarry, R.A. (2003). A Model Based Background Adjustment for
Oligonucleotide Expression Arrays. RSS Workshop on Gene Expression, Wye,
England, http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf.

[6] Speed, T. (2006). Background models and GCRMA. Lecture 10, Statistics 246,
University of California Berkeley. http://www.stat.berkeley.edu/users/terry/
Classes/s246.2006/Week10/Week10L1.pdf.

[7] Abd Rabbo, N.A., and Barakat, H.M. (1979). Estimation Problems in Bivariate
Lognormal Distribution. Indian J. Pure Appl. Math 10(7), 815–825.

[8] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary

http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf
http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf
http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf

1 Alphabetical List

1-130

prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

[9] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.,
Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics. 4, 249–264.

[10] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading,
Massachusetts: Addison-Wesley Publishing Company), pp. 165–202.

See Also
affyprobeaffinities | affyprobeseqread | affyrma | celintensityread |
gcrma | gcrmabackadj | mafdr | mattest | quantilenorm | rmasummary

 affyinvarsetnorm

1-131

affyinvarsetnorm
Perform rank invariant set normalization on probe intensities from multiple Affymetrix
CEL or DAT files

Syntax

NormData = affyinvarsetnorm(Data)

[NormData, MedStructure] = affyinvarsetnorm(Data)

... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...)

... affyinvarsetnorm(..., 'Thresholds', ThresholdsValue, ...)

... affyinvarsetnorm(..., 'StopPercentile',

StopPercentileValue, ...)

... affyinvarsetnorm(..., 'RayPercentile', RayPercentileValue, ...)

... affyinvarsetnorm(..., 'Method', MethodValue, ...)

... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...)

Arguments

Data Matrix of intensity values where each row corresponds to a
perfect match (PM) probe and each column corresponds to
an Affymetrix CEL or DAT file. (Each CEL or DAT file is
generated from a separate chip. All chips should be of the
same type.)

MedStructure Structure of each column's intensity median before and
after normalization, and the index of the column chosen as
the baseline.

BaselineValue Property to control the selection of the column index N
from Data to be used as the baseline column. Default is the
column index whose median intensity is the median of all
the columns.

ThresholdsValue Property to set the thresholds for the lowest average rank
and the highest average rank, which are used to determine
the invariant set. The rank invariant set is a set of data
points whose proportional rank difference is smaller than
a given threshold. The threshold for each data point is

1 Alphabetical List

1-132

determined by interpolating between the threshold for
the lowest average rank and the threshold for the highest
average rank. Select these two thresholds empirically to
limit the spread of the invariant set, but allow enough data
points to determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT] where
LT is the threshold for the lowest average rank and HT is
threshold for the highest average rank. Values must be
between 0 and 1. Default is [0.05, 0.005].

StopPercentileValue Property to stop the iteration process when the number of
data points in the invariant set reaches N percent of the
total number of data points. Default is 1.

Note: If you do not use this property, the iteration process
continues until no more data points are eliminated.

RayPercentileValue Property to select the N percentage of the highest ranked
invariant set of data points to fit a straight line through,
while the remaining data points are fitted to a running
median curve. The final running median curve is a
piecewise linear curve. Default is 1.5.

MethodValue Property to select the smoothing method used to normalize
the data. Enter 'lowess' or 'runmedian'. Default is
'lowess'.

 affyinvarsetnorm

1-133

ShowplotValue Property to control the plotting of two pairs of scatter
plots (before and after normalization). The first pair plots
baseline data versus data from a specified column (chip)
from the matrix Data. The second is a pair of M-A scatter
plots, which plots M (ratio between baseline and sample)
versus A (the average of the baseline and sample). Enter
either 'all' (plot a pair of scatter plots for each column or
chip) or specify a subset of columns (chips) by entering the
column number(s) or a range of numbers.

For example:

• ..., 'Showplot', 3, ...) plots data from column
3.

• ..., 'Showplot', [3,5,7], ...) plots data from
columns 3, 5, and 7.

• ..., 'Showplot', 3:9, ...) plots data from
columns 3 to 9.

Description

NormData = affyinvarsetnorm(Data) normalizes the values in each column (chip)
of probe intensities in Data to a baseline reference, using the invariant set method.
NormData is a matrix of normalized probe intensities from Data.

Specifically, affyinvarsetnorm:

• Selects a baseline index, typically the column whose median intensity is the median of
all the columns.

• For each column, determines the proportional rank difference (prd) for each pair of
ranks, RankX and RankY, from the sample column and the baseline reference.
prd = abs(RankX - RankY)

• For each column, determines the invariant set of data points by selecting data
points whose proportional rank differences (prd) are below threshold, which is a
predetermined threshold for a given data point (defined by the ThresholdsValue
property). It repeats the process until either no more data points are eliminated, or a
predetermined percentage of data points is reached.

1 Alphabetical List

1-134

The invariant set is data points with a prd < threshold.
• For each column, uses the invariant set of data points to calculate the lowess or

running median smoothing curve, which is used to normalize the data in that column.

[NormData, MedStructure] = affyinvarsetnorm(Data) also returns a structure
of the index of the column chosen as the baseline and each column's intensity median
before and after normalization.

Note: If Data contains NaN values, then NormData will also contain NaN values at the
corresponding positions.

... affyinvarsetnorm(..., 'PropertyName', PropertyValue, ...) calls
affyinvarsetnorm with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...) lets you select
the column index N from Data to be the baseline column. Default is the index of the
column whose median intensity is the median of all the columns.

... affyinvarsetnorm(..., 'Thresholds', ThresholdsValue, ...) sets
the thresholds for the lowest average rank and the highest average rank, which are
used to determine the invariant set. The rank invariant set is a set of data points
whose proportional rank difference is smaller than a given threshold. The threshold
for each data point is determined by interpolating between the threshold for the lowest
average rank and the threshold for the highest average rank. Select these two thresholds
empirically to limit the spread of the invariant set, but allow enough data points to
determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold for the lowest
average rank and HT is threshold for the highest average rank. Values must be between
0 and 1. Default is [0.05, 0.005].

... affyinvarsetnorm(..., 'StopPercentile',

StopPercentileValue, ...) stops the iteration process when the number of data
points in the invariant set reaches N percent of the total number of data points. Default is
1.

 affyinvarsetnorm

1-135

Note: If you do not use this property, the iteration process continues until no more data
points are eliminated.

... affyinvarsetnorm(..., 'RayPercentile', RayPercentileValue, ...)

selects the N percentage of the highest ranked invariant set of data points to fit a straight
line through, while the remaining data points are fitted to a running median curve. The
final running median curve is a piecewise linear curve. Default is 1.5.

... affyinvarsetnorm(..., 'Method', MethodValue, ...) selects the
smoothing method for normalizing the data. When MethodValue is 'lowess',
affyinvarsetnorm uses the lowess method. When MethodValue is 'runmedian',
affyinvarsetnorm uses the running median method. Default is 'lowess'.

... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...) plots two pairs
of scatter plots (before and after normalization). The first pair plots baseline data versus
data from a specified column (chip) from the matrix Data. The second is a pair of M-A
scatter plots, which plots M (ratio between baseline and sample) versus A (the average
of the baseline and sample). When ShowplotValue is 'all', affyinvarsetnorm plots
a pair of scatter plots for each column or chip. When ShowplotValue is a number(s)
or range of numbers, affyinvarsetnorm plots a pair of scatter plots for the indicated
column numbers (chips).

For example:

• ..., 'Showplot', 3) plots the data from column 3 of Data.
• ..., 'Showplot', [3,5,7]) plots the data from columns 3, 5, and 7 of Data.
• ..., 'Showplot', 3:9) plots the data from columns 3 to 9 of Data.

1 Alphabetical List

1-136

Examples

Normalize Affymetrix data

This example shows how to normalize affymetrix data. The
prostatecancerrawdata.mat file used in the example contains data from Best et al.,
2005.

 affyinvarsetnorm

1-137

Load a MAT-file, included with the Bioinformatics Toolbox™ software, which contains
Affymetrix data variables, including pmMatrix , a matrix of PM probe intensity values
from multiple CEL files.

load prostatecancerrawdata

Normalize the data in pmMatrix and plot data from columns (chips) 2 and 3. Column 1 is
the baseline.

NormMatrix = affyinvarsetnorm(pmMatrix, 'Showplot',[2 3]);

1 Alphabetical List

1-138

References

[1] Li, C., and Wong, W.H. (2001). Model-based analysis of oligonucleotide arrays: model
validation, design issues and standard error application. Genome Biology 2(8):
research0032.1-0032.11.

[2] http://www.hsph.harvard.edu/cli/complab/dchip/manual.htm

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,

http://www.hsph.harvard.edu/cli/complab/dchip/manual.htm

 affyinvarsetnorm

1-139

Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affyread | celintensityread | mainvarsetnorm | malowess | manorm |
quantilenorm | rmabackadj | rmasummary

1 Alphabetical List

1-140

affyprobeaffinities

Compute Affymetrix probe affinities from their sequences and MM probe intensities

Syntax

[AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix,

MMIntensity)

[AffinPM, AffinMM, BaseProf] = affyprobeaffinities(SequenceMatrix,

MMIntensity)

[AffinPM, AffinMM, BaseProf, Stats] =

affyprobeaffinities(SequenceMatrix, MMIntensity)

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ...'ProbeIndices', ProbeIndicesValue, ...)

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ...'Showplot', ShowplotValue, ...)

Input Arguments

SequenceMatrix An N-by-25 matrix of sequence information for the perfect
match (PM) probes on an Affymetrix GeneChip array,
where N is the number of probes on the array. Each row
corresponds to a probe, and each column corresponds to one
of the 25 sequence positions. Nucleotides in the sequences are
represented by one of the following integers:

• 0 — None
• 1 — A
• 2 — C
• 3 — G
• 4 — T

Tip You can use the affyprobeseqread function to
generate this matrix. If you have this sequence information

 affyprobeaffinities

1-141

in letter representation, you can convert it to integer
representation using the nt2int function.

MMIntensity Column vector containing mismatch (MM) probe intensities
from a CEL file, generated from a single Affymetrix
GeneChip array. Each row corresponds to a probe.

Tip You can extract this column vector from
the MMIntensities matrix returned by the
celintensityread function.

ProbeIndicesValue Column vector containing probe indexing information. Probes
within a probe set are numbered 0 through N - 1, where N is
the number of probes in the probe set.

Tip You can use the affyprobeseqread function to
generate this column vector.

ShowplotValue Controls the display of a plot showing the affinity values
of each of the four bases (A, C, G, and T) for each of the 25
sequence positions, for all probes on the Affymetrix GeneChip
array. Choices are true or false (default).

Output Arguments

AffinPM Column vector of PM probe affinities, computed from their
probe sequences and MM probe intensities.

AffinMM Column vector of MM probe affinities, computed from their
probe sequences and MM probe intensities.

BaseProf 4-by-4 matrix containing the four parameters for a
polynomial of degree 3, for each base, A, C, G, and T. Each
row corresponds to a base, and each column corresponds
to a parameter. These values are estimated from the probe
sequences and intensities, and represent all probes on an
Affymetrix GeneChip array.

Stats Row vector containing four statistics in the following order:

• R-square statistic

1 Alphabetical List

1-142

• F statistic
• p-value
• Error variance

Description

[AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix,

MMIntensity) returns a column vector of PM probe affinities and a column vector of
MM probe affinities, computed from their probe sequences and MM probe intensities.
Each row in AffinPM and AffinMM corresponds to a probe. NaN is returned for probes
with no sequence information. Each probe affinity is the sum of position-dependent base
affinities. For a given base type, the positional effect is modeled as a polynomial of degree
3.

[AffinPM, AffinMM, BaseProf] = affyprobeaffinities(SequenceMatrix,

MMIntensity) also estimates affinity coefficients using multiple linear regression. It
returns BaseProf, a 4-by-4 matrix containing the four parameters for a polynomial of
degree 3, for each base, A, C, G, and T. Each row corresponds to a base, and each column
corresponds to a parameter. These values are estimated from the probe sequences and
intensities, and represent all probes on an Affymetrix GeneChip array.

[AffinPM, AffinMM, BaseProf, Stats] =

affyprobeaffinities(SequenceMatrix, MMIntensity) also returns Stats, a row
vector containing four statistics in the following order:

• R-square statistic
• F statistic
• p-value
• Error variance

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ...'PropertyName', PropertyValue, ...) calls
affyprobeaffinities with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

 affyprobeaffinities

1-143

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ...'ProbeIndices', ProbeIndicesValue, ...) uses probe
indices to normalize the probe intensities with the median of their probe set intensities.

Tip Use of the ProbeIndices property is recommended only if your MMIntensity data
are not from a nonspecific binding experiment.

... = affyprobeaffinities(SequenceMatrix,

MMIntensity, ...'Showplot', ShowplotValue, ...) controls the display of a
plot of the probe affinity base profile. Choices are true or false (default).

Examples

Calculate Affymetrix probe affinities

This example shows how to calculate Affymetrix PM and MM probe affinities from their
sequences and MM probe intensities.

Load the MAT-file, included with the Bioinformatics Toolbox™ software, that contains
Affymetrix data from a prostate cancer study. The variables in the MAT-file include
seqMatrix , a matrix containing sequence information for PM probes, mmMatrix , a
matrix containing MM probe intensity values, and probeIndices , a column vector
containing probe indexing information.

load prostatecancerrawdata

Compute the Affymetrix PM and MM probe affinities from their sequences and MM
probe intensities, and also plot the affinity values of each of the four bases (A, C, G, and
T) for each of the 25 sequence positions, for all probes on the Affymetrix GeneChip array.

[apm, amm] = affyprobeaffinities(seqMatrix, mmMatrix(:,1),...

 'ProbeIndices', probeIndices, 'showplot', true);

1 Alphabetical List

1-144

The prostatecancerrawdata.mat file used in this example contains data from Best et al.,
2005.

References

[1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the Bright Mismatches:
Labeling and Effective Binding in Oligonucleotide Arrays. Physical Review E 68,
011906.

[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M. and Spencer, F. (2004). A Model
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of
the American Statistical Association 99(468), 909–917.

 affyprobeaffinities

1-145

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affygcrma | affyprobeseqread | affyread | celintensityread |
probelibraryinfo

1 Alphabetical List

1-146

affyprobeseqread
Read data file containing probe sequence information for Affymetrix GeneChip array

Syntax

Struct = affyprobeseqread(SeqFile, CDFFile)

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqPath',

SeqPathValue, ...)

Struct = affyprobeseqread(SeqFile, CDFFile, ...'CDFPath',

CDFPathValue, ...)

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqOnly',

SeqOnlyValue, ...)

Input Arguments

SeqFile String specifying a file name of a sequence file (tab-separated or
FASTA) that contains the following information for a specific type
of Affymetrix GeneChip array:

• Probe set IDs
• Probe x-coordinates
• Probe y-coordinates
• Probe sequences in each probe set
• Affymetrix GeneChip array type (FASTA file only)

The sequence file (tab-separated or FASTA) must be on the
MATLAB search path or in the Current Folder (unless you use the
SeqPath property). In a tab-separated file, each row represents a
probe; in a FASTA file, each header represents a probe.

CDFFile Either of the following:

• String specifying a file name of an Affymetrix CDF library
file, which contains information that specifies which probe set
each probe belongs to on a specific type of Affymetrix GeneChip
array. The CDF library file must be on the MATLAB search

 affyprobeseqread

1-147

path or in the MATLAB Current Folder (unless you use the
CDFPath property).

• CDF structure, such as returned by the affyread function,
which contains information that specifies which probe set each
probe belongs to on a specific type of Affymetrix GeneChip
array.

Caution Make sure that SeqFile and CDFFile contain information
for the same type of Affymetrix GeneChip array.

SeqPathValue String specifying a folder or path and folder where SeqFile is
stored.

CDFPathValue String specifying a folder or path and folder where CDFFile is
stored.

SeqOnlyValue Controls the return of a structure, Struct, with only one field,
SequenceMatrix. Choices are true or false (default).

Output Arguments

Struct MATLAB structure containing the following fields:

• ProbeSetIDs

• ProbeIndices

• SequenceMatrix

Description

Struct = affyprobeseqread(SeqFile, CDFFile) reads the data from files
SeqFile and CDFFile, and stores the data in the MATLAB structure Struct, which
contains the following fields.

Field Description

ProbeSetIDs Cell array containing the probe set IDs from the Affymetrix CDF
library file.

1 Alphabetical List

1-148

Field Description

ProbeIndices Column vector containing probe indexing information. Probes
within a probe set are numbered 0 through N - 1, where N is the
number of probes in the probe set.

SequenceMatrix An N-by-25 matrix of sequence information for the perfect match
(PM) probes on the Affymetrix GeneChip array, where N is
the number of probes on the array. Each row corresponds to a
probe, and each column corresponds to one of the 25 sequence
positions. Nucleotides in the sequences are represented by one of
the following integers:

• 0 — None
• 1 — A
• 2 — C
• 3 — G
• 4 — T

Note: Probes without sequence information are represented in
SequenceMatrix as a row containing all 0s.

Tip You can use the int2nt function to convert the nucleotide
sequences in SequenceMatrix to letter representation.

Struct = affyprobeseqread(SeqFile, CDFFile, ...'PropertyName',

PropertyValue, ...) calls affyprobeseqread with optional properties that use
property name/property value pairs. You can specify one or more properties in any order.
Each PropertyName must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqPath',

SeqPathValue, ...) lets you specify a path and folder where SeqFile is stored.

Struct = affyprobeseqread(SeqFile, CDFFile, ...'CDFPath',

CDFPathValue, ...) lets you specify a path and folder where CDFFile is stored.

 affyprobeseqread

1-149

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqOnly',

SeqOnlyValue, ...) controls the return of a structure, Struct, with only one field,
SequenceMatrix. Choices are true or false (default).

Examples

1 Read the data from a FASTA file and associated CDF library file, assuming both are
located on the MATLAB search path or in the Current Folder.

S1 = affyprobeseqread('HG-U95A_probe_fasta', 'HG_U95A.CDF');

2 Read the data from a tab-separated file and associated CDF structure, assuming the
tab-separated file is located in the specified folder and the CDF structure is in your
MATLAB Workspace.

S2 = affyprobeseqread('HG-U95A_probe_tab',hgu95aCDFStruct,...

 'seqpath','C:\Affymetrix\SequenceFiles\HGGenome');

3 Access the nucleotide sequences of the first probe set (rows 1 through 20) in the
SequenceMatrix field of the S2 structure.

seq = int2nt(S2.SequenceMatrix(1:20,:))

See Also
affygcrma | affyinvarsetnorm | affyread | celintensityread | int2nt
| probelibraryinfo | probesetlink | probesetlookup | probesetplot |
probesetvalues

1 Alphabetical List

1-150

affyread
Read microarray data from Affymetrix GeneChip file

Syntax

AffyStruct = affyread(File)

AffyStruct = affyread(File, LibraryPath)

Description

AffyStruct = affyread(File) reads an Affymetrix file and creates a MATLAB
structure. The affyread function can read Affymetrix EXP, DAT, CEL, CLF, BGP, CDF,
and GIN files associated with Affymetrix GeneChip arrays for expression, genotyping
(SNP), or resequencing assays. It can read Affymetrix CHP files associated with
Affymetrix GeneChip arrays for expression assays only.

AffyStruct = affyread(File, LibraryPath) specifies the path and folder of a
CDF or GIN library file.

Input Arguments

File

String specifying a file name or a path and file name of one of the following Affymetrix
file types associated with Affymetrix GeneChip arrays for expression, genotyping (SNP),
or resequencing assays. However, if the file name is for a CHP file, it must be associated
with an Affymetrix GeneChip array for an expression assay.

• EXP — Data file containing information about experimental conditions and protocols.
• DAT — Data file containing raw image data (pixel intensity values).
• CEL — Data file containing information about the intensity values of the individual

probes.
• CHP — Data file containing summary information of the probe sets, including

intensity values.

 affyread

1-151

• CLF — Cell layout file that maps probe IDs to a location (x- and y-coordinates) in the
CEL file.

• BGP — Background probe file that lists the probes to use for background correction.
• CDF — Library file containing information about which probes belong to which probe

set.
• GIN — Library file containing information about the probe sets, such as the gene

name associated with the probe set.

If you specify only a file name, put that file on the MATLAB search path or in the current
folder. If you specify only a file name of a CDF or GIN library file, you can specify the
path and folder in the LibraryPath input argument.

Tip You can learn more about the Affymetrix GeneChip files and download sample files
from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note: Some Affymetrix sample data files (DAT, EXP, CEL, and CHP) are combined in a
DTT or CAB file. Download and use the Affymetrix Data Transfer Tool to extract these
files from the DTT or CAB file. You can download the Data Transfer Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

You will have to register and log in at the Affymetrix Web site to download the Data
Transfer Tool.

Default:

LibraryPath

String specifying the path and folder of a:

• CDF library file associated with File when File is a CHP file
• CDF library file when File is a CDF file
• GIN library file when File is a GIN file

Note: If you do not specify LibraryPath when reading a CHP file, affyread looks
in the current folder for the CDF file. If it does not find the CDF file, it still reads the

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

1 Alphabetical List

1-152

CHP file. However, it omits the probe set names and types from the return value,
AffyStruct.

Output Arguments

AffyStruct

MATLAB structure containing information from an Affymetrix data or library file, for
expression, genotyping (SNP), or resequencing assay types.

The following tables describe the fields in AffyStruct for the different Affymetrix file
types.

EXP, DAT, CEL, CHP, CLF, BGP, CDF, and GIN Files

Field Description

Name File name.
DataPath Path and folder of the file.
LibPath Path and folder of the CDF and GIN library files associated

with the file you are reading.
FullPathName Path and folder of the file.
ChipType Name of the Affymetrix GeneChip array (for example,

DrosGenome1 or HG-Focus).
Date or CreateDate File creation date.

EXP File

Field Description

ChipLot

Operator

SampleType

SampleDesc

Project

Comments

Reagents

ReagentLot

Protocol

Information about experimental conditions and protocols
captured by the Affymetrix software.

 affyread

1-153

Field Description

Station

Module

HybridizeDate

ScanPixelSize

ScanFilter

ScanDate

ScannerID

NumberOfScans

ScannerType

NumProtocolSteps

ProtocolSteps

DAT File

Field Description

NumPixelsPerRow Number of pixels per row in the image created from the
GeneChip array (number of columns).

NumRows Number of rows in the image created from the GeneChip array.
MinData Minimum intensity value in the image created from the

GeneChip array.
MaxData Maximum intensity value in the image created from the

GeneChip array.
PixelSize Size of one pixel in the image created from the GeneChip

array.
CellMargin Size of gaps between cells in the image created from the

GeneChip array.
ScanSpeed Speed of the scanner used to create the image.
ScanDate Date the scan was performed.
ScannerID Name of the scanning device used.
UpperLeftX

UpperLeftY

UpperRightX

UpperRightY

LowerLeftX

LowerLeftY

Pixel coordinates of the scanned image.

1 Alphabetical List

1-154

Field Description

LowerRightX

LowerRightY

ServerName Not used.
Image A NumRows-by-NumPixelsPerRow image of the scanned

GeneChip array.

CEL File

Field Description

FileVersion Version of the CEL file format.
Algorithm Algorithm used in the image-processing step that converts

from DAT format to CEL format.
AlgParams String containing parameters used by the algorithm in the

image-processing step.
NumAlgParams Number of parameters in AlgParams.
CellMargin Size of gaps between cells in the image created from the

GeneChip array, used for computing the intensity values of
the cells.

Rows Number of rows of probes.
Cols Number of columns of probes.
NumMasked Number of masked probes, which are not used in subsequent

processing.
NumOutliers Number of cells identified as outliers (extremely high or

extremely low intensity) by the image-processing step.
NumProbes Number of probes (Rows * Cols) on the GeneChip array.
UpperLeftX

UpperLeftY

UpperRightX

UpperRightY

LowerLeftX

LowerLeftY

LowerRightX

LowerRightY

Pixel coordinates of the scanned image.

 affyread

1-155

Field Description

ProbeColumnNames Cell array containing the eight column names in the Probes
field:

• PosX — x-coordinate of the cell
• PosY — y-coordinate of the cell
• Intensity — Intensity value of the cell
• StdDev — Standard deviation of intensity value
• Pixels — Number of pixels in the cell
• Outlier — True/false flag indicating if the cell was

marked as an outlier
• Masked — True/false flag indicating if the cell was

masked
• ProbeType — Integer indicating the probe type (for

example, 1 = expression)
Probes NumProbes-by-8 array of information about the individual

probes, including intensity values. The ProbeColumnNames
field contains the column names of this array.

CHP File

Field Description

AssayType Type of assay associated with the GeneChip array (for example,
Expression, Genotyping, or Resequencing).

CellFile File name of the CEL file from which the CHP file was created.
Algorithm Algorithm used to convert from CEL format to CHP format.
AlgVersion Version of the algorithm used to create the CHP file.
NumAlgParams Number of parameters in AlgParams.
AlgParams String containing parameters used in steps required to create the CHP

file (for example, background correction).
NumChipSummary Number of entries in ChipSummary.
ChipSummary Summary information for the GeneChip array, including background

average, standard deviation, max, and min.

1 Alphabetical List

1-156

Field Description

BackgroundZones Structure containing information about the zones used in the
background adjustment step.

Rows Number of rows of probes.
Cols Number of columns of probes.
NumProbeSets Number of probe sets on the GeneChip array.
NumQCProbeSets Number of QC probe sets on the GeneChip array.
ProbeSets

(Expression GeneChip
array)

NumProbeSets-by-1 structure array containing information for each
expression probe set, including the following fields:

• Name — Name of the probe set.
• ProbeSetType — Type of the probe set.
• CompDataExists — True/false flag indicating if the probe set has

additional computed information.
• NumPairs — Number of probe pairs in the probe set.
• NumPairsUsed — Number of probe pairs in the probe set used for

calculating the probe set signal (not masked).
• Signal — Summary intensity value for the probe set.
• Detection — Indicator of statistically significant difference

between the intensity value of the PM probes and the intensity
value of the MM probes in a single probe set (Present, Absent, or
Marginal).

• DetectionPValue — P-value for the Detection indicator.
• CommonPairs — When CompDataExists is true, contains the

number of common pairs between the experiment and the baseline
after the removal of outliers and masked probes.

• SignalLogRatio — When CompDataExists is true, contains
the change in signal between the experiment and baseline.

• SignalLogRatioLow — When CompDataExists is true,
contains the lowest ratios of probes between the experiment and
the baseline.

• SignalLogRatioHigh — When CompDataExists is true,
contains the highest ratios of probes between the experiment and
the baseline.

 affyread

1-157

Field Description

• Change — When CompDataExists is true, describes how
the probe changes versus a baseline experiment. Choices are
Increase, Marginal Increase, No Change, Decrease, or
Marginal Decrease.

• ChangePValue — When CompDataExists is true, contains the
p-value associated with Change.

ProbeSets

(Genotyping GeneChip
array)

NumProbeSets-by-1 structure array containing information for each
genotyping probe set, including the following fields:

• Name — Name of the probe set.
• AlleleCall — Allele that is present for the probe set. Possibilities

are AA (homozygous for the major allele), AB (heterozygous for the
major and minor allele), BB (homozygous for the minor allele), or
NoCall (unable to determine allele).

• Confidence — Measure of the accuracy of the allele call.
• RAS1 — Relative Allele Signal 1 for the SNP site, which is

calculated using sense probes.
• RAS2— Relative Allele Signal 2 for the SNP site, which is

calculated using antisense probes.
• PValueAA — p-value for an AA call.
• PValueAB — p-value for an AB call.
• PValueBB — p-value for a BB call.
• PValueNoCall — p-value for a NoCall call.

ProbeSets

(Resequencing GeneChip
array)

NumProbeSets-by-1 structure array containing information for each
resequencing probe set, including the following fields:

• CalledBases — 1-by-NumProbeSets character array containing
the bases called by the resequencing algorithm. Possible values are
a, c, g, t, and n.

• Scores — 1-by-NumProbeSets array containing the score
associated with each base call.

CLF File

1 Alphabetical List

1-158

Field Description

LibSetName Name of a collection of related library files for a given chip.
There is only one LibSetName for a CLF file. For example,
PGF and CLF files intended for use together must have the
same LibSetName.

LibSetVersion Version of a collection of related library files for a given chip.
There is only one LibSetVersion for a CLF file. For example,
PGF and CLF files intended for use together must have the
same LibSetVersion.

GUID Unique identifier for the CLF file.
CLFFormatVersion Version of the CLF file format.
Rows Number of rows in the CEL file.

Note: The CLF file is 1 base, which means the first row and
column are designated 1,1, not 0,0.

Cols Number of columns in the CEL file.

Note: The CLF file is 1 base, which means the first row and
column are designated 1,1, not 0,0.

StartID Starting number for the numbering of elements in the CLF file.

Tip This information is useful when numbering does not start
with 1.

EndID Ending number for the numbering of elements in the CLF file.

Tip This information is useful when numbering does not start
with 1 and/or there are gaps in the numbering.

Order Order in which the probe IDs are numbered in the CEL file,
either 'row_major' or 'col_major'.

DataColNames Names of the columns in the CEL file that contain data.

 affyread

1-159

Field Description

Data If the numbering of elements in the CLF file is sequential, this
field contains a function handle that calculates the x- and y-
coordinates of each element in the file from the probe ID.

If the numbering of elements in the CLF file is not sequential,
this field contains a matrix indicating the number value of
each element in the file.

BGP File

Field Description

LibSetName Name of a collection of related library files for a given chip. There
is only one LibSetName for a BGP file.

LibSetVersion Version of a collection of related library files for a given chip.
There is only one LibSetVersion for a BGP file.

GUID Unique identifier for a BGP file.
ExecGUID

ExecVersion

Cmd

Information about the algorithm used to generate the BGP file.

Data Structure containing the following fields:

• probe_id — ID of the probe to use for background correction.
• probeset_id — ID of the probe set in the PGF file to which

the probe belongs.
• type — Classification information for the probe.
• gc_count — Combined number of G and C bases in the probe.
• probe_length— Length of the probe in base pairs.
• interrogation_position — Interrogation position of the

probe. It is typically 13 for 25-mer PM/MM probes.
• probe_sequence — Sequence of the probe on the array,

going in the direction from array surface to solution. For most
standard Affymetrix arrays, this direction is from 3' to 5'. For
example, for a sense target (st) probe (see the probe_type
field), complement the sequence in this field before looking for

1 Alphabetical List

1-160

Field Description

matches to transcript sequences. For an antisense target (at),
reverse this sequence.

• atom_id — ID of the atom to which the probe belongs.
• x — Column coordinate of the probe in the CEL file.
• y — Row coordinate of the probe in the CEL file.
• probeset_type — Classification information for the probe

set, such as control, affx, or spike. This type information can
include multiple classifications and can also be nested.

• probe_type — Classification information for the probe, such
as pm (perfect match), mm (mismatch), st (sense target), or at
(antisense target). This type information can include multiple
classifications and can also be nested.

CDF File

Field Description

Rows Number of rows of probes.
Cols Number of columns of probes.
NumProbeSets Number of probe sets on the GeneChip array.
NumQCProbeSets Number of QC probe sets on the GeneChip array.
ProbeSetColumnNames Cell array containing the six column names in the ProbePairs

field in the ProbeSets array:

• GroupNumber — Number identifying the group to which
the probe pair belongs. For expression arrays, this value is
always 1. For genotyping arrays, this value is typically 1
(allele A, sense), 2 (allele B, sense), 3 (allele A, antisense), or
4 (allele B, antisense).

• Direction — Number identifying the direction of the probe
pair. 1 = sense and 2 = antisense.

• PMPosX — x-coordinate of the perfect match probe.
• PMPosY — y-coordinate of the perfect match probe.
• MMPosX — x-coordinate of the mismatch probe.
• MMPosY — y-coordinate of the mismatch probe.

 affyread

1-161

Field Description

ProbeSets NumProbeSets-by-1 structure array containing information for
each probe set, including the following fields:

• Name — Name of the probe set.
• ProbeSetType — Type of the probe set.
• CompDataExists — True/false flag indicating if the probe

set has additional computed information.
• NumPairs — Number of probe pairs in the probe set.
• NumQCProbes — Number of QC probes in the probe set.
• QCType — Type of QC probes.
• GroupNames — Name of the group to which the probe set

belongs. For expression arrays, this field contains the name
of the probe set. For genotyping arrays, this field contains
the name of the alleles, for example {'A' 'C' 'A' 'C'}'.

• ProbePairs — NumPairs-by-6 array of information
about the probe pairs. The column names of this array are
contained in the ProbeSetColumnNames field.

GIN File

Field Description

Version GIN file format version.
ProbeSetName Probe set ID/name.
ID Identifier for the probe set (gene ID).
Description Description of the probe set.
SourceNames Source or sources of the probe sets.
SourceURL Source URL or URLs for the probe sets.
SourceID Vector of numbers specifying which SourceNames or

SourceURL each probe set is associated with.

1 Alphabetical List

1-162

Examples

The following example uses the sample data and CDF library file from the E. coli
Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After downloading the sample data, you need the Affymetrix Data Transfer Tool to
extract the CEL, DAT, and CHP files from a DTT file. You can download the Data
Transfer Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

The following example assumes that you have stored the files Ecoli-
antisense-121502.CEL, Ecoli-antisense-121502.dat, and Ecoli-
antisense-121502.chp on the MATLAB search path or in the current folder. It also
assumes that you have stored the associated CDF library file, Ecoli_ASv2.CDF, at D:
\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Display a spatial plot of the probe intensities.

maimage(celStruct, 'Intensity')

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

 affyread

1-163

3 Zoom in on a specific region of the plot.

axis([200 340 0 70])

1 Alphabetical List

1-164

4 Read the contents of a DAT file into a MATLAB structure. Display the raw image
data, and then use the axis image function to set the correct aspect ratio.

datStruct = affyread('Ecoli-antisense-121502.dat');

imagesc(datStruct.Image)

axis image

 affyread

1-165

5 Zoom in on a specific region of the plot.

axis([1900 2800 160 650])

1 Alphabetical List

1-166

6 Read the contents of a CHP file into a MATLAB structure, specifying the location of
the associated CDF library file. Then extract information for probe set 3315278.

chpStruct = affyread('Ecoli-antisense-121502.chp',...

 'D:\Affymetrix\LibFiles\Ecoli');

geneName = probesetlookup(chpStruct,'3315278')

geneName =

 Identifier: '3315278'

 ProbeSetName: 'argG_b3172_at'

 CDFIndex: 5213

 GINIndex: 3074

 Description: [1x82 char]

 affyread

1-167

 Source: 'NCBI EColi Genome'

 SourceURL: [1x74 char]

More About
• http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
• http://www.affymetrix.com/products_services/software/specific/dtt.affx

See Also
affyrma | affygcrma | affysnpannotread | affysnpintensitysplit |
agferead | celintensityread | geoseriesread | gprread | ilmnbsread
| probelibraryinfo | probesetlink | probesetlookup | probesetplot |
probesetvalues | sptread

Tutorials
• Working with AffymetrixData
• Preprocessing AffymetrixMicroarray Data at the Probe Level

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products_services/software/specific/dtt.affx

1 Alphabetical List

1-168

affyrma
Perform Robust Multi-array Average (RMA) procedure on Affymetrix microarray probe-
level data

Syntax
Expression = affyrma(CELFiles, CDFFile)

Expression = affyrma(ProbeStructure)

Expression = affyrma(CELFiles, CDFFile, ...'CELPath',

CELPathValue, ...)

Expression = affyrma(CELFiles, CDFFile, ...'CDFPath',

CDFPathValue, ...)

Expression = affyrma(..., 'Method', MethodValue, ...)

Expression = affyrma(..., 'Truncate', TruncateValue, ...)

Expression = affyrma(..., 'Median', MedianValue, ...)

Expression = affyrma(..., 'Output', OutputValue, ...)

Expression = affyrma(..., 'Showplot', ShowplotValue, ...)

Expression = affyrma(..., 'Verbose', VerboseValue, ...)

Input Arguments

CELFiles Any of the following:

• String specifying a single CEL file name.
• '*', which reads all CEL files in the current folder.
• ' ', which opens the Select CEL Files dialog box from

which you select the CEL files. From this dialog box, you
can press and hold Ctrl or Shift while clicking to select
multiple CEL files.

• Cell array of CEL file names.
CDFFile Either of the following:

• String specifying a CDF file name.
• ' ', which opens the Select CDF File dialog box from which

you select the CDF file.

 affyrma

1-169

ProbeStructure MATLAB structure containing information from the CEL files,
including probe intensities, probe indices, and probe set IDs,
returned by the celintensityread function.

CELPathValue String specifying the path and folder where the files specified
in CELFiles are stored.

CDFPathValue String specifying the path and folder where the file specified in
CDFFile is stored.

MethodValue Specifies the estimation method for the background
adjustment model parameters. Choices are 'RMA' (to use
estimation method described by Bolstad, 2005) or 'MLE' (to
estimate the parameters using maximum likelihood). Default
is 'RMA'.

TruncateValue Specifies the background noise model. Choices are true (use a
truncated Gaussian distribution) or false (use a nontruncated
Gaussian distribution). Default is true.

MedianValue Specifies the use of the median of the ranked values instead
of the mean for normalization. Choices are true or false
(default).

OutputValue Specifies the scale of the returned gene expression values.
Choices are:

• 'log'

• 'log2'

• 'log10'

• 'linear'

• @functionname

In the last instance, the data is transformed as defined by the
function functionname. Default is 'log2'.

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-170

ShowplotValue Controls the plotting of a histogram showing the distribution
of PM probe intensity values (blue) and the convoluted
probability distribution function (red), with estimated
parameters mu, sigma and alpha. Enter either 'all' (plot
a histogram for each column or chip) or specify a subset
of columns (chips) by entering the column number, list of
numbers, or range of numbers.

For example:

• (..., 'Showplot', 3, ...) plots the intensity values
in column 3.

• (..., 'Showplot', [3,5,7], ...) plots the intensity
values in columns 3, 5, and 7.

• (..., 'Showplot', 3:9, ...) plots the intensity
values in columns 3 to 9.

VerboseValue Controls the display of the status of the reading of files and
RMA processing. Choices are true (default) or false.

Output Arguments

Expression DataMatrix object containing the log2 based gene expression
values that have been background adjusted, normalized, and
summarized using the Robust Multi-array Average (RMA)
procedure.

Each row in Expression corresponds to a gene (probe set),
and each column corresponds to an Affymetrix CEL file.

Description

Expression = affyrma(CELFiles, CDFFile) reads the specified Affymetrix CEL
files and the associated CDF library file (created from Affymetrix GeneChip arrays
for expression or genotyping assays), processes the probe intensity values using RMA
background adjustment, quantile normalization, and summarization procedures, then

 affyrma

1-171

returns Expression, a DataMatrix object containing the log2 based gene expression
values in a matrix, the probe set IDs as row names, and the CEL file names as column
names. Note that each row in Expression corresponds to a gene (probe set), and each
column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a
separate chip. All chips should be of the same type.)

CELFiles is a string or cell array of CEL file names. CDFFile is a string specifying a
CDF file name. If you set CELFiles to '*', then it reads all CEL files in the current
folder. If you set CELFiles to ' ', then it opens the Select CEL Files dialog box from
which you select the CEL files.

Note: For details on the reading of files and RMA processing, see celintensityread,
rmabackadj, quantilenorm, and rmasummary.

Expression = affyrma(ProbeStructure) uses RMA background adjustment,
quantile normalization, and summarization procedures to process the probe intensity
values in ProbeStructure, a MATLAB structure containing information from the
CEL files, including probe intensities, probe indices, and probe set IDs, returned by the
celintensityread function, and returns Expression.

Expression = affyrma(..., 'PropertyName', PropertyValue, ...) calls
affyrma with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

Expression = affyrma(CELFiles, CDFFile, ...'CELPath',

CELPathValue, ...) specifies a path and folder where the files specified by CELFiles
are stored.

Expression = affyrma(CELFiles, CDFFile, ...'CDFPath',

CDFPathValue, ...) specifies a path and folder where the file specified by CDFFile is
stored.

Expression = affyrma(..., 'Method', MethodValue, ...) specifies
the estimation method for the background adjustment model parameters. When
MethodValue is 'RMA', affyrma implements the estimation method described by
Bolstad, 2005. When MethodValue is 'MLE', affyrma estimates the parameters using
maximum likelihood. Default is 'RMA'.

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-172

Expression = affyrma(..., 'Truncate', TruncateValue, ...) specifies
the background noise model used. When TruncateValue is false, affyrma uses
nontruncated Gaussian as the background noise model. Default is true.

Expression = affyrma(..., 'Median', MedianValue, ...) specifies the use of
the median of the ranked values instead of the mean for normalization. Choices are true
or false (default).

Expression = affyrma(..., 'Output', OutputValue, ...) specifies the scale
of the returned gene expression values. OutputValue can be:

• 'log'

• 'log2'

• 'log10'

• 'linear'

• @functionname

In the last instance, the data is transformed as defined by the function functionname.
Default is 'log2'.

Expression = affyrma(..., 'Showplot', ShowplotValue, ...) lets you
plot a histogram showing the distribution of PM probe intensity values (blue) and the
convoluted probability distribution function (red), with estimated parameters mu,
sigma and alpha. When ShowplotValue is 'all', rmabackadj plots a histogram for
each column or chip. When ShowplotValue is a number, list of numbers, or range of
numbers, rmabackadj plots a histogram for the indicated column number (chip).

For example:

• (..., 'Showplot', 3,...) plots the intensity values in column 3.
• (..., 'Showplot', [3,5,7],...) plots the intensity values in columns 3, 5, and

7.
• (..., 'Showplot', 3:9,...) plots the intensity values in columns 3 to 9.

Expression = affyrma(..., 'Verbose', VerboseValue, ...) controls the
display of the status of the reading of files and RMA processing. Choices are true
(default) or false.

 affyrma

1-173

Examples

The following example assumes that you have the HG_U95Av2.CDF library file stored at
D:\Affymetrix\LibFiles\HGGenome, and that your current folder points to a location
containing CEL files associated with this CDF library file. In this example, the affyrma
function reads all the CEL files in the current folder and a CDF file in a specified
folder. It also performs RMA background adjustment, quantile normalization, and
summarization procedures on the PM probe intensity values, and returns a DataMatrix
object, containing the metadata and processed data.

Expression = affyrma('*', 'HG_U95Av2.CDF',...

 'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');

References

[1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.,
Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics. 4, 249–264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading,
Massachusetts: Addison-Wesley Publishing Company), pp. 165–202.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

[4] Bolstad, B. (2005). “affy: Built-in Processing Methods” http://www.bioconductor.org/
packages/2.1/bioc/vignettes/affy/ inst/doc/builtinMethods.pdf

See Also
affygcrma | gcrma | mafdr | celintensityread | mattest | quantilenorm |
rmabackadj | rmasummary

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf
http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-174

affysnpannotread

Read Affymetrix Mapping DNA array data from CSV-format annotation file

Syntax

AnnotStruct = affysnpannotread(File, PID)

AnnotStruct = affysnpannotread(File, PID, 'LookUpField',

LookUpFieldValue)

Input Arguments

File String specifying a file name or a path and file name of an
Affymetrix CSV annotation file for a Mapping 10K array set,
Mapping 100K array set, or Mapping 500K array set.

If you specify only a file name, that file must be on the
MATLAB search path or in the current folder.

PID String or cell array of strings specifying one or more probe set
IDs on an Affymetrix mapping array.

LookUpFieldValue String or cell array of strings specifying one or more column
headers in an Affymetrix CSV annotation file. Default are the
fields shown in the following table.

Output Arguments

AnnotStruct MATLAB structure containing information for one or more
probe sets from File, an Affymetrix CSV annotation file.

AnnotStruct contains a subset of the fields in File. The
fields are described in the table below.

 affysnpannotread

1-175

Description
AnnotStruct = affysnpannotread(File, PID) reads File, an Affymetrix CSV
annotation file for a Mapping 10K array set, Mapping 100K array set, or Mapping 500K
array set, and returns AnnotStruct, a MATLAB structure containing annotation
information for one or more probe sets specified by PID, a string or cell array of strings
specifying one or more probe set IDs. AnnotStruct contains a subset of the fields in
File. The fields are described in the following table.

Structure Created from an Affymetrix CSV Annotation File

Field Description

ProbeSetIDs Cell array containing the unique probe set IDs specified by the
PID input.

Chromosome Cell array containing the chromosome number on which each
probe set is located.

ChromPosition Cell array containing the SNP genomic position on the
chromosome for each probe set.

Cytoband Cell array containing the cytogenetic banding region of the
chromosome on which each probe set is located.

Sequence Cell array containing the sequence of each probe set.
AlleleA Cell array containing the base that is allele A for each probe set.
AlleleB Cell array containing the base that is allele B for each probe set.
Accession Cell array containing the GenBank® accession number for each

probe set.
FragmentLength Cell array containing the length of each probe set.

AnnotStruct = affysnpannotread(File, PID, 'LookUpField',

LookUpFieldValue) returns annotation information from only the field (column)
specified by LookUpFieldValue, a string or cell array of strings specifying one or more
column headers in an Affymetrix CSV annotation file. Default are the fields shown in the
previous table.

Note: You can download Affymetrix CSV annotation files such as
Mapping50K_Xba240.na25.annot.csv from:
http://www.affymetrix.com/support/technical/annotationfilesmain.affx

http://www.affymetrix.com/support/technical/annotationfilesmain.affx

1 Alphabetical List

1-176

Examples

The following example assumes that you have the Mapping50K_Xba240.CDF file stored
at C:\AffyLibFiles\, and that your current folder points to a location containing the
Mapping50K_Xba240.na25.annot.csv annotation file.

1 Use the affyread function to create a structure containing information from the
Mapping50K_Xba240.CDF library file.

cdf = affyread('C:\AffyLibFiles\Mapping50K_Xba240.CDF');

2 Create a variable containing a cell array of the names of the probe sets, which are
stored in the Name field of the ProbeSets field of the cdf structure.

probesetIDs = {cdf.ProbeSets.Name}';

3 Return a structure containing annotation information for all the probe sets in the
Mapping50K_Xba240.na25.annot.csv annotation file.
snpInfo = affysnpannotread('Mapping50K_Xba240.na25.annot.csv',probesetIDs)

snpInfo =

 ProbeSetIDs: {59024x1 cell}

 Chromosome: [59024x1 int8]

 ChromPosition: [59024x1 double]

 Cytoband: {59024x1 cell}

 Sequence: {59024x1 cell}

 AlleleA: {59024x1 cell}

 AlleleB: {59024x1 cell}

 Accession: {59024x1 cell}

 FragmentLength: [59024x1 double]

See Also
affysnpintensitysplit | affyread

 affysnpintensitysplit

1-177

affysnpintensitysplit
Split Affymetrix SNP probe intensity information for alleles A and B

Syntax

ProbeStructSplit = affysnpintensitysplit(ProbeStruct)

ProbeStructSplit = affysnpintensitysplit(ProbeStruct, 'Controls',

ControlsValue)

Input Arguments

ProbeStruct MATLAB structure containing probe intensity information
from an Affymetrix Mapping DNA array, such as returned by
celintensityread.

ControlsValue Controls the inclusion of control probes in
ProbeStructSplit. Choices are true or false (default).

Output Arguments

ProbeStructSplit MATLAB structure containing probe intensity information
from an Affymetrix Mapping DNA array, split into information
for alleles A and B.

Description

ProbeStructSplit = affysnpintensitysplit(ProbeStruct) splits
ProbeStruct, a structure containing probe intensity information from an Affymetrix
Mapping DNA array, into ProbeStructSplit, a structure containing probe intensity
information from an Affymetrix Mapping DNA array, split into information for alleles A
and B.

ProbeStructSplit contains the following fields.

1 Alphabetical List

1-178

Field Description

CDFName File name of the Affymetrix CDF library file.
CELNames Cell array of names of the Affymetrix CEL files.
NumChips Number of CEL files read into the input structure.
NumProbeSets Number of probe sets in each CEL file.
NumProbes Maximum number of probes for just one allele in each CEL

file.

Note: If the number of probes for allele A is not the same as
for allele B, the larger number is used.

ProbeSetIDs Cell array of the probe set IDs from the Affymetrix CDF
library file.

ProbeIndices Column vector containing probe indexing information for
just one allele in each cell file. Probes within a probe set
are numbered 0 through N - 1, where N is the number of
probes for one allele in the probe set.

Note: ProbeIndices has the same number of elements as
NumProbes.

PMAIntensities Matrix containing perfect match (PM) probe intensity
values for allele A. Each row corresponds to an allele A
probe, and each column corresponds to a CEL file. The rows
are ordered the same way as in ProbeIndices, and the
columns are ordered the same way as in the CELFiles
input argument to the celintensityread function.

PMBIntensities Matrix containing perfect match (PM) probe intensity
values for allele B. Each row corresponds to an allele B
probe, and each column corresponds to a CEL file. The rows
are ordered the same way as in ProbeIndices, and the
columns are ordered the same way as in the CELFiles
input argument to the celintensityread function.

 affysnpintensitysplit

1-179

Field Description

MMAIntensities

(optional)
Matrix containing mismatch (MM) probe intensity values
for allele A. Each row corresponds to an allele A probe,
and each column corresponds to a CEL file. The rows
are ordered the same way as in ProbeIndices, and the
columns are ordered the same way as in the CELFiles
input argument to the celintensityread function.

MMBIntensities

(optional)
Matrix containing mismatch (MM) probe intensity values
for allele B. Each row corresponds to an allele B probe,
and each column corresponds to a CEL file. The rows
are ordered the same way as in ProbeIndices, and the
columns are ordered the same way as in the CELFiles
input argument to the celintensityread function.

ProbeStructSplit = affysnpintensitysplit(ProbeStruct, 'Controls',

ControlsValue) controls the return of control probe intensities. Choices are true or
false (default).

Note: Control probes sometimes contain information for only one allele. In this case, the
value for the corresponding allele (A or B) that is not present is set to NaN.

Examples

The following example assumes that your current folder points to a location containing
the Mapping50K_Hind240.CDF library file and 18 CEL files associated with this CDF
library file. These files are associated with an Affymetrix Mapping DNA array.

1 Use the celintensityread function to read the Mapping50K_Hind240.CDF
library file and 18 CEL files associated with it into a MATLAB structure.

ps = celintensityread('*','Mapping50K_Hind240.CDF')

ps =

 CDFName: 'Mapping50K_Hind240.CDF'

 CELNames: {18x1 cell}

 NumChips: 18

 NumProbeSets: 57299

1 Alphabetical List

1-180

 NumProbes: 1145780

 ProbeSetIDs: {57299x1 cell}

 ProbeIndices: [1145780x1 uint8]

 GroupNumbers: [1145780x1 uint8]

 PMIntensities: [1145780x18 single]

2 Extract the PM probe intensities for allele A and allele B into another MATLAB
structure, without including intensity information for the control probes.

ps_split = affysnpintensitysplit(ps)

ps_split =

 CDFName: 'Mapping50K_Hind240.CDF'

 CELNames: {18x1 cell}

 NumChips: 18

 NumProbeSets: 57275

 NumProbes: 572750

 ProbeSetIDs: {57275x1 cell}

 ProbeIndices: [572750x1 uint8]

 PMAIntensities: [572750x18 single]

 PMBIntensities: [572750x18 single]

See Also
affysnpannotread | affyread | celintensityread

 affysnpquartets

1-181

affysnpquartets
Create table of SNP probe quartet results for Affymetrix probe set

Syntax

SNPQStruct = affysnpquartets(CELStruct, CDFStruct, PS)

Input Arguments

CELStruct Structure created by the affyread function from an Affymetrix CEL
file, which contains information about the intensity values of the
individual probes.

CDFStruct Structure created by the affyread function from an Affymetrix CDF
library file associated with the CEL file. The CDF library file contains
information about which probes belong to which probe set.

PS Probe set index or the probe set ID/name.

Output Arguments

SNPQStruct Structure containing probe quartet results for a specific SNP probe set
from the data in a CEL file and associated CDF library file.

Description

SNPQStruct = affysnpquartets(CELStruct, CDFStruct, PS) creates
SNPQStruct, a structure containing probe quartet results for a specific SNP probe set,
specified by PS, from the probe-level data in a CEL file and associated CDF library file.
CELStruct is a structure created by the affyread function from an Affymetrix CEL
file. PS is a probe set index or probe set ID/name from CDFStruct, a structure created by
the affyread function from an Affymetrix CDF library file associated with the CEL file.
SNPQStruct is a structure containing the following fields.

1 Alphabetical List

1-182

Field Description

'ProbeSet' Identifier for the probe set.
'AlleleA' String specifying the base that is allele A for the probe

set.
'AlleleB' String specifying the base that is allele B for the probe

set.
'Quartet' Structure array containing intensity values for PM

(perfect match) and MM (mismatch) probe pairs,
including the sense and antisense probes for alleles A
and B. Each structure in the array corresponds to a
probe pair in the probe set.

Examples

The following example uses the NA06985_Hind_B5_3005533.CEL file. You can
download this and other sample CEL files from:
http://www.affymetrix.com/support/technical/sample_data/hapmap_trio_data.affx

The NA06985_Hind_B5_3005533.CEL file is included in the 100K_trios.hind.1.zip
file.

The following example uses the CDF library file for the Mapping 50K Hind 240 array,
which you can download from:
http://www.affymetrix.com/support/technical/byproduct.affx?product=100k

The following example assumes that the NA06985_Hind_B5_3005533.CEL file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Mapping50K_Hind240.cdf, is stored at D:\Affymetrix\LibFiles\.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('NA06985_Hind_B5_3005533.CEL');

2 Read the contents of a CDF file into a MATLAB structure.
cdfStruct = affyread('D:\Affymetrix\LibFiles\Mapping50K_Hind240.cdf');

3 Create a structure containing SNP probe quartet results for the SNP_A-1684395
probe set.

http://www.affymetrix.com/support/technical/sample_data/hapmap_trio_data.affx
http://www.affymetrix.com/support/technical/byproduct.affx?product=100k

 affysnpquartets

1-183

SNPQStruct = affysnpquartets(celStruct,cdfStruct,'SNP_A-1684395')

SNPQStruct =

 ProbeSet: 'SNP_A-1684395'

 AlleleA: 'A'

 AlleleB: 'G'

 Quartet: [1x5 struct]

4 View the intensity values of the first probe pair in the probe set.

SNPQStruct.Quartet(1)

ans =

 A_Sense_PM: 5013

 B_Sense_PM: 1290

 A_Sense_MM: 1485

 B_Sense_MM: 686

 A_Antisense_PM: 3746

 B_Antisense_PM: 1406

 A_Antisense_MM: 1527

 B_Antisense_MM: 958

See Also
affyread | probesetvalues

1 Alphabetical List

1-184

agferead
Read Agilent Feature Extraction Software file

Syntax

AGFEData = agferead(File)

Arguments

File Microarray data file generated with the Agilent® Feature Extraction
Software.

Description

AGFEData = agferead(File) reads files generated with the Feature Extraction
Software from Agilent microarray scanners and creates a structure (AGFEData)
containing the following fields:

• Header

• Stats

• Columns

• Rows

• Names

• IDs

• Data

• ColumnNames

• TextData

• TextColumnNames

The Feature Extraction Software takes an image from an Agilent microarray scanner
and generates raw intensity data for each spot on the plate.

 agferead

1-185

Examples

1 Read in a sample Agilent Feature Extraction Software file. Note that the file
fe_sample.txt is not provided with the Bioinformatics Toolbox™ software.

agfeStruct = agferead('fe_sample.txt')

2 Plot the median foreground.

maimage(agfeStruct,'gMedianSignal');

maboxplot(agfeStruct,'gMedianSignal');

See Also
affyread | celintensityread | galread | geoseriesread | geosoftread |
gprread | ilmnbsread | imageneread | magetfield | sptread

1 Alphabetical List

1-186

align2cigar

Convert aligned sequences to corresponding Compact Idiosyncratic Gapped Alignment
Report (CIGAR) format strings

Syntax

[Cigars,Starts] = align2cigar(Alignment,Ref)

Description

[Cigars,Starts] = align2cigar(Alignment,Ref) converts aligned sequences
represented in Alignment, a cell array of aligned strings or a character array, into Cigars,
a cell array of corresponding CIGAR strings, using the reference sequence specified by
Ref, a string. It also returns Starts, a vector of integers indicating the start position of
each aligned sequence with respect to the ungapped reference sequence.

Input Arguments

Alignment

Cell array of aligned sequence strings or a character array representing aligned
sequences. Soft clippings are assumed to be represented by lowercase letters in the
aligned sequences. Skipped positions are assumed to be represented by . in the aligned
sequences.

Default:

Ref

String specifying an aligned reference sequence. The length of Ref must equal the
number of columns in Alignment.

Default:

 align2cigar

1-187

Output Arguments

Cigars

Cell array of CIGAR strings corresponding to each aligned sequence in Alignment.

Starts

Vector of integers indicating the start position of each aligned sequence with respect to
the ungapped reference sequence.

Examples

Convert aligned sequences to CIGAR strings

This example shows how to convert aligned strings to CIGAR strings

Create a cell array of aligned strings, create a string specifying a reference sequence, and
then convert the alignment to CIGAR strings:

aln = ['ACG-ATGC'; 'ACGT-TGC'; ' GTAT-C']

aln =

ACG-ATGC

ACGT-TGC

 GTAT-C

ref = 'ACGTATGC';

[cigar, start] = align2cigar(aln, ref)

cigar =

 '3M1D4M' '4M1D3M' '4M1D1M'

start =

 1 1 3

1 Alphabetical List

1-188

More About
• “Manage Short-Read Sequence Data in Objects”
• Sequence Read Archive
• SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
getAlignment | cigar2align | multialign | getBaseCoverage |
getCompactAlignment | BioMap

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 allshortestpaths (biograph)

1-189

allshortestpaths (biograph)

Find all shortest paths in biograph object

Syntax

[dist] = allshortestpaths(BGObj)

[dist] = allshortestpaths(BGObj, ...'Directed', DirectedValue, ...)

[dist] = allshortestpaths(BGObj, ...'Weights', WeightsValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).
DirectedValue Property that indicates whether the graph is directed or undirected.

Enter false for an undirected graph. This results in the upper
triangle of the sparse matrix being ignored. Default is true.

WeightsValue Column vector that specifies custom weights for the edges in the N-
by-N adjacency matrix extracted from a biograph object, BGObj. It
must have one entry for every nonzero value (edge) in the matrix.
The order of the custom weights in the vector must match the order
of the nonzero values in the matrix when it is traversed column-
wise. This property lets you use zero-valued weights. By default,
allshortestpaths gets weight information from the nonzero
entries in the matrix.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[dist] = allshortestpaths(BGObj) finds the shortest paths between every pair of
nodes in a graph represented by an N-by-N adjacency matrix extracted from a biograph

1 Alphabetical List

1-190

object, BGObj, using Johnson's algorithm. Nonzero entries in the matrix represent the
weights of the edges.

Output dist is an N-by-N matrix where dist(S,T) is the distance of the shortest
path from source node S to target node T. Elements in the diagonal of this matrix are
always 0, indicating the source node and target node are the same. A 0 not in the
diagonal indicates that the distance between the source node and target node is 0. An
Inf indicates there is no path between the source node and the target node.

Johnson's algorithm has a time complexity of O(N*log(N)+N*E), where N and E are the
number of nodes and edges respectively.

[...] = allshortestpaths (BGObj, 'PropertyName', PropertyValue, ...)

calls allshortestpaths with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each PropertyName
must be enclosed in single quotes and is case insensitive. These property name/property
value pairs are as follows:

[dist] = allshortestpaths(BGObj, ...'Directed', DirectedValue, ...)

indicates whether the graph is directed or undirected. Set DirectedValue to false
for an undirected graph. This results in the upper triangle of the sparse matrix being
ignored. Default is true.

[dist] = allshortestpaths(BGObj, ...'Weights', WeightsValue, ...) lets
you specify custom weights for the edges. WeightsValue is a column vector having one
entry for every nonzero value (edge) in the N-by-N adjacency matrix extracted from a
biograph object, BGObj. The order of the custom weights in the vector must match the
order of the nonzero values in the N-by-N adjacency matrix when it is traversed column-
wise. This property lets you use zero-valued weights. By default, allshortestpaths
gets weight information from the nonzero entries in the N-by-N adjacency matrix.

More About
• “biograph object”

References

[1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM 24(1), 1-13.

 allshortestpaths (biograph)

1-191

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | conncomp | isomorphism | maxflow | shortestpath | traverse |
graphallshortestpaths | isdag | isspantree | minspantree | topoorder

1 Alphabetical List

1-192

aminolookup
Find amino acid codes, integers, abbreviations, names, and codons

Syntax

aminolookup

aminolookup(SeqAA)

aminolookup('Code', CodeValue)

aminolookup('Integer', IntegerValue)

aminolookup('Abbreviation', AbbreviationValue)

aminolookup('Name', NameValue)

Arguments

SeqAA String of single-letter codes or three-letter abbreviations
representing an amino acid sequence. For valid codes and
abbreviations, see the table Amino Acid Lookup.

CodeValue String specifying a single-letter code representing an amino
acid. For valid single-letter codes, see the table Amino Acid
Lookup.

IntegerValue Single integer representing an amino acid. For valid
integers, see the table Amino Acid Lookup.

AbbreviationValue String specifying a three-letter abbreviation representing
an amino acid. For valid three-letter abbreviations, see the
table Amino Acid Lookup.

NameValue String specifying an amino acid name. For valid amino acid
names, see the table Amino Acid Lookup.

Description

aminolookup displays a table of amino acid codes, integers, abbreviations, names, and
codons.

 aminolookup

1-193

Amino Acid Lookup

Code Integer Abbreviation Amino Acid Name Codons

A 1 Ala Alanine GCU GCC GCA GCG

R 2 Arg Arginine CGU CGC CGA CGG

AGA AGG

N 3 Asn Asparagine AAU AAC

D 4 Asp Aspartic acid
(Aspartate)

GAU GAC

C 5 Cys Cysteine UGU UGC

Q 6 Gln Glutamine CAA CAG

E 7 Glu Glutamic acid
(Glutamate)

GAA GAG

G 8 Gly Glycine GGU GGC GGA GGG

H 9 His Histidine CAU CAC

I 10 Ile Isoleucine AUU AUC AUA

L 11 Leu Leucine UUA UUG CUU CUC

CUA CUG

K 12 Lys Lysine AAA AAG

M 13 Met Methionine AUG

F 14 Phe Phenylalanine UUU UUC

P 15 Pro Proline CCU CCC CCA CCG

S 16 Ser Serine UCU UCC UCA UCG

AGU AGC

T 17 Thr Threonine ACU ACC ACA ACG

W 18 Trp Tryptophan UGG

Y 19 Tyr Tyrosine UAU UAC

V 20 Val Valine GUU GUC GUA GUG

B 21 Asx Asparagine or
Aspartic acid
(Aspartate)

AAU AAC GAU GAC

1 Alphabetical List

1-194

Code Integer Abbreviation Amino Acid Name Codons

Z 22 Glx Glutamine or
Glutamic acid
(Glutamate)

CAA CAG GAA GAG

X 23 Xaa Any amino acid All codons
* 24 END Termination codon

(translation stop)
UAA UAG UGA

- 25 GAP Gap of unknown
length

NA

aminolookup(SeqAA) converts between single-letter codes and three-letter
abbreviations for an amino acid sequence. If the input is a string of single-letter codes,
then the output is a character string of three-letter abbreviations. If the input is a string
of three-letter abbreviations, then the output is a string of the corresponding single-letter
codes.

If you enter one of the ambiguous single-letter codes B, Z, or X, this function displays the
corresponding abbreviation for the ambiguous amino acid character.

aminolookup('abc')

ans =

AlaAsxCys

aminolookup('Code', CodeValue) displays the corresponding amino acid three-
letter abbreviation and name.

aminolookup('Integer', IntegerValue) displays the corresponding amino acid
single-letter code, three-letter abbreviation, and name.

aminolookup('Abbreviation', AbbreviationValue) displays the corresponding
amino acid single-letter code and name.

aminolookup('Name', NameValue) displays the corresponding amino acid single-
letter code and three-letter abbreviation.

 aminolookup

1-195

Examples

• Convert an amino acid sequence in single-letter codes to the corresponding three-
letter abbreviations.

aminolookup('MWKQAEDIRDIYDF')

ans =

MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe

• Convert an amino acid sequence in three-letter abbreviations to the corresponding
single-letter codes.

aminolookup('MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe')

ans =

MWKQAEDIRDIYDF

• Display the three-letter abbreviation and name for the amino acid corresponding to
the single-letter code R.

aminolookup('Code', 'R')

ans =

Arg Arginine

• Display the single-letter code, three-letter abbreviation, and name for the amino acid
corresponding to the integer 1.

aminolookup('Integer', 1)

ans =

A Ala Alanine

• Display the single-letter code and name for the amino acid corresponding to the three-
letter abbreviation asn.

aminolookup('Abbreviation', 'asn')

ans =

N Asparagine

1 Alphabetical List

1-196

• Display the single-letter code and three-letter abbreviation for the amino acid proline.

aminolookup('Name','proline')

ans =

P Pro

See Also
aa2int | aa2nt | aacount | geneticcode | int2aa | isotopicdist | nt2aa |
revgeneticcode

 atomiccomp

1-197

atomiccomp
Calculate atomic composition of protein

Syntax

NumberAtoms = atomiccomp(SeqAA)

Arguments

SeqAA Amino acid sequence. Enter a character string or vector of integers from
the table Mapping Amino Acid Letter Codes to Integers. You can also enter
a structure with the field Sequence.

Description

NumberAtoms = atomiccomp(SeqAA) counts the type and number of atoms
in an amino acid sequence (SeqAA) and returns the counts in a 1-by-1 structure
(NumberAtoms) with fields C, H, N, O, and S.

Examples

1 Retrieve an amino acid sequence from the NCBI GenPept database.

rhodopsin = getgenpept('NP_000530');

2 Count the atoms in the sequence.

rhodopsinAC = atomiccomp(rhodopsin)

rhodopsinAC =

 C: 1814

 H: 2725

 N: 423

 O: 477

1 Alphabetical List

1-198

 S: 25

3 Count the number of carbon atoms in the sequence.

rhodopsinAC.C

ans =

 1814

See Also
aacount | molweight | proteinplot

 bamindexread

1-199

bamindexread
Read Binary Sequence Alignment/Map Index (BAI) file

Syntax

Index = bamindexread(File)

Description

Index = bamindexread(File) reads File, a BAI file, and returns Index, a MATLAB
structure that specifies the offsets into the compressed Binary Sequence Alignment/
Map (BAM) file and decompressed data block for each reference sequence and range of
positions (bins) on each reference sequence.

Input Arguments

File

String specifying a file name, or a path and a file name, of a BAM file or a BAI file. If File
is a BAM file, bamindexread reads the corresponding BAI file, that is, the BAI file with
the same root name and stored in the same folder as the BAM file. If you specify only a
file name, that file must be on the MATLAB search path or in the Current Folder.

Default:

Output Arguments

Index

MATLAB array of structures that specifies the offsets into the compressed Binary
Sequence Alignment/Map (BAM) file and decompressed data block for each reference
sequence and range of positions (bins) on the reference sequence. Index contains the
following fields.

1 Alphabetical List

1-200

Field Description

Filename Name of the BAM file or BAI file used to create the Index
array of structures.

Index A 1-by-N array of structures, where N is the number of
reference sequences in the corresponding BAM file. Each
structure contains the following fields:

• BinID — Array of bin IDs for one reference sequence.
• BGZFOffsetStart — Offset in the BAM file to the

start of the first BGZF block where alignment records
associated with the corresponding BinID are stored.

• BGZFOffsetEnd — Offset in the BAM file to the
start of the last BGZF block where alignment records
associated with the corresponding BinID are stored.

• DataOffsetStart — Offset in the decompressed data
block to the start of where alignment records associated
with the corresponding BinID are stored.

• DataOffsetEnd — Offset in the decompressed data
block to the end of where alignment records associated
with the corresponding BinID are stored.

• LinearBGZFOffset — Offset in the BAM file to the
first alignment in the corresponding 16384 bp interval.

• LinearDataOffset — Offset in the decompressed
data file to the first alignment in the corresponding
16384 bp interval.

Examples

Generate an index structure from a BAM file

This example shows how to generate an index structure from a BAM index file.

ind = bamindexread('ex1.bam')

ind =

 bamindexread

1-201

 Filename: 'ex1.bam.bai'

 Index: [1x2 struct]

More About

Tips

• The bamread function uses the Index structure returned by bamindexread to index
into a BAM file to extract alignment records in a specified range of a specific reference
sequence. Passing the Index structure array to the bamread function improves
performance when reading from the same BAM file multiple times, for example, when
reading different ranges of a reference sequence.

• “Manage Short-Read Sequence Data in Objects”
• Sequence Read Archive
• SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
baminfo | bamread

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-202

baminfo
Return information about Binary Sequence Alignment/Map (BAM) file

Syntax
InfoStruct = baminfo(File)

InfoStruct = baminfo(File,Name,Value)

Description
InfoStruct = baminfo(File) returns a MATLAB structure containing summary
information about a BAM-formatted file.

InfoStruct = baminfo(File,Name,Value) returns a MATLAB structure with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
File

String specifying a file name or path and file name of a BAM-formatted file. If you specify
only a file name, that file must be on the MATLAB search path or in the Current Folder.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ScanDictionary'

Logical that controls the scanning of the BAM-formatted file to determine the
reference names and the number of reads aligned to each reference. If true, the
ScannedDictionary and ScannedDictionaryCount fields contain this information.

 baminfo

1-203

Default: false

'NumOfReads'

Logical that controls the scanning of a BAM-formatted file to determine the number of
alignment records in the file. If true, the NumReads field contains this information.

Default: false

Output Arguments

InfoStruct

MATLAB structure containing summary information about a BAM-formatted file. The
structure contains these fields.

Field Description

Filename Name of the BAM-formatted file.
FilePath Path to the file.
FileSize Size of the file in bytes.
FileModDate Modification date of the file.
Header** Structure containing the file format version,

sort order, and group order.
ReadGroup** Structure containing the:

• Read group identifier
• Sample
• Library
• Description
• Platform unit
• Predicted median insert size
• Sequencing center
• Date
• Platform

SequenceDictionary** Structure containing the:

1 Alphabetical List

1-204

Field Description

• Sequence name
• Sequence length
• Genome assembly identifier
• MD5 checksum of sequence
• URI of sequence
• Species

Program** Structure containing the:

• Program name
• Version
• Command line

NumReads Number of reference sequences in the BAM-
formatted file.

ScannedDictionary* Cell array of strings specifying the names of
the reference sequences in the BAM-formatted
file.

ScannedDictionaryCount* Cell array specifying the number of reads
aligned to each reference sequence.

* — The ScannedDictionary and ScannedDictionaryCount fields are empty if you
do not set the ScanDictionary name-value pair argument to true.

** — These structures and their fields appear in the output structure only if they are
in the BAM file. The information in these structures depends on the information in the
BAM file.

Examples

Retrieve information about a BAM file

This example shows how to retrieve information about the ex1.bam file included with the
Bioinformatics Toolbox™.

info = baminfo('ex1.bam','ScanDictionary',true,'numofreads',true)

 baminfo

1-205

info =

 Filename: 'ex1.bam'

 FilePath: 'B:\matlab\toolbox\bioinfo\bioinfodata'

 FileSize: 126692

 FileModDate: '07-May-2010 16:12:04'

 Header: [1x1 struct]

 ReadGroup: [1x2 struct]

 SequenceDictionary: [1x2 struct]

 NumReads: 3307

 ScannedDictionary: {2x1 cell}

 ScannedDictionaryCount: [2x1 uint64]

List the number of references found in the BAM file.

numel(info.ScannedDictionary)

ans =

 2

Alternatively, you can use the available header information from a BAM file to find out
the number of references, thus avoiding the whole traversal of the source file.

info = baminfo('ex1.bam');

NRefs = numel(info.SequenceDictionary)

NRefs =

 2

More About

Tips
Use baminfo to investigate the size and content of a BAM-formatted file, including
reference sequence names, before using the bamread function to read the file contents
into a MATLAB structure.

1 Alphabetical List

1-206

• “Manage Short-Read Sequence Data in Objects”
• Sequence Read Archive
• SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
bamindexread | bamread

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 bamread

1-207

bamread
Read data from Binary Sequence Alignment/Map (BAM) file

Syntax
BAMStruct = bamread(File,RefSeq,Range)

[BAMStruct,HeaderStruct] = bamread(File,RefSeq,Range)

... = bamread(File,RefSeq,Range,Name,Value)

Description
BAMStruct = bamread(File,RefSeq,Range) reads the alignment records in File, a
BAM-formatted file, that align to RefSeq, a reference sequence, in the range specified by
Range. It returns the alignment data in BAMStruct, a MATLAB array of structures.

[BAMStruct,HeaderStruct] = bamread(File,RefSeq,Range) also returns the
header information in HeaderStruct, a MATLAB structure.

... = bamread(File,RefSeq,Range,Name,Value) reads the alignment records
with additional options specified by one or more Name,Value pair arguments.

Input Arguments
File

String specifying a file name or path and file name of a BAM-formatted file. If you specify
only a file name, that file must be on the MATLAB search path or in the Current Folder.

Default:

RefSeq

Either of the following:

• String specifying the name of a reference sequence in the BAM file.
• Positive integer specifying the index of a reference sequence in the BAM file. This

number is also the index of the reference sequence in the Reference field of the
InfoStruct structure returned by baminfo.

1 Alphabetical List

1-208

Default:

Range

Two-element vector specifying the begin and end range positions on the reference
sequence, RefSeq. Both values must be positive, and are one-based. The second value
must be ≥ to the first value.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Full'

Controls the return of only alignment records that are fully contained within the range
specified by Range. Choices are true or false (default).

Default: false

'Tags'

Controls the reading of the optional tags in addition to the first 11 fields for each
alignment in the BAM-formatted file. Choices are true (default) or false.

Default: true

'ToFile'

String specifying a nonexisting file name or a path and file name for saving the
alignment records in the specified range of a specific reference sequence. The ToFile
name-value pair argument creates a SAM-formatted file. If you specify only a file name,
the file is saved to the MATLAB Current Folder.

The SAM-formatted file is always one-based, even if you set the ZeroBased name-value
pair argument to true. You can use the SAM-formatted file as input when creating a
BioMap object.

 bamread

1-209

Default:

'ZeroBased'

Logical specifying whether bamread uses zero-based indexing when reading a file. The
logical controls the return of zero-based or one-based positions in the Position and
MatePosition fields in BAMStruct. Choices are true or false (default), which returns
one-based positions.

This name-value pair argument affects the Position and MatePosition fields of
BAMStruct. It does not affect the Range input argument or the SAM file created when
using the ToFile name-value pair argument. SAM files are always one-based.

Caution If you plan to use the BAMStruct output argument to construct a BioMap object,
make sure the ZeroBased name-value pair argument is false.

Default: false

Output Arguments

BAMStruct

An N-by-1 array of structures containing sequence alignment and mapping information
from a BAM-formatted file, where N is the number of alignment records stored in the
specified range. Each structure contains the following fields.

Field Description

QueryName Name of the read sequence (if unpaired) or the
name of sequence pair (if paired).

Flag Integer indicating the bit-wise information
that specifies the status of each of 11 flags
described by the SAM format specification.

Tip You can use the bitget function to
determine the status of a specific SAM flag.

ReferenceIndex Index of the reference sequence.

http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-210

Field Description

Tip To convert this index to a reference name,
see the Reference field in the HeaderStruct
output argument

Position Position of the forward reference sequence
where the leftmost base of the alignment
of the read sequence starts. This position is
zero-based or one-based, depending on the
ZeroBased name-value pair argument.

MappingQuality Integer specifying the mapping quality score
for the read sequence.

CigarString CIGAR-formatted string representing how
the read sequence aligns with the reference
sequence.

MateReferenceIndex Index of the reference sequence associated
with the mate. If there is no mate, then this
value is 0.

MatePosition Position of the forward reference sequence
where the leftmost base of the alignment of the
mate of the read sequence starts. This position
is zero-based or one-based, depending on the
ZeroBased name-value pair argument.

InsertSize The number of base positions between the read
sequence and its mate, when both are mapped
to the same reference sequence. Otherwise,
this value is 0.

Sequence String containing the letter representations
of the read sequence. It is the reverse
complement if the read sequence aligns to the
reverse strand of the reference sequence.

Quality String containing the ASCII representation
of the per-base quality score for the read
sequence. The quality score is reversed if the
read sequence aligns to the reverse strand of
the reference sequence.

 bamread

1-211

Field Description

Tags List of applicable SAM tags and their values.

HeaderStruct

MATLAB structure containing header information for the BAM-formatted file in the
following fields.

Field Description

NRefs Number of reference sequences in the BAM-
formatted file.

Reference 1-by-NRefs array of structures containing
these fields:

• Name — Name of the reference sequence.
• Length — Length of the reference

sequence.
Header* Structure containing the file format version,

sort order, and group order.
SequenceDictionary* Structure containing the:

• Sequence name
• Sequence length
• Genome assembly identifier
• MD5 checksum of sequence
• URI of sequence
• Species

ReadGroup* Structure containing the:

• Read group identifier
• Sample
• Library
• Description
• Platform unit
• Predicted median insert size

1 Alphabetical List

1-212

Field Description

• Sequencing center
• Date
• Platform

Program* Structure containing the:

• Program name
• Version
• Command line

* These structures and their fields appear in the output structure only if they are present
in the BAM file. The information in these structures depends on the information present
in the BAM file.

Examples

Retrieve alignment records that align to reference sequences

Read multiple alignment records from the ex1.bam file that align to two different
reference sequences.

data1 = bamread('ex1.bam', 'seq1', [100 200])

data2 = bamread('ex1.bam', 'seq2', [100 200])

data1 =

59x1 struct array with fields:

 QueryName

 Flag

 Position

 MappingQuality

 CigarString

 MatePosition

 InsertSize

 Sequence

 Quality

 Tags

 bamread

1-213

 ReferenceIndex

 MateReferenceIndex

data2 =

79x1 struct array with fields:

 QueryName

 Flag

 Position

 MappingQuality

 CigarString

 MatePosition

 InsertSize

 Sequence

 Quality

 Tags

 ReferenceIndex

 MateReferenceIndex

Read alignments from the ex1.bam file that are fully contained in the 100 to 200 bp
range of the seq1 reference sequence.

data3 = bamread('ex1.bam', 'seq1', [100 200], 'full', true)

data3 =

31x1 struct array with fields:

 QueryName

 Flag

 Position

 MappingQuality

 CigarString

 MatePosition

 InsertSize

 Sequence

 Quality

 Tags

 ReferenceIndex

 MateReferenceIndex

1 Alphabetical List

1-214

Read alignments from the ex1.bam file that align to the 100 to 300 bp range of the seq1
reference sequence. Read the same alignments using zero-based indexing. Compare the
position of the 27th record in the two outputs.

data_one = bamread('ex1.bam','seq1', [100 300]);

data_zero = bamread('ex1.bam','seq1', [100 300], 'zerobased', true);

data_one(27).Position

ans =

 135

data_zero(27).Position

ans =

 134

More About

Tips

• The bamread function requires a BAM file.
• Use the baminfo function to investigate the size and content, including reference

sequence names, of a BAM-formatted file before using the bamread function to read
the file contents into a MATLAB array of structures.

• If your BAM-formatted file is too large to read using available memory, try either of
the following:

• Use a smaller range.
• Use bamread without specifying outputs, but using the ToFile Name,Value pair

arguments to create a SAM-formatted file. You can then use samread with the
BlockRead Name,Value pair arguments to read the SAM-formatted file. Or you
can pass the SAM-formatted file to the BioIndexedFile constructor function to
construct a BioIndexedFile object, which you can use to create a BioMap object.

 bamread

1-215

• Use the BAMStruct output argument that bamread returns to construct a BioMap
object, which lets you explore, access, filter, and manipulate all or a subset of the
data, before doing subsequent analyses or viewing the data.

• “Manage Short-Read Sequence Data in Objects”
• “Work with Large Multi-Entry Text Files”
• Sequence Read Archive
• SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
BioIndexedFile | BioMap | bamindexread | baminfo | samread | saminfo |
soapread | fastqwrite | fastqinfo | fastainfo | fastaread | fastawrite |
sffinfo | sffread | fastqread

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-216

basecount
Count nucleotides in sequence

Syntax

NTStruct = basecount(SeqNT)

NTStruct = basecount(SeqNT, ...'Ambiguous', AmbiguousValue, ...)

NTStruct = basecount(SeqNT, ...'Gaps', GapsValue, ...)

NTStruct = basecount(SeqNT, ...'Chart', ChartValue, ...)

Input Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers

• Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes

• MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned
by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank.

AmbiguousValue String specifying how to treat ambiguous nucleotide characters
(R, Y, K, M, S, W, B, D, H, V, or N). Choices are:

• 'ignore' (default) — Skips ambiguous characters
• 'bundle' — Counts ambiguous characters and reports the

total count in the Ambiguous field.
• 'prorate' — Counts ambiguous characters and

distributes them proportionately in the appropriate fields.
For example, the counts for the character R are distributed
evenly between the A and G fields.

 basecount

1-217

• 'individual' — Counts ambiguous characters and
reports them in individual fields.

• 'warn' — Skips ambiguous characters and displays a
warning.

GapsValue Specifies whether gaps, indicated by a hyphen (-), are counted
or ignored. Choices are true or false (default).

ChartValue String specifying a chart type. Choices are 'pie' or 'bar'.

Output Arguments

NTStruct 1-by-1 MATLAB structure containing the fields A, C, G, and T.

Description

NTStruct = basecount(SeqNT) counts the number of each type of base in SeqNT, a
nucleotide sequence, and returns the counts in NTStruct, a 1-by-1 MATLAB structure
containing the fields A, C, G, and T.

• The character U is added to the T field.
• Ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N), and gaps, indicated

by a hyphen (-), are ignored by default.
• Unrecognized characters are ignored and cause the following warning message.

Warning: Unknown symbols appear in the sequence. These will be ignored.

NTStruct = basecount(SeqNT, ...'PropertyName', PropertyValue, ...)

calls basecount with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

NTStruct = basecount(SeqNT, ...'Ambiguous', AmbiguousValue, ...)

specifies how to treat ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N).
Choices are:

• 'ignore' (default)

1 Alphabetical List

1-218

• 'bundle'

• 'prorate'

• 'individual'

• 'warn'

NTStruct = basecount(SeqNT, ...'Gaps', GapsValue, ...) specifies whether
gaps, indicated by a hyphen (-), are counted or ignored. Choices are true or false
(default).

NTStruct = basecount(SeqNT, ...'Chart', ChartValue, ...) creates a chart
showing the relative proportions of the nucleotides. ChartValue can be 'pie' or 'bar'.

Examples

1 Count the bases in a DNA sequence and return the results in a structure.

Bases = basecount('TAGCTGGCCAAGCGAGCTTG')

Bases =

 A: 4

 C: 5

 G: 7

 T: 4

2 Get the count for adenosine (A) bases.

Bases.A

ans =

 4

3 Count the bases in a DNA sequence containing ambiguous characters, listing the
ambiguous characters in separate fields.

basecount('ABCDGGCCAAGCGAGCTTG','Ambiguous','individual')

ans =

 A: 4

 C: 5

 basecount

1-219

 G: 6

 T: 2

 R: 0

 Y: 0

 K: 0

 M: 0

 S: 0

 W: 0

 B: 1

 D: 1

 H: 0

 V: 0

 N: 0

See Also
aacount | baselookup | codoncount | cpgisland | dimercount | nmercount |
ntdensity | seqviewer

1 Alphabetical List

1-220

baselookup

Find nucleotide codes, integers, names, and complements

Syntax

baselookup

baselookup('Complement', SeqNT)

baselookup('Code', CodeValue)

baselookup('Integer', IntegerValue)

baselookup('Name', NameValue)

Arguments

SeqNT Nucleotide sequence(s) represented by one of the following:

• String of single-letter codes from the table Nucleotide
Lookup

• Cell array of sequences
• Two-dimensional character array of sequences

Note: If the input is multiple sequences, the complement for
each sequence is determined independently.

CodeValue Nucleotide letter code represented by one of the following:

• String specifying a single-letter code representing a
nucleotide. For valid single-letter codes, see the table
Nucleotide Lookup.

• Cell array of letter codes.
• Two-dimensional character array of letter codes.

IntegerValue Single integer representing a nucleotide. For valid integers, see
the table Nucleotide Lookup.

NameValue Nucleotide name represented by one of the following:

 baselookup

1-221

• String specifying a nucleotide name. For valid nucleotide
names, see the table Nucleotide Lookup.

• Cell array of names.
• Two-dimensional character array of names.

Description

baselookup displays a table of nucleotide codes, integers, names, and complements.

Nucleotide Lookup

Code Integer Nucleotide Name Meaning Complement

A 1 Adenine A T

C 2 Cytosine C G

G 3 Guanine G C

T 4 Thymine T A

U 4 Uracil U A

R 5 Purine A or G Y

Y 6 Pyrimidine C or T R

K 7 Keto G or T M

M 8 Amino A or C K

S 9 Strong interaction (3
H bonds)

C or G S

W 10 Weak interaction (2
H bonds)

A or T W

B 11 Not A C or G or T V

D 12 Not C A or G or T H

H 13 Not G A or C or T D

V 14 Not T or U A or C or G B

N, X 15 Any nucleotide A or C or G or T or U N

- 16 Gap of indeterminate
length

Gap -

1 Alphabetical List

1-222

baselookup('Complement', SeqNT) displays the complementary nucleotide
sequence.

baselookup('Code', CodeValue) displays the corresponding meaning and
nucleotide name. For ambiguous nucleotide codes (R, Y, K, M, S, W, B, D, H, V, N, and X), the
nucleotide name is a descriptive name.

baselookup('Integer', IntegerValue) displays the corresponding letter code,
meaning, and nucleotide name.

baselookup('Name', NameValue) displays the corresponding letter code, meaning,
and nucleotide name or descriptive name.

Examples

• Convert a nucleotide sequence to its complementary sequence.

baselookup('Complement', 'TAGCTGRCCAAGGCCAAGCGAGCTTN')

ans =

ATCGACYGGTTCCGGTTCGCTCGAAN

• Display the meaning and nucleotide name or descriptive name for the nucleotide
codes G and Y.

baselookup('Code', 'G')

ans =

G Guanine

baselookup('Code', 'Y')

ans =

T|C pYrimidine

• Display the nucleotide letter code, meaning, and nucleotide name or descriptive name
for the integers 1 and 7.

baselookup('Integer', 1)

 baselookup

1-223

ans =

A A - Adenine

baselookup('Integer', 7)

ans =

K G|T - Keto

• Display the corresponding nucleotide letter code, meaning, and name for cytosine
and purine.

baselookup('Name','cytosine')

ans =

C C - Cytosine

baselookup('Name','purine')

ans =

R G|A - puRine

See Also
aa2nt | basecount | codoncount | dimercount | geneticcode | int2nt | nt2aa
| nt2int | revgeneticcode | seqviewer

1 Alphabetical List

1-224

biograph object
Data structure containing generic interconnected data used to implement directed graph

Description

A biograph object is a data structure containing generic interconnected data used to
implement a directed graph. Nodes represent proteins, genes, or any other biological
entity, and edges represent interactions, dependences, or any other relationship between
the nodes. A biograph object also stores information, such as color properties and text
label characteristics, used to create a 2-D visualization of the graph.

You create a biograph object using the object constructor function biograph. You can
view a graphical representation of a biograph object using the view method.

Method Summary

Following are methods of a biograph object:

allshortestpaths (biograph)
Find all shortest paths in biograph object

conncomp (biograph)
Find strongly or weakly connected
components in biograph object

dolayout (biograph)
Calculate node positions and edge
trajectories

get (biograph)
Retrieve information about biograph object

getancestors (biograph)
Find ancestors in biograph object

getdescendants (biograph)
Find descendants in biograph object

getedgesbynodeid (biograph)
Get handles to edges in biograph object

 biograph object

1-225

getmatrix (biograph)
Get connection matrix from biograph object

getnodesbyid (biograph)
Get handles to nodes

getrelatives (biograph)
Find relatives in biograph object

isdag (biograph)
Test for cycles in biograph object

isomorphism (biograph)
Find isomorphism between two biograph
objects

isspantree (biograph)
Determine if tree created from biograph
object is spanning tree

maxflow (biograph)
Calculate maximum flow in biograph object

minspantree (biograph)
Find minimal spanning tree in biograph
object

set (biograph)
Set property of biograph object

shortestpath (biograph)
Solve shortest path problem in biograph
object

topoorder (biograph)
Perform topological sort of directed acyclic
graph extracted from biograph object

traverse (biograph)
Traverse biograph object by following
adjacent nodes

view (biograph)
Draw figure from biograph object

Following are methods of a node object:

1 Alphabetical List

1-226

getancestors (biograph)
Find ancestors in biograph object

getdescendants (biograph)
Find descendants in biograph object

getrelatives (biograph)
Find relatives in biograph object

Property Summary

A biograph object contains two kinds of objects, node objects and edge objects, that have
their own properties. For a list of the properties of node objects and edge objects, see the
following tables.

Properties of a Biograph Object

Property Description

ID String to identify the biograph object. Default is ''.
Label String to label the biograph object. Default is ''.
Description String that describes the biograph object. Default is ''.
LayoutType String that specifies the algorithm for the layout engine.

Choices are:

• 'hierarchical' (default) — Uses a topological order of
the graph to assign levels, and then arranges the nodes
from top to bottom, while minimizing crossing edges.

• 'radial' — Uses a topological order of the graph to
assign levels, and then arranges the nodes from inside to
outside of the circle, while minimizing crossing edges.

• 'equilibrium' — Calculates layout by minimizing the
energy in a dynamic spring system.

EdgeType String that specifies how edges display. Choices are:

• 'straight'

• 'curved' (default)
• 'segmented'

 biograph object

1-227

Property Description

Note: Curved or segmented edges occur only when necessary
to avoid obstruction by nodes. Biograph objects with
LayoutType equal to 'equilibrium' or 'radial' cannot
produce curved or segmented edges.

Scale Positive number that post-scales the node coordinates.
Default is 1.

LayoutScale Positive number that scales the size of the nodes before
calling the layout engine. Default is 1.

EdgeTextColor Three-element numeric vector of RGB values. Default is [0,
0, 0], which defines black.

EdgeFontSize Positive number that sets the size of the edge font in points.
Default is 8.

ShowArrows Controls the display of arrows with the edges. Choices are
'on' (default) or 'off'.

ArrowSize Positive number that sets the size of the arrows in points.
Default is 8.

ShowWeights Controls the display of text indicating the weight of the
edges. Choices are 'on' (default) or 'off'.

ShowTextInNodes String that specifies the node property used to label nodes
when you display a biograph object using the view method.
Choices are:

• 'Label' — Uses the Label property of the node object
(default).

• 'ID' — Uses the ID property of the node object.
• 'None'

NodeAutoSize Controls precalculating the node size before calling the layout
engine. Choices are 'on' (default) or 'off'.

Note: Set it to off if you want to apply different node sizes
by changing the Size property.

NodeCallback User-defined callback for all nodes. Enter the name of a
function, a function handle, or a cell array with multiple

1 Alphabetical List

1-228

Property Description

function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click a node to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(node) inspect(node), which displays the
Property Inspector dialog box.

EdgeCallback User-defined callback for all edges. Enter the name of a
function, a function handle, or a cell array with multiple
function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click an edge to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(edge) inspect(edge), which displays the
Property Inspector dialog box.

CustomNodeDrawFcn Function handle to a customized function to draw nodes.
Default is [].

Nodes Read-only column vector with handles to node objects of
a biograph object. The size of the vector is the number of
nodes. For properties of node objects, see Properties of a Node
Object.

Edges Read-only column vector with handles to edge objects of a
biograph object. The size of the vector is the number of edges.
For properties of edge objects, see Properties of an Edge
Object.

Properties of a Node Object

Property Description

ID Character string defined when the biograph object is created,
either by the NodeIDs input argument or internally by the
biograph constructor function. You can modify this property
using the set method, but each node object's ID must be unique.

Label String for labeling a node when you display a biograph object
using the view method. Default is ''.

Description String that describes the node. Default is ''.

 biograph object

1-229

Property Description

Position Two-element numeric vector of x- and y-coordinates, for example,
[150, 150]. If you do not specify this property, default is initially
[], then when the layout algorithms are executed, it becomes a
two-element numeric vector of x- and y-coordinates computed by
the layout engine.

Shape String that specifies the shape of the nodes. Choices are:

• 'box'(default)
• 'ellipse'

• 'circle'

• 'rectangle'

• 'diamond'

• 'trapezium'

• 'invtrapezium'

• 'house'

• 'inverse'

• 'parallelogram'

Size Two-element numeric vector calculated before calling the layout
engine using the actual font size and shape of the node. Default is
[10, 10].

Color Three-element numeric vector of RGB values that specifies the fill
color of the node. Default is [1, 1, 0.7], which defines yellow.

LineWidth Positive number. Default is 1.
LineColor Three-element numeric vector of RGB values that specifies the

outline color of the node. Default is [0.3, 0.3, 1], which
defines blue.

FontSize Positive number that sets the size of the node font in points.
Default is 8.

TextColor Three-element numeric vector of RGB values that specifies the
color of the node labels. Default is [0, 0, 0], which defines
black.

1 Alphabetical List

1-230

Property Description

UserData Miscellaneous, user-defined data that you want to associate with
the node. The node does not use this property, but you can access
and specify it using the get and set functions. Default is [].

Properties of an Edge Object

Property Description

ID Character string automatically generated from the node IDs
when the biograph object is created by the biograph constructor
function. You can modify this property using the set method, but
each edge object's ID must be unique.

Label String for labeling an edge. Default is ''.
Description String that describes the edge. Default is ''.
Weight Value that represents the weight (cost, distance, length, or

capacity) associated with the edge. Default is 1.
LineWidth Positive number. Default is 1.
LineColor Three-element numeric vector of RGB values that specifies the

color of the edge. Default is [0.5, 0.5, 0.5], which defines
gray.

UserData Miscellaneous, user-defined data that you want to associate with
the edge. The edge does not use this property, but you can access
and specify it using the get and set functions. Default is [].

Examples

Create a Biograph object and specify its properties

This example shows how to create a biograph object, access, and update its properties.

Create a biograph object with custom node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

ids = {'M30931','L07625','K03454','M27323','M15390'};

bg1 = biograph(cm,ids)

Biograph object with 5 nodes and 9 edges.

 biograph object

1-231

Specify the ID property of the object.

bg1.ID = 'mybg';

Use the get function to display the node IDs.

get(bg1.nodes,'ID')

ans =

 'M30931'

 'L07625'

 'K03454'

 'M27323'

 'M15390'

Display all properties and their current values of the 5th node and 5th edge of the object.

bg1.nodes(5)

 ID: 'M15390'

 Label: ''

 Description: ''

 Position: []

 Shape: 'box'

 Size: [10 10]

 Color: [1 1 0.7000]

 LineWidth: 1

 LineColor: [0.3000 0.3000 1]

 FontSize: 9

 TextColor: [0 0 0]

 UserData: []

bg1.edges(5)

 ID: 'L07625 -> M15390'

 Label: ''

 Description: ''

 Weight: 1

 LineWidth: 0.5000

 LineColor: [0.5000 0.5000 0.5000]

 UserData: []

1 Alphabetical List

1-232

Set the LineWidth property of the 5th node to 2.

bg1.nodes(5).LineWidth = 2.0;

bg1.nodes(5)

 ID: 'M15390'

 Label: ''

 Description: ''

 Position: []

 Shape: 'box'

 Size: [10 10]

 Color: [1 1 0.7000]

 LineWidth: 2

 LineColor: [0.3000 0.3000 1]

 FontSize: 9

 TextColor: [0 0 0]

 UserData: []

Alternatively use getnodesbyid function to create a handle for the 5th node, and set its
Shape property to 'circle'.

nh1 = getnodesbyid(bg1,'M15390')

 ID: 'M15390'

 Label: ''

 Description: ''

 Position: []

 Shape: 'box'

 Size: [10 10]

 Color: [1 1 0.7000]

 LineWidth: 2

 LineColor: [0.3000 0.3000 1]

 FontSize: 9

 TextColor: [0 0 0]

 UserData: []

nh1.Shape = 'circle';

Specify the LineColor property of the 5th edge.

bg1.edges(5).LineColor = [0.7 0.0 0.1];

 biograph object

1-233

Alternatively use getedgesbynodeid to retrieve the handel to the edge by providing a
source node id and a sink node id.

eh1 = getedgesbynodeid(bg1,'L07625','M15390')

 ID: 'L07625 -> M15390'

 Label: ''

 Description: ''

 Weight: 1

 LineWidth: 0.5000

 LineColor: [0.7000 0 0.1000]

 UserData: []

Use the handle to specify the LineWidth property or any other properties of the edge.

eh1.LineWidth = 2.0;

View the biograph object.

view(bg1)

1 Alphabetical List

1-234

See Also
biograph | conncomp | get | getdescendants | getmatrix | getrelatives
| isomorphism | maxflow | set | topoorder | view | allshortestpaths |
dolayout | getancestors | getedgesbynodeid | getnodesbyid | isdag |
isspantree | minspantree | shortestpath | traverse

 biograph

1-235

biograph

Create biograph object

Syntax

BGobj = biograph(CMatrix)

BGobj = biograph(CMatrix, NodeIDs)

BGobj = biograph(CMatrix, NodeIDs, ...'ID', IDValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'Label', LabelValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'Description',

DescriptionValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutType',

LayoutTypeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeType',

EdgeTypeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'Scale', ScaleValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutScale',

LayoutScaleValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeTextColor',

EdgeTextColorValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeFontSize',

EdgeFontSizeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'ShowArrows',

ShowArrowsValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'ArrowSize',

ArrowSizeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'ShowWeights',

ShowWeightsValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'ShowTextInNodes',

ShowTextInNodesValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'NodeAutoSize',

NodeAutoSizeValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'NodeCallback',

NodeCallbackValue, ...)

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeCallback',

EdgeCallbackValue, ...)

1 Alphabetical List

1-236

BGobj = biograph(CMatrix, NodeIDs, ...'CustomNodeDrawFcn',

CustomNodeDrawFcnValue, ...)

Arguments

CMatrix Full or sparse square matrix that acts as a connection
matrix. That is, a value of 1 indicates a connection
between nodes while a 0 indicates no connection. The
number of rows/columns is equal to the number of
nodes.

NodeIDs Node identification strings. Enter any of the following:

• Cell array of strings with the number of strings
equal to the number of rows or columns in the
connection matrix CMatrix. Each string must be
unique.

• Character array with the number of rows equal to
the number of nodes. Each row in the array must
be unique.

• String with the number of characters equal to the
number of nodes. Each character must be unique.

Default values are the row or column numbers.

Note: You must specify NodeIDs if you want to
specify property name/value pairs. Set NodeIDs to []
to use the default values of the row/column numbers.

IDValue String to identify the biograph object. Default is ''.
LabelValue String to label the biograph object. Default is ''.
DescriptionValue String that describes the biograph object. Default is

''.
LayoutTypeValue String that specifies the algorithm for the layout

engine. Choices are:

• 'hierarchical' (default) — Uses a topological
order of the graph to assign levels, and then

 biograph

1-237

arranges the nodes from top to bottom, while
minimizing crossing edges.

• 'radial' — Uses a topological order of the graph
to assign levels, and then arranges the nodes from
inside to outside of the circle, while minimizing
crossing edges.

• 'equilibrium' — Calculates layout by
minimizing the energy in a dynamic spring system.

EdgeTypeValue String that specifies how edges display. Choices are:

• 'straight'

• 'curved' (default)
• 'segmented'

Note: Curved or segmented edges occur only when
necessary to avoid obstruction by nodes. Biograph
objects with LayoutType equal to 'equilibrium' or
'radial' cannot produce curved or segmented edges.

ScaleValue Positive number that post-scales the node coordinates.
Default is 1.

LayoutScaleValue Positive number that scales the size of the nodes
before calling the layout engine. Default is 1.

EdgeTextColorValue Three-element numeric vector of RGB values. Default
is [0, 0, 0], which defines black.

EdgeFontSizeValue Positive number that sets the size of the edge font in
points. Default is 8.

ShowArrowsValue Controls the display of arrows for the edges. Choices
are 'on' (default) or 'off'.

ArrowSizeValue Positive number that sets the size of the arrows in
points. Default is 8.

ShowWeightsValue Controls the display of text indicating the weight of
the edges. Choices are 'on' (default) or 'off'.

1 Alphabetical List

1-238

ShowTextInNodesValue String that specifies the node property used to label
nodes when you display a biograph object using the
view method. Choices are:

• 'Label' — Uses the Label property of the node
object (default).

• 'ID' — Uses the ID property of the node object.
• 'None'

NodeAutoSizeValue Controls precalculating the node size before calling
the layout engine. Choices are 'on' (default) or
'off'.

Note: Set it to off if you want to apply different node
sizes by changing the Size property.

NodeCallbackValue User callback for all nodes. Enter the name of a
function, a function handle, or a cell array with
multiple function handles. After using the view
function to display the biograph in the Biograph
Viewer, you can double-click a node to activate the
first callback, or right-click and select a callback to
activate. Default is @(node) inspect(node), which
displays the Property Inspector dialog box.

EdgeCallbackValue User callback for all edges. Enter the name of a
function, a function handle, or a cell array with
multiple function handles. After using the view
function to display the biograph in the Biograph
Viewer, you can double-click an edge to activate the
first callback, or right-click and select a callback to
activate. Default is @(edge) inspect(edge), which
displays the Property Inspector dialog box.

CustomNodeDrawFcnValue Function handle to a customized function to draw
nodes. Default is [].

 biograph

1-239

Description

BGobj = biograph(CMatrix) creates a biograph object, BGobj, using a connection
matrix, CMatrix. All nondiagonal and positive entries in the connection matrix,
CMatrix, indicate connected nodes, rows represent the source nodes, and columns
represent the sink nodes.

BGobj = biograph(CMatrix, NodeIDs) specifies the node identification strings.
NodeIDs can be:

• Cell array of strings with the number of strings equal to the number of rows or
columns in the connection matrix CMatrix. Each string must be unique.

• Character array with the number of rows equal to the number of nodes. Each row in
the array must be unique.

• String with the number of characters equal to the number of nodes. Each character
must be unique.

Default values are the row or column numbers.

Note: If you want to specify property name/value pairs, you must specify NodeIDs. Set
NodeIDs to [] to use the default values of the row/column numbers.

BGobj = biograph(..., 'PropertyName', PropertyValue, ...) calls
biograph with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

BGobj = biograph(CMatrix, NodeIDs, ...'ID', IDValue, ...) specifies an ID
for the biograph object. Default is ''.

BGobj = biograph(CMatrix, NodeIDs, ...'Label', LabelValue, ...)

specifies a label for the biograph object. Default is ''.

BGobj = biograph(CMatrix, NodeIDs, ...'Description',

DescriptionValue, ...) specifies a description of the biograph object. Default is ''.

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutType',

LayoutTypeValue, ...) specifies the algorithm for the layout engine.

1 Alphabetical List

1-240

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeType',

EdgeTypeValue, ...) specifies how edges display.

BGobj = biograph(CMatrix, NodeIDs, ...'Scale', ScaleValue, ...) post-
scales the node coordinates. Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutScale',

LayoutScaleValue, ...) scales the size of the nodes before calling the layout engine.
Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeTextColor',

EdgeTextColorValue, ...) specifies a three-element numeric vector of RGB values.
Default is [0, 0, 0], which defines black.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeFontSize',

EdgeFontSizeValue, ...) sets the size of the edge font in points. Default is 8.

BGobj = biograph(CMatrix, NodeIDs, ...'ShowArrows',

ShowArrowsValue, ...) controls the display of arrows for the edges. Choices are 'on'
(default) or 'off'.

BGobj = biograph(CMatrix, NodeIDs, ...'ArrowSize',

ArrowSizeValue, ...) sets the size of the arrows in points. Default is 8.

BGobj = biograph(CMatrix, NodeIDs, ...'ShowWeights',

ShowWeightsValue, ...) controls the display of text indicating the weight of the
edges. Choices are 'on' (default) or 'off'.

BGobj = biograph(CMatrix, NodeIDs, ...'ShowTextInNodes',

ShowTextInNodesValue, ...) specifies the node property used to label nodes when
you display a biograph object using the view method.

BGobj = biograph(CMatrix, NodeIDs, ...'NodeAutoSize',

NodeAutoSizeValue, ...) controls precalculating the node size before calling the
layout engine. Choices are 'on' (default) or 'off'.

BGobj = biograph(CMatrix, NodeIDs, ...'NodeCallback',

NodeCallbackValue, ...) specifies user callback for all nodes.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeCallback',

EdgeCallbackValue, ...) specifies user callback for all edges.

 biograph

1-241

BGobj = biograph(CMatrix, NodeIDs, ...'CustomNodeDrawFcn',

CustomNodeDrawFcnValue, ...) specifies function handle to customized function to
draw nodes. Default is [].

Examples

Create a biograph object

This example shows how to create a biograph object.

Create a biograph object with default node IDs, and then use the get function to display
the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg1 = biograph(cm)

Biograph object with 5 nodes and 9 edges.

get(bg1.nodes,'ID')

ans =

 'Node 1'

 'Node 2'

 'Node 3'

 'Node 4'

 'Node 5'

Create a biograph object, assign the node IDs, and then use the get function to display
the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

ids = {'M30931','L07625','K03454','M27323','M15390'};

bg2 = biograph(cm,ids);

get(bg2.nodes,'ID')

ans =

 'M30931'

1 Alphabetical List

1-242

 'L07625'

 'K03454'

 'M27323'

 'M15390'

Display the biograph object.

view(bg2)

 biograph

1-243

More About
• “biograph object”

See Also
conncomp | get | getdescendants | getmatrix | getrelatives | isomorphism
| maxflow | set | topoorder | view | allshortestpaths | dolayout |

1 Alphabetical List

1-244

getancestors | getedgesbynodeid | getnodesbyid | isdag | isspantree |
minspantree | shortestpath | traverse

 BioIndexedFile class

1-245

BioIndexedFile class

Allow quick and efficient access to large text file with nonuniform-size entries

Description

The BioIndexedFile class allows access to text files with nonuniform-size entries,
such as sequences, annotations, and cross-references to data sets. It lets you quickly and
efficiently access this data without loading the source file into memory.

This class lets you access individual entries or a subset of entries when the source file is
too big to fit into memory. You can access entries using indices or keys. You can read and
parse one or more entries using provided interpreters or a custom interpreter function.

Construction

BioIFobj = BioIndexedFile(Format,SourceFile) returns a BioIndexedFile
object BioIFobj that indexes the contents of SourceFile following the parsing rules
defined by Format, where SourceFile and Format are strings specifying a text file and
a file format, respectively. It also constructs an auxiliary index file to store information
that allows efficient, direct access to SourceFile. The index file by default is stored in
the same location as the source file and has the same name as the source file, but with
an IDX extension. The BioIndexedFile constructor uses the index file to construct
subsequent objects from SourceFile, which saves time.

BioIFobj = BioIndexedFile(Format,SourceFile,IndexDir) returns a
BioIndexedFile object BioIFobj by specifying the relative or absolute path to a folder to
use when searching for or saving the index file.

BioIFobj = BioIndexedFile(Format,SourceFile,IndexFile) returns a
BioIndexedFile object BioIFobj by specifying a file name, optionally including a
relative or absolute path, to use when searching for or saving the index file.

BioIFobj = BioIndexedFile(___ ,Name,Value) returns a BioIndexedFile
object BioIFobj by using any input arguments from the previous syntaxes and additional
options, specified as one or more Name,Value pair arguments.

1 Alphabetical List

1-246

Input Arguments

Format

String specifying a file format. Choices are:

• 'SAM' — SAM-formatted file
• 'FASTQ' — FASTQ-formatted file
• 'FASTA' — FASTA-formatted file
• 'TABLE' — Tab-delimited table with multiple columns. Keys can be in any column.

Rows with the same key are considered separate entries.
• 'MRTAB' — Tab-delimited table with multiple columns. Keys can be in any column.

Contiguous rows with the same key are considered a single entry. Noncontiguous
rows with the same key are considered separate entries.

• 'FLAT' — Flat file with concatenated entries separated by a string, typically '//'.
Within an entry, the key is separated from the rest of the entry by a white space.

Default:

SourceFile

String specifying a text file. The string can include a relative or absolute path.

Default:

IndexDir

String specifying the relative or absolute path to a folder to use when searching for or
saving the index file.

Default:

IndexFile

String specifying a file name, optionally including a relative or absolute path, to use
when searching for or saving the index file.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 BioIndexedFile class

1-247

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'IndexedByKeys'

Specifies if you can access the object BioIFobj using keys. Choices are true or false.

Tip Set the value to false if you do not need to access entries in the object using keys.
Doing so saves time and space when creating the object.

Default: true

'MemoryMappedIndex'

Specifies whether the constructor stores the indices in the auxiliary index file and
accesses them via memory maps (true) or loads the indices into memory at construction
time (false).

Tip If memory is not an issue and you want to maximize performance when accessing
entries in the object, set the value to false.

Default: true

'Interpreter'

Handle to a function that the read method uses when parsing entries from the source
file. The interpreter function must accept a single string of one or more concatenated
entries and return a structure or an array of structures containing the interpreted data.

When Format is a general-purpose format such as 'TABLE', 'MRTAB', or 'FLAT',
then the default is [], which means the function is an anonymous function in which the
output is equivalent to the input.

When Format is an application-specific format such as 'SAM', 'FASTQ', or 'FASTA',
then the default is a function handle appropriate for that file type and typically does not
require you to change it.

Default:

1 Alphabetical List

1-248

'Verbose'

Controls the display of the status of the object construction. Choices are true or false.

Default: true

Note: The following name-value pair arguments apply only when both of the following
are true:

• There is no pre-existing index file associated with your source file.
• Your source file has a general-purpose format such as 'TABLE', 'MRTAB', or 'FLAT'.

For source files with application-specific formats, the following name-value pairs are pre-
defined and you cannot change them.

'KeyColumn'

Positive integer specifying the column in the 'TABLE' or 'MRTAB' file that contains the
keys.

Default: 1

'KeyToken'

String that occurs in each entry before the key, for 'FLAT' files that contain keys. If
the value is ' ', it indicates the key is the first string in each entry and is delimited by
blank spaces.

Default: ' '

'HeaderPrefix'

String specifying a prefix that denotes header lines in the source file so the constructor
ignores them when creating the object. If the value is [], it means the constructor does
not check for header lines in the source file.

Default: []

 BioIndexedFile class

1-249

'CommentPrefix'

String specifying a prefix that denotes comment lines in the source file so the constructor
ignores them when creating the object. If the value is [], it means the constructor does
not check for comment lines in the source file.

Default: []

'ContiguousEntries'

Specifies whether entries are on contiguous lines, which means they are not separated by
empty lines or comment lines, in the source file or not. Choices are true or false.

Tip Set the value to true when entries are not separated by empty lines or comment
lines. Doing so saves time and space when creating the object.

Default: false

'TableDelimiter'

String specifying a delimiter symbol to use as a column separator for SourceFile when
Format is 'TABLE' or 'MRTAB'. Choices are '\t' (horizontal tab), ' ' (blank space), or
',', (comma).

Default: '\t'

'EntryDelimiter'

String specifying a delimiter symbol to use as an entry separator for SourceFile when
Format is 'FLAT'.

Default: '//'

Properties

FileFormat

File format of the source file

This information is read only. Possible values are:

1 Alphabetical List

1-250

• 'SAM' — SAM-formatted file
• 'FASTQ' — FASTQ-formatted file
• 'FASTA' — FASTA-formatted file
• 'TABLE' — Tab-delimited table with multiple columns. Keys can be in any column.

Rows with the same key are considered separate entries.
• 'MRTAB' — Tab-delimited table with multiple columns. Keys can be in any column.

Contiguous rows with the same key are considered a single entry. Noncontiguous
rows with the same key are considered separate entries.

• 'FLAT' — Flat file with concatenated entries separated by a string, typically '//'.
Within an entry, the key is separated from the rest of the entry by a white space.

IndexedByKeys

Whether or not the entries in the source file can be indexed by an alphanumeric key.

This information is read only.

IndexFile

Path and file name of the auxiliary index file.

This information is read only. Use this property to confirm the name and location of the
index file associated with the object.

InputFile

Path and file name of the source file.

This information is read only. Use this property to confirm the name and location of the
source file from which the object was constructed.

Interpreter

Handle to a function used by the read method to parse entries in the source file.

This interpreter function must accept a single string of one or more concatenated entries
and return a structure or an array of structures containing the interpreted data. Set
this property when your source file has a 'TABLE', 'MRTAB', or 'FLAT' format. When
your source file is an application-specific format such as 'SAM', 'FASTQ', or 'FASTA',
then the default is a function handle appropriate for that file type and typically does not
require you to change it.

 BioIndexedFile class

1-251

MemoryMappedIndex

Whether the indices to the source file are stored in a memory-mapped file or in memory.

NumEntries

Number of entries indexed by the object.

This information is read only.

Methods

getDictionary
Retrieve reference sequence names from
SAM-formatted source file associated with
BioIndexedFile object

getEntryByIndex
Retrieve entries from source file associated
with BioIndexedFile object using numeric
index

getEntryByKey
Retrieve entries from source file associated
with BioIndexedFile object using
alphanumeric key

getIndexByKey
Retrieve indices from source file associated
with BioIndexedFile object using
alphanumeric key

getKeys
Retrieve alphanumeric keys from source
file associated with BioIndexedFile object

getSubset
Create object containing subset of elements
from BioIndexedFile object

read
Read one or more entries from source file
associated with BioIndexedFile object

1 Alphabetical List

1-252

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Examples

Construct a BioIndexedFile object and access its gene ontology (GO) terms

This example shows how to construct a BioIndexedFile object and access its gene
ontology (GO) terms.

Create a variable containing full absolute path of source file.

sourcefile = which('yeastgenes.sgd');

Copy the file to the current working directory.

copyfile(sourcefile,'yeastgenes_copy.sgd');

Construct a BioIndexedFile object from the source file that is a tab-delimited file,
considering contiguous rows with the same key as a single entry. Indicate that keys are
located in column 3 and that header lines are prefaced with '!'.

gene2goObj = BioIndexedFile('mrtab','yeastgenes_copy.sgd','KeyColumn',3,'HeaderPrefix','!');

Source File: yeastgenes_copy.sgd

 Path: C:\TEMP\Bdoc14b_152206_6100\tp3a9f2096_b251_4b45_af91_21ac8fcf41a7

 Size: 16069425 bytes

 Date: 19-Jan-2013 22:45:16

Creating new index file ...

Indexer found 6381 entries after parsing 90171 text lines.

Index File: yeastgenes_copy.sgd.idx

 Path: C:\TEMP\Bdoc14b_152206_6100\tp3a9f2096_b251_4b45_af91_21ac8fcf41a7

 Size: 89578 bytes

 Date: 20-Sep-2014 00:39:21

Mapping object to yeastgenes_copy.sgd.idx ...

Done.

Return the GO term from all entries that are associated with the gene YAT2. Access
entries that have a key of YAT2.

YAT2_entries = getEntryByKey(gene2goObj,'YAT2');

 BioIndexedFile class

1-253

Adjust object interpreter to return only the column containing the GO term.

gene2goObj.Interpreter = @(x) regexp(x,'GO:\d+','match');

Parse the entries with a key of YAT2 and return all GO terms from those entries.

GO_YAT2_entries = read(gene2goObj, 'YAT2')

GO_YAT2_entries =

 Columns 1 through 4

 'GO:0006066' 'GO:0006810' 'GO:0004092' 'GO:0005737'

 Columns 5 through 8

 'GO:0005737' 'GO:0006629' 'GO:0009437' 'GO:0004092'

 Columns 9 through 12

 'GO:0016740' 'GO:0006631' 'GO:0005737' 'GO:0005829'

 Columns 13 through 15

 'GO:0016746' 'GO:0016746' 'GO:0006066'

See Also
| memmapfile | fastaread | fastqread | samread | genbankread

How To
• “Work with Large Multi-Entry Text Files”

1 Alphabetical List

1-254

bioma.data.ExptData class
Package: bioma.data

Contain data values from microarray experiment

Description

The ExptData class is designed to contain data values, such as gene expression values,
from a microarray experiment. It stores the data values in one or more DataMatrix
objects, each having the same row names (feature names) and column names (sample
names). It provides a convenient way to store related experiment data in a single data
structure (object). It also lets you manage and subset the data.

The ExptData class includes properties and methods that let you access, retrieve, and
change data values from a microarray experiment. These properties and methods are
useful to view and analyze the data.

Construction

EDobj = bioma.data.ExptData(Data1, Data2, ...) creates an ExptData object,
from one or more matrices of data. Each matrix can be a logical matrix, a numeric
matrix, or a DataMatrix object.

EDobj = bioma.data.ExptData(..., {DMobj1, Name1}, {DMobj2,

Name2}, ...) specifies an element name for each DataMatrix object. Name# is a string
specifying a unique name. Default names are Elmt1, Elmt2, etc.

EDobj = bioma.data.ExptData({Data1, Data2, ...}) creates an ExptData
object, from a cell array of matrices of data. Each matrix can be a logical matrix, a
numeric matrix, or a DataMatrix object.

EDobj = bioma.data.ExptData(..., 'PropertyName', PropertyValue)

constructs the object using options, specified as property name/property value pairs.

EDobj = bioma.data.ExptData(..., 'ElementNames', ElementNamesValue)

specifies element names for the matrix inputs. ElementNamesValue is a cell array of
strings. Default names are Elmt1, Elmt2, etc.

 bioma.data.ExptData class

1-255

EDobj = bioma.data.ExptData(..., 'FeatureNames', FeatureNamesValue)

specifies feature names (row names) for the ExptData object. .

EDobj = bioma.data.ExptData(..., 'SampleNames', SampleNamesValue)

specifies sample names (column names) for the ExptData object.

Input Arguments

Data#

Matrix of experimental data values specified by any of the following:

• Logical matrix
• Numeric matrix
• DataMatrix object

All inputs must have the same dimensions. All DataMatrix objects must also have
the same row names and columns names. If you provide logical or numeric matrices,
bioma.data.ExptData converts them to DataMatrix objects with either default row
and column names, or the row and column names of DataMatrix inputs, if provided.

The rows must correspond to features and the columns must correspond to samples.

Default:

DMobj#

Variable name of a DataMatrix object in the MATLAB Workspace.

Default:

Name#

String specifying an element name for the corresponding DataMatrix object

Default:

ElementNamesValue

Cell array of strings that specifies unique element names for the matrix inputs. The
number of elements in ElementNamesValue must equal the number input matrices.

1 Alphabetical List

1-256

Default: {Elmt1, Elmt2, ...}

FeatureNamesValue

Feature names (row names) for the ExptData object, specified by one of the following:

• Cell array of strings
• Character array
• Numeric or logical vector
• Single string, which is used as a prefix for the feature names, with feature numbers

appended to the prefix
• Logical true or false (default). If true, bioma.data.ExptData assigns unique

feature names using the format Feature1, Feature2, etc.

If you use a cell array of strings, character array, or vector, then the number of elements
must be equal in number to the number of rows in Data1.

Default:

SampleNamesValue

Sample names (column names) for the ExptData object, specified by one of the following:

• Cell array of strings
• Character array
• Numeric or logical vector
• Single string, which is used as a prefix for the sample names, with sample numbers

appended to the prefix
• Logical true or false (default). If true, bioma.data.ExptData assigns unique

sample names using the format Sample1, Sample2, etc.

If you use a cell array of strings, character array, or vector, then the number of elements
must be equal in number to the number of columns in Data1. If the ExptData object
is part of an ExpressionSet object that contains a MetaData object, the sample names
(column names) in the ExptData object must match the sample names (row names) in a
MetaData object.

Default:

 bioma.data.ExptData class

1-257

Properties

ElementClass

Class type of the DataMatrix objects in the experiment

Cell array of strings specifying the class type of each DataMatrix object in the ExptData
object. Possible values are MATLAB classes, such as single, double, and logical.
This information is read-only.

Attributes:

SetAccess private

Name

Name of the ExptData object.

String specifying the name of the ExptData object. Default is [].

NElements

Number of elements in the experiment

Positive integer specifying the number of elements (DataMatrix objects) in the
experiment data. This value is equivalent to the number of DataMatrix objects in the
ExptData object. This information is read-only.

Attributes:

SetAccess private

NFeatures

Number of features in the experiment

Positive integer specifying the number of features in the experiment. This value is
equivalent to the number of rows in each DataMatrix object in the ExptData object. This
information is read-only.

Attributes:

1 Alphabetical List

1-258

SetAccess private

NSamples

Number of samples in the experiment

Positive integer specifying the number of samples in the experiment. This value is
equivalent to the number of columns in each DataMatrix object in the ExptData object.
This information is read-only.

Attributes:

SetAccess private

Methods

combine
Combine two ExptData objects

dmNames
Retrieve or set Name properties of
DataMatrix objects in ExptData object

elementData
Retrieve or set data element (DataMatrix
object) in ExptData object

elementNames
Retrieve or set element names of
DataMatrix objects in ExptData object

featureNames
Retrieve or set feature names in ExptData
object

isempty
Determine whether ExptData object is
empty

sampleNames
Retrieve or set sample names in ExptData
object

 bioma.data.ExptData class

1-259

size
Return size of ExptData object

Instance Hierarchy

An ExpressionSet object contains an ExptData object. An ExptData object contains one
or more DataMatrix objects.

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

ExptData objects support 1-D parenthesis () indexing to extract, assign, and delete data.

ExptData objects do not support:

• Dot . indexing
• Curly brace { } indexing

Examples

Construct an ExptData object

This example shows how to construct an ExptData object containing one DataMatrix
object.

1 Alphabetical List

1-260

Import bioma.data package to make constructor functions available.

import bioma.data.*

Create a DataMatrix object from .txt file containing expression values from microarray
experiment.

dmObj = DataMatrix('File', 'mouseExprsData.txt');

Construct an ExptData object from the DataMatrix object.

EDObj = ExptData(dmObj)

EDObj =

Experiment Data:

 500 features, 26 samples

 1 elements

 Element names: Elmt1

• Working with Objects for Microarray Experiment Data
• Analyzing Illumina Bead Summary Gene Expression Data

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438, 662–666.

See Also
bioma.ExpressionSet | bioma.data.MetaData | bioma.data.MIAME

How To
• “Class Attributes”
• “Property Attributes”
• “Representing Expression Data Values in ExptData Objects”

 bioma.data.MetaData class

1-261

bioma.data.MetaData class

Package: bioma.data

Contain metadata from microarray experiment

Description

The MetaData class is designed to contain metadata (variable values and descriptions)
from a microarray experiment. It provides a convenient way to store related metadata in
a single data structure (object). It also lets you manage and subset the data.

The metadata is a collection of variable names, for example related to samples or
microarray features, along with descriptions and values for the variables. A MetaData
object stores the metadata in two “dataset” arrays.

• Values dataset array — A dataset array containing the measured value of each
variable per sample or feature. In this dataset array, the columns correspond to
variables and rows correspond to either samples or features. The number and names
of the columns in this dataset array must match the number and names of the rows
in the Descriptions dataset array. If this dataset array contains sample metadata,
then the number and names of the rows (samples) must match the number and names
of the columns in the DataMatrix objects in the same ExpressionSet object. If this
dataset array contains feature metadata, then the number and names of the rows
(features) must match the number and names of the rows in the DataMatrix objects
in the same ExpressionSet object.

• Descriptions dataset array — A dataset array containing a list of the variable
names and their descriptions. In this dataset array, each row corresponds
to a variable. The row names are the variable names, and a column, named
VariableDescription, contains a description of the variable. The number and
names of the rows in the Descriptions dataset array must match the number and
names of the columns in the Values dataset array.

The MetaData class includes properties and methods that let you access, retrieve, and
change metadata variables, and their values and descriptions. These properties and
methods are useful to view and analyze the metadata.

1 Alphabetical List

1-262

Construction

MDobj = bioma.data.MetaData(VarValues) creates a MetaData object from one
dataset array whose rows correspond to sample (observation) names and whose columns
correspond to variables. The dataset array contains the measured value of each variable
per sample.

MDobj = bioma.data.MetaData(VarValues, VarDescriptions) creates a
MetaData object from two dataset arrays. VarDescriptions is a dataset array whose
rows correspond to variables. The row names are the variable names, and another
column, named VariableDescription, contains a description of each variable.

MDobj = bioma.data.MetaData(VarValues, VarDesc) creates a MetaData object
from a dataset array and VarDesc a cell array of strings containing descriptions of the
variables.

MDobj = bioma.data.MetaData(..., 'PropertyName', PropertyValue)

constructs the object using options, specified as property name/property value pairs.

MDobj = bioma.data.MetaData('File', FileValue) creates a MetaData object
from a text file containing a table of metadata. The table row labels must be sample
names, and its column headers must be variable names.

MDobj = bioma.data.MetaData('File', FileValue, ...'Path', PathValue)

specifies a folder or path and folder where FileValue is stored.

MDobj = bioma.data.MetaData('File', FileValue, ...'Delimiter',

DelimiterValue) specifies a delimiter symbol to use as a column separator for
FileValue. Default is '\t'.

MDobj = bioma.data.MetaData('File', FileValue, ...'RowNames',

RowNamesValue) specifies the row names (sample names) for the MetaData object.
Default is the information in the first column of the table.

MDobj = bioma.data.MetaData('File', FileValue, ...'ColumnNames',

ColumnNamesValue) specifies the columns of data to read from the table.
ColumnNamesValue is a cell array of strings specifying the column header names.
Default is to read all columns of data from the table, assuming the first row contains
column headers.

MDobj = bioma.data.MetaData('File', FileValue, ...'VarDescChar',

VarDescCharValue) specifies that lines in the table prefixed by VarDescCharValue

 bioma.data.MetaData class

1-263

to be read as descriptions and used to create the VarDescriptions dataset array. By
default, bioma.data.MetaData does not read variable description information, and
does not create a Descriptions dataset array. These prefixed lines must appear at the top
of the file, before the table of metadata values.

MDobj = bioma.data.MetaData(...'Name', NameValue) specifies a name for the
MetaData object.

MDobj = bioma.data.MetaData('File', FileValue, ...'Description',

DescriptionValue) specifies a description for the MetaData object.

MDobj = bioma.data.MetaData('File', FileValue, ...'SampleNames',

SampleNamesValue) specifies sample names (row names) for the MetaData object.

MDobj = bioma.data.MetaData('File', FileValue, ...'VariableNames',

VariableNamesValue) specifies variable names (column names) for the MetaData
object.

Input Arguments

VarValues

Dataset array whose rows correspond to sample (observation) names and whose columns
correspond to variables. The dataset array contains the measured value of each variable
per sample or feature.

The number and names of the columns in the VarValues dataset array must match the
number and names of the rows in the VarDescriptions dataset array. If VarValues
contains sample metadata, then the number and names of the rows (samples) must
match the number and names of the columns in the DataMatrix objects in the same
ExpressionSet object. If VarValues contains feature metadata, then the number and
names of the rows (features) must match the number and names of the rows in the
DataMatrix objects in the same ExpressionSet object.

Default:

VarDescriptions

Dataset array whose rows correspond to variables. The row names are the variable
names, and a column, named VariableDescription, contains a description of the
variable. The number and names of the rows in the VarDescriptions dataset array
must match the number and names of the columns in the VarValues dataset array.

1 Alphabetical List

1-264

Default:

VarDesc

Cell array of strings containing descriptions of the variables. The number of elements in
VarDesc must equal the number of columns (variable names) in VarValues.

Default:

FileValue

String specifying a text file containing a table of metadata. The table row labels must be
sample or feature names, and its column headers must be variable names. The text file
must be on the MATLAB search path or in the Current Folder (unless you use the Path
property).

Default:

PathValue

String specifying a folder or path and folder where FileValue is stored.

Default:

DelimiterValue

String specifying a delimiter symbol to use as a column separator for FileValue. Typical
choices are:

• ' '

• '\t' (default)
• ','

• ';'

• '|'

Default:

RowNamesValue

Row names (sample or feature names) for the MetaData object, specified by one of the
following:

• Cell array of strings

 bioma.data.MetaData class

1-265

• Single number indicating the column of the table containing the row names
• Character string indicating the column header of the table containing the row names

If you specify [] for RowNamesValue, then bioma.data.MetaData provides numbered
row names, starting with 1.

Default: 1, which specifies the information in the first column of the table

ColumnNamesValue

Cell array of strings specifying the column header names to indicate which columns
of data to read from the table. Default is to read all columns of data from the table,
assuming the first row contains column headers. If the table does not have column
headers, specify [] for ColumnNamesValue to read all columns of data and provide
numbered column names, starting with 1.

Default:

VarDescCharValue

String specifying a character to prefix lines in the table that are to be read as
descriptions and used to create the VarDescriptions dataset array. By default,
bioma.data.MetaData does not read variable description information, and does not
create a VarDescriptions dataset array. These prefixed lines must appear at the top of
the file, before the table of metadata values.

Default:

NameValue

String specifying a name for the MetaData object.

Default:

DescriptionValue

String specifying a description for the MetaData object.

Default:

SampleNamesValue

Cell array of strings specifying sample names for the MetaData object. The number of
elements in the cell array must equal the number of samples in the MetaData object.

1 Alphabetical List

1-266

This input overwrites sample names from the input file. Default are the sample names
(row names) from the input file.

Default:

VariableNamesValue

Cell array of strings specifying variable names for the MetaData object. The number of
elements in the cell array must equal the number of variables in the MetaData object.
This input overwrites variable names from the input file. Default are the variable names
(column names) from the input file.

Default:

Properties

Description

Description of the MetaData object.

String specifying a description of the MetaData object. Default is [].

DimensionLabels

Row and column labels for the MetaData object.

Two-element cell array containing strings specifying labels of the rows and columns
respectively in the MetaData object. Default is {'Samples', 'Variables'}.

Name

Name of the MetaData object.

String specifying the name of the MetaData object. Default is [].

NSamples

Number of samples (observations) in the experiment

Positive integer specifying the number of samples in the experiment. This value is
equivalent to the number of rows in the VarValues dataset array. This information is
read-only

 bioma.data.MetaData class

1-267

Attributes:

SetAccess private

NVariables

Number of variables in the experiment

Positive integer specifying the number of variables in the experiment. This value is
equivalent to the number of columns in the VarValues dataset array. This information
is read-only

Attributes:

SetAccess private

Methods

combine
Combine two MetaData objects

isempty
Determine whether MetaData object is
empty

sampleNames
Retrieve or set sample names in MetaData
object

size
Return size of MetaData object

variableDesc
Retrieve or set variable descriptions for
samples in MetaData object

variableNames
Retrieve or set variable names for samples
in MetaData object

variableValues
Retrieve or set variable values for samples
in MetaData object

1 Alphabetical List

1-268

varValuesTable
Create 2-D graphic table GUI of variable
values in MetaData object

Instance Hierarchy

An ExpressionSet object contains two MetaData objects, one for sample information and
one for microarray feature information. A MetaData object contains two dataset arrays.
One dataset array contains the measured value of each variable per sample or feature.
The other dataset array contains a list of the variable names and their descriptions.

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

MetaData objects support 2-D parenthesis () indexing and dot . indexing to extract,
assign, and delete data.

MetaData objects do not support:

• Curly brace { } indexing
• Linear indexing

Examples

Construct a MetaData object containing sample variable information from a text file:

 bioma.data.MetaData class

1-269

% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Display information about the MetaData object

MDObj2

% Supply a description for the MetaData object

MDObj2.Description = 'This MetaData Object contains sample variable info.'

See Also
bioma.ExpressionSet | bioma.data.ExptData | bioma.data.MIAME

Tutorials
• Working with Objects for Microarray Experiment Data
• Analyzing Illumina Bead Summary Gene Expression Data

How To
• “Class Attributes”
• “Property Attributes”
• “Representing Sample and Feature Metadata in MetaData Objects”

1 Alphabetical List

1-270

bioma.data.MIAME class
Package: bioma.data

Contain experiment information from microarray gene expression experiment

Description

The MIAME class is designed to contain information about experimental methods and
conditions from a microarray gene expression experiment. It loosely follows the Minimum
Information About a Microarray Experiment (MIAME) specification. It can include
information about:

• Experiment design
• Microarrays used in the experiment
• Samples used
• Sample preparation and labeling
• Hybridization procedures and parameters
• Normalization controls
• Preprocessing information
• Data processing specifications

It provides a convenient way to store related information about a microarray experiment
in a single data structure (object).

The MIAME class includes properties and methods that let you access, retrieve, and
change experiment information related to a microarray experiment. These properties and
methods are useful to view and analyze the information.

Construction

MIAMEobj = bioma.data.MIAME() creates an empty MIAME object for storing
experiment information from a microarray gene expression experiment.

MIAMEobj = bioma.data.MIAME(GeoSeriesStruct) creates a MIAME object from a
structure containing Gene Expression Omnibus (GEO) Series data.

 bioma.data.MIAME class

1-271

MIAMEobj = bioma.data.MIAME(..., 'PropertyName', PropertyValue)

constructs the object using options, specified as property name/property value pairs.

MIAMEobj = bioma.data.MIAME(...,'Investigator', InvestigatorValue)

specifies the name of the experiment investigator.

MIAMEobj = bioma.data.MIAME(...,'Lab', LabValue) specifies the laboratory
that conducted the experiment.

MIAMEobj = bioma.data.MIAME(...,'Contact', ContactValue) specifies the
contact information for the experiment investigator or laboratory.

MIAMEobj = bioma.data.MIAME(...,'URL', URLValue) specifies the experiment
URL.

Input Arguments

GeoSeriesStruct

Gene Expression Omnibus (GEO) Series data specified by either:

• MATLAB structure returned by the getgeodata function
• Structure.Header.Series substructure returned by the getgeodata function

Default:

InvestigatorValue

String specifying the name of the experiment investigator.

Default:

LabValue

String specifying the laboratory that conducted the experiment.

Default:

ContactValue

String specifying the contact information for the experiment investigator or laboratory

Default:

1 Alphabetical List

1-272

URLValue

String specifying the experiment URL.

Default:

Properties

Abstract

Abstract describing the experiment

String containing an abstract describing the experiment.

Arrays

Information about the microarray chips used in the experiment

Cell array containing information about the microarray chips used in the experiment.
Information can include array name, array platform, number of features on the array,
and so on.

Contact

Contact information for the experiment investigator or laboratory

Character array containing contact information for the experiment investigator or
laboratory.

ExptDesign

Brief description of the experiment design

Character array containing description of the experiment design.

Hybridization

Information about the experiment hybridization

Cell array containing information about the hybridization protocol used in the
experiment. Information can include hybridization time, concentration, volume,
temperature, and so on.

 bioma.data.MIAME class

1-273

Investigator

Name of the experiment investigator

Character array containing the name of the experiment investigator.

Laboratory

Name of the laboratory where the experiment was conducted

Character array containing the name of laboratory.

Other

Other information about the experiment

Cell array containing other information about the experiment, not covered by the other
properties.

Preprocessing

Information about the experiment preprocessing steps

Cell array containing information about the preprocessing steps used on the data from
the experiment.

PubMedID

PubMed identifiers for relevant publications.

Character array containing PubMed identifiers for papers relevant to the data set used
in the experiment.

QualityControl

Information about the experiment quality controls

Cell array containing information about the experiment quality control steps.
Information can include replicates, dye swap, and so on.

Samples

Information about samples used in the experiment

1 Alphabetical List

1-274

Cell array containing information about the samples used in the experiment. Information
can include sample source, sample organism, treatment type, compound, labeling
protocol, external control, and so on.

Title

Experiment title

Character array containing a single sentence experiment title.

URL

URL for the experiment

Character array containing URL for the experiment.

Methods

combine
Combine two MIAME objects

isempty
Determine whether MIAME object is empty

Instance Hierarchy

An ExpressionSet object contains a MIAME object.

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

 bioma.data.MIAME class

1-275

Examples

Construct a MIAME object

Create a MATLAB structure containing Gene Expression Omnibus (GEO) series data.

geoStruct = getgeodata('GSE4616');

Import bioma.data package to make the constructor function available.

import bioma.data.*

Construct MIAME object from the structure.

MIAMEObj1 = MIAME(geoStruct)

MIAMEObj1 =

Experiment Description:

 Author name: Mika,,Silvennoinen

Riikka,,KivelÃ¤

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

 Laboratory: LIKES - Research Center

 Contact information: Mika,,Silvennoinen

 URL:

 PubMedIDs: 17003243

 Abstract: A 90 word abstract is available. Use the Abstract property.

 Experiment Design: A 234 word summary is available. Use the ExptDesign property.

 Other notes:

 [1x84 char]

Supply a URL for the MIAME object.

MIAMEObj1.URL = 'www.nonexistinglab.com'

MIAMEObj1 =

Experiment Description:

 Author name: Mika,,Silvennoinen

Riikka,,KivelÃ¤

1 Alphabetical List

1-276

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

 Laboratory: LIKES - Research Center

 Contact information: Mika,,Silvennoinen

 URL: www.nonexistinglab.com

 PubMedIDs: 17003243

 Abstract: A 90 word abstract is available. Use the Abstract property.

 Experiment Design: A 234 word summary is available. Use the ExptDesign property.

 Other notes:

 [1x84 char]

Alternatively you can construct a MIAME object using customized properties.

MIAMEObj2 = MIAME('investigator', 'Jane Researcher',...

 'lab', 'One Bioinformatics Laboratory',...

 'contact', 'jresearcher@lab.not.exist',...

 'url', 'www.lab.not.exist',...

 'title', 'Normal vs. Diseased Experiment',...

 'abstract', 'Example of using expression data',...

 'other', {'Notes:Created from a text file.'})

MIAMEObj2 =

Experiment Description:

 Author name: Jane Researcher

 Laboratory: One Bioinformatics Laboratory

 Contact information: jresearcher@lab.not.exist

 URL: www.lab.not.exist

 PubMedIDs:

 Abstract: A 4 word abstract is available. Use the Abstract property.

 No experiment design summary available.

 Other notes:

 'Notes:Created from a text file.'

• Working with Objects for Microarray Experiment Data
• Analyzing Illumina Bead Summary Gene Expression Data

See Also
bioma.ExpressionSet | bioma.data.ExptData | bioma.data.MetaData |
getgeodata

 bioma.data.MIAME class

1-277

How To
• “Class Attributes”
• “Property Attributes”
• “Representing Experiment Information in a MIAME Object”

1 Alphabetical List

1-278

bioma.ExpressionSet class
Package: bioma

Contain data from microarray gene expression experiment

Description
The ExpressionSet class is designed to contain data from a microarray gene expression
experiment, including expression values, sample and feature metadata, and information
about experimental methods and conditions. It provides a convenient way to store related
information about a microarray gene expression experiment in a single data structure
(object). It also lets you manage and subset the data.

The ExpressionSet class includes properties and methods that let you access, retrieve,
and change data, metadata, and other information about the microarray gene expression
experiment. These properties and methods are useful for viewing and analyzing the data.

Construction
ExprSetobj = bioma.ExpressionSet(Data) creates an ExpressionSet object, from
Data, a numeric matrix, a DataMatrix object, or an ExptData object, which contains one
or more DataMatrix objects with the same dimensions, row names and column names.

ExprSetobj = bioma.ExpressionSet(Data, {DMobj1, Name1}, {DMobj2,

Name2}, ...) creates an ExpressionSet object, from Data, and additional DataMatrix
objects with specified element names. All DataMatrix objects must have the same
dimensions, row names, and column names.

ExprSetobj = bioma.ExpressionSet(..., 'PropertyName', PropertyValue)

constructs the object using options, specified as property name/property value pairs.

ExprSetobj = bioma.ExpressionSet(..., 'SData', SDataValue) includes a
MetaData object containing sample metadata in the ExpressionSet object.

ExprSetobj = bioma.ExpressionSet(..., 'FData', FDataValue) includes a
MetaData object containing microarray feature metadata in the ExpressionSet object.

ExprSetobj = bioma.ExpressionSet(..., 'EInfo', EInfoValue) includes a
MIAME object, which contains experiment information, in the ExpressionSet object.

 bioma.ExpressionSet class

1-279

Input Arguments

Data

Any of the following:

• Numeric matrix
• DataMatrix object
• ExptData object, which contains one or more DataMatrix objects having the same

dimensions

If you provide a DataMatrix object, bioma.ExpressionSet creates an ExptData object
from it and names the DataMatrix object Expressions. If you provide an ExptData
object, bioma.ExpressionSet renames the first DataMatrix object in the ExptData
object to Expressions, unless another DataMatrix object in the ExptData object is
already named Expressions.

Default:

DMobj#

Variable name of a DataMatrix object. Each DataMatrix object must have the same
dimensions as Data.

Default:

Name#

String specifying an element name for the corresponding DataMatrix object. Each
DataMatrix object in an ExpressionSet object has an element name. At least one
DataMatrix object in an ExpressionSet object has an element name of Expressions. By
default, it is the first DataMatrix object.

Default:

SDataValue

Variable name of a MetaData object containing sample metadata for the experiment. The
variable name must exist in the MATLAB Workspace.

Default:

1 Alphabetical List

1-280

FDataValue

Variable name of a MetaData object containing microarray feature metadata for the
experiment. The variable name must exist in the MATLAB Workspace.

Default:

EInfoValue

Variable name of a MIAME object, which contains information about the experiment
methods and conditions. The variable name must exist in the MATLAB Workspace.

Default:

Properties

NElements

Number of elements in the experiment

Positive integer specifying the number of elements (DataMatrix objects) in the
experiment data. This value is equivalent to the number of DataMatrix objects in the
ExperimentSet object. This information is read-only.

Attributes:

SetAccess private

NFeatures

Number of features in the experiment

Positive integer specifying the number of features in the experiment. This value is
equivalent to the number of rows in each DataMatrix object in the ExperimentSet object.
This information is read-only.

Attributes:

SetAccess private

NSamples

Number of samples in the experiment

 bioma.ExpressionSet class

1-281

Positive integer specifying the number of samples in the experiment. This value is
equivalent to the number of columns in each DataMatrix object in the ExperimentSet
object. This information is read-only.

Attributes:

SetAccess private

Methods
abstract

Retrieve or set abstract describing
experiment in ExpressionSet object

elementData
Retrieve or set data element (DataMatrix
object) in ExpressionSet object

elementNames
Retrieve or set element names of
DataMatrix objects in ExpressionSet object

expressions
Retrieve or set Expressions DataMatrix
object from ExpressionSet object

exprWrite
Write expression values in ExpressionSet
object to text file

exptData
Retrieve or set experiment data in
ExpressionSet object

exptInfo
Retrieve or set experiment information in
ExpressionSet object

featureData
Retrieve or set feature metadata in
ExpressionSet object

featureNames
Retrieve or set feature names in
ExpressionSet object

1 Alphabetical List

1-282

featureVarDesc
Retrieve or set feature variable descriptions
in ExpressionSet object

featureVarNames
Retrieve or set feature variable names in
ExpressionSet object

featureVarValues
Retrieve or set feature variable data values
in ExpressionSet object

pubMedID
Retrieve or set PubMed IDs in
ExpressionSet object

sampleData
Retrieve or set sample metadata in
ExpressionSet object

sampleNames
Retrieve or set sample names in
ExpressionSet object

sampleVarDesc
Retrieve or set sample variable descriptions
in ExpressionSet object

sampleVarNames
Retrieve or set sample variable names in
ExpressionSet object

sampleVarValues
Retrieve or set sample variable values in
ExpressionSet object

size
Return size of ExpressionSet object

Instance Hierarchy

An ExpressionSet object contains an ExptData object, two MetaData objects, and a
MIAME object. These objects can be empty.

 bioma.ExpressionSet class

1-283

Attributes

To learn about attributes of classes, see “Class Attributes” in the MATLAB Object-
Oriented Programming documentation.

Copy Semantics

Value. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

ExpressionSet objects support 2-D parenthesis () indexing to extract, assign, and delete
data.

ExpressionSet objects do not support:

• Dot . indexing
• Curly brace { } indexing
• Linear indexing

Examples

Construct an ExpressionSet Object

This example shows how to construct an ExpressionSet object. The
mouseExprsData.txt file used in this example contains data from Hovatta et al., 2005.

Import bioma.data package to make the constructor function available.

import bioma.data.*

Create a DataMatrix object from .txt file containing expression values from microarray
experiment.

dmObj = DataMatrix('File', 'mouseExprsData.txt');

Construct an ExptData object.

1 Alphabetical List

1-284

EDObj = ExptData(dmObj)

EDObj =

Experiment Data:

 500 features, 26 samples

 1 elements

 Element names: Elmt1

Construct a MetaData object from .txt file.

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#')

MDObj2 =

Sample Names:

 A, B, ...,Z (26 total)

Variable Names and Meta Information:

 VariableDescription

 Gender ' Gender of the mouse in study'

 Age ' The number of weeks since mouse birth'

 Type ' Genetic characters'

 Strain ' The mouse strain'

 Source ' The tissue source for RNA collection'

Create a MATLAB structure containing GEO Series data.

geoStruct = getgeodata('GSE4616');

Construct a MIAME object.

MIAMEObj = MIAME(geoStruct)

MIAMEObj =

Experiment Description:

 Author name: Mika,,Silvennoinen

Riikka,,KivelÃ¤

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

 Laboratory: LIKES - Research Center

 Contact information: Mika,,Silvennoinen

 bioma.ExpressionSet class

1-285

 URL:

 PubMedIDs: 17003243

 Abstract: A 90 word abstract is available. Use the Abstract property.

 Experiment Design: A 234 word summary is available. Use the ExptDesign property.

 Other notes:

 [1x84 char]

Import bioma package to make constructor function available.

import bioma.*

Construct an ExpressionSet object.

ESObj = ExpressionSet(EDObj, 'SData', MDObj2, 'EInfo', MIAMEObj)

ESObj =

ExpressionSet

Experiment Data: 500 features, 26 samples

 Element names: Expressions

Sample Data:

 Sample names: A, B, ...,Z (26 total)

 Sample variable names and meta information:

 Gender: Gender of the mouse in study

 Age: The number of weeks since mouse birth

 Type: Genetic characters

 Strain: The mouse strain

 Source: The tissue source for RNA collection

Feature Data: none

Experiment Information: use 'exptInfo(obj)'

• Working with Objects for Microarray Experiment Data
• Analyzing Illumina Bead Summary Gene Expression Data

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438, 662–666.

See Also
bioma.data.ExptData | bioma.data.MetaData | bioma.data.MIAME

1 Alphabetical List

1-286

How To
• “Class Attributes”
• “Property Attributes”
• “Managing Gene Expression Data in Objects”

 BioRead class

1-287

BioRead class

Contain sequence and quality data

Description

The BioRead class contains data from short-read sequences, including sequence headers,
nucleotide sequences, and the quality scores for the sequences. This data is typically
obtained from a high-throughput sequencing instrument.

You construct a BioRead object from short-read sequence data. Each element in the
object has a sequence, header, and quality score associated with it. Use the object
properties and methods to explore, access, filter, and manipulate all or a subset of the
data, before doing subsequent analyses or sequence alignment and mapping.

Construction

BioReadobj = BioRead constructs BioReadobj, an empty BioRead object.

BioReadobj = BioRead(File) constructs BioReadobj, a BioRead object, from File,
a FASTQ- or SAM-formatted file. The data remains in the source file, and the BioRead
object accesses it using an auxiliary index file. The index file must have the same name
as the source file, but with an .IDX extension. If the index file is not present in the same
folder as the source file, the BioRead constructor function creates the index file in that
folder.

Note: Because the data remains in the source file:

• Do not delete the source file (FASTQ or SAM) or the auxiliary index file.

• You cannot modify BioReadobj properties.

BioReadobj = BioRead(Struct) constructs BioReadobj, a BioRead object, from
Struct, a MATLAB structure containing Header, Sequence, and Quality fields, such as
returned by the fastqread or the samread function. The data from Struct is kept in
memory, which lets you modify the properties of BioReadobj.

1 Alphabetical List

1-288

BioReadobj = BioRead(Seqs) constructs BioReadobj, a BioRead object, from Seqs, a
cell array of strings containing the letter representations of nucleotide sequences.

BioReadobj = BioRead(Seqs,Quals) constructs BioReadobj, a BioRead object,
also from Quals, a cell array of strings containing the ASCII representation of per-base
quality scores for nucleotide sequences.

BioReadobj = BioRead(Seqs,Quals,Headers) constructs BioReadobj, a BioRead
object, also from Headers, a cell array of strings containing header text for nucleotide
sequences.

BioReadobj = BioRead(___ ,'PropertyName',PropertyValue) constructs a
BioRead object using options, specified as name-value pair arguments.

BioReadobj = BioRead(File,'InMemory',InMemoryValue) specifies whether to
place the data in memory or leave the data in the source file. Leaving the data in the
source file and accessing it via an index file is more memory efficient, but does not let you
modify properties of BioReadobj. Choices are true or false (default). If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Tip Set the InMemory name-value pair argument to true if you want to modify the
properties of BioReadobj.

BioReadobj = BioRead(___ ,'IndexDir',IndexDirValue) specifies the path to
the folder where the index file either exists or will be created.

Tip Use the IndexDir name-value pair argument if you do not have write access to the
folder where the source file is located.

BioReadobj = BioRead(___ ,'Sequence',SequenceValue) constructs BioReadobj,
a BioRead object, from SequenceValue, a cell array of strings containing the letter
representations of nucleotide sequences. This name-value pair works only if the data is
read into memory.

BioReadobj = BioRead(___ ,'Quality',QualityValue) constructs BioReadobj,
a BioRead object, from QualityValue, a cell array of strings containing the ASCII

 BioRead class

1-289

representation of per-base quality scores for nucleotide sequences. This name-value pair
works only if the data is read into memory.

BioReadobj = BioRead(___ ,'Header',HeaderValue) constructs BioReadobj, a
BioRead object, from HeaderValue, a cell array of strings containing header text for
nucleotide sequences. This name-value pair works only if the data is read into memory.

BioReadobj = BioRead(___ ,'Name',NameValue) constructs BioReadobj, a
BioRead object, and then sets the Name property to NameValue, a string describing the
object. Default is '', an empty string.

Input Arguments

File

String specifying a FASTQ- or SAM-formatted file.

Default:

Struct

MATLAB structure containing Header, Sequence, and Quality fields, such as returned
by the fastqread or the samread function.

Default:

InMemoryValue

Logical specifying whether to place the data in memory or leave the data in the source
file. Leaving the data in the source file and accessing it via an index file is more memory
efficient, but does not let you modify properties of the BioRead object. If the first input
argument is not a file name, then this name-value pair argument is ignored, and the data
is automatically placed in memory.

Default: false

IndexDirValue

String specifying the path to the folder where the index file either exists or will be
created.

Default: Folder where File is located

1 Alphabetical List

1-290

Seqs

Cell array of strings containing the letter representations of nucleotide sequences. This
information populates the BioRead object's Sequence property.

Default:

Quals

Cell array of strings containing the ASCII representation of per-base quality scores
for nucleotide sequences. This information populates the BioRead object's Quality
property.

Default:

Headers

Cell array of strings containing header text for nucleotide sequences. This information
populates the BioRead object's Header property.

Default:

SequenceValue

Cell array of strings containing the letter representations of nucleotide sequences. This
information populates the BioRead object's Sequence property. This name-value pair
works only if the data is read into memory.

Default:

QualityValue

Cell array of strings containing the ASCII representation of per-base quality scores
for nucleotide sequences. This information populates the BioRead object's Quality
property. This name-value pair works only if the data is read into memory.

Default: Empty cell array

HeaderValue

Cell array of strings containing header text for nucleotide sequences. This information
populates the BioRead object's Header property. This name-value pair works only if the
data is read into memory.

Default: Empty cell array

 BioRead class

1-291

NameValue

String describing the BioRead object. This information populates the object's Name
property.

Default: ' ', an empty string

Properties

Header

Headers associated with all sequences represented in the BioRead object.

Cell array of strings, such that there is a header for each sequence in the object. Header
strings can be empty. There is a one-to-one relationship between the number and order of
elements in Header and Sequence, unless Header is an empty cell array.

Name

Description of the BioRead object.

Single string describing the BioRead object.

Default: ' ', an empty string

NSeqs

Number of sequences in the BioRead object.

This information is read only.

Quality

Per-base quality scores associated with all sequences represented in the BioRead object.

Cell array of strings, such that there is a quality string for each sequence in the object.
Each quality string is an ASCII representation of per-base quality scores for a nucleotide
sequence or an empty string. A one-to-one relationship exists between the number and
order of elements in Quality and Sequence, unless Quality is an empty cell array.

Sequence

Nucleotide sequences in the BioRead object.

1 Alphabetical List

1-292

Cell array of strings containing the letter representations of the nucleotide sequences.

Methods

combine
Combine two objects

get
Retrieve property of object

getHeader
Retrieve sequence headers from object

getQuality
Retrieve sequence quality scores from
object

getSequence
Retrieve sequences from object

getSubsequence
Retrieve partial sequences from object

getSubset
Create object containing subset of elements
from object

plotSummary
Plot summary statistics of BioRead object

set
Set property of object

setHeader
Set sequence headers for object

setQuality
Set sequence quality scores for object

setSequence
Set sequences for object

setSubsequence
Set partial sequences for object

setSubset
Set elements for object

 BioRead class

1-293

write
Write contents of BioRead or BioMap object
to file

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

BioRead objects support dot . indexing to extract, assign, and delete data.

Examples

Construct BioRead Object from FASTQ File

Construct a BioRead object from a FASTQ-formatted file that is provided with
Bioinformatics Toolbox.

BRObj1 = BioRead('SRR005164_1_50.fastq','Name','MyObject')

BRObj1 =

 BioRead with properties:

 Quality: [50x1 File indexed property]

 Sequence: [50x1 File indexed property]

 Header: [50x1 File indexed property]

 NSeqs: 50

 Name: 'MyObject'

Construct BioRead Object from MATLAB Workspace Variables

Create variables containing sequences, quality scores, and headers.

seqs = {randseq(10);randseq(15);randseq(20)};

quals = {repmat('!', 1, 10);repmat('%', 1, 15);repmat('&', 1, 20)};

1 Alphabetical List

1-294

headers = {'H1';'H2';'H3'};

Construct a BioRead object from these three variables.

BRObj2 = BioRead(seqs,quals,headers)

BRObj2 =

 BioRead with properties:

 Quality: {3x1 cell}

 Sequence: {3x1 cell}

 Header: {3x1 cell}

 NSeqs: 3

 Name: ''

Construct BioRead Object from MATLAB Structure

Create variables containing sequences, quality scores, and headers.

seqs = {randseq(10);randseq(15);randseq(20)};

quals = {repmat('!',1,10); repmat('%',1,15);repmat('&',1,20)};

headers = {'H1';'H2';'H3'};

Construct a structure containing Header, Sequence, and Quality fields.

BRStruct = struct('Header',headers,'Sequence',seqs,'Quality',quals);

Construct a BioRead object from this structure.

BRObj3 = BioRead(BRStruct)

BRObj3 =

 BioRead with properties:

 Quality: {3x1 cell}

 Sequence: {3x1 cell}

 Header: {3x1 cell}

 NSeqs: 3

 Name: ''

See Also
BioIndexedFile | fastqinfo | BioMap | fastqread | saminfo | samread

 BioRead class

1-295

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-296

BioReadQualityStatistics class

Quality statistics from a short-read sequence file

Description

The BioReadQualityStatistics class contains quality statistics data from short-read
sequences and provides a standard set of quality control plots for such data.

Construct a BioReadQualityStatistics object from short-read sequence data stored
in FASTQ, SAM, or BAM files. Perform data quality analyses using the object’s methods
to generate several quality control plots regarding average quality score for each base
position, average quality score distribution, read count percentage for each base position,
percentage of G and C nucleotides for each base position, G and C content distribution,
and all nucleotide distribution. The object lets parse a sequence file without creating a
BioRead object and interact with the quality data in order to compare different data sets
or filtering options and create customized plots.

Construction

QSObj = BioReadQualityStatistics(File) constructs QSObj, a
BioReadQualityStatistics object, from the data stored in File, a FASTQ-, SAM-, or
BAM-formatted file.

QSObj = BioReadQualityStatistics(Obj) constructs QSObj, a
BioReadQualityStatistics object, from the data stored in Obj, a BioRead or BioMap
object.

QSObj = BioReadQualityStatistics(___ ,Name,Value) constructs a
BioReadQualityStatistics object using options specified by one or more name-value
pair arguments.

Note: Once created, you cannot modify the properties of QSObj since it is an immutable
object.

 BioReadQualityStatistics class

1-297

Input Arguments

File

String specifying a FASTQ file. The string can contain the path or folder location of the
file.

Obj

A BioRead or BioMap object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Encoding' — Encoding format
'Illumina18' (default) | 'Sanger' | 'Illumina13' | 'Illumina15' | 'Solexa'

Encoding format, specified as 'Sanger', 'Illumina13', 'Illumina15',
'Illumina18', or 'Solexa'. It is the format that is used for characters encoding
sequence information and quality scores in a FASTQ file.
Example: 'Encoding','Sanger'

'FilterLength' — Number of characters
[] (default) | positive integer

Number of characters, specified as a positive integer, from each read to be used. No
filtering is applied if you use an empty array, which is the default value.
Example: 'FilterLength',40

'QualityScoreThreshold' — Average quality threshold
-Inf (default) | real number

Average quality threshold, specified as a real number. Any read with an average score of
less than the specified threshold is ignored.
Example: 'QualityScoreThreshold', 10

1 Alphabetical List

1-298

Properties

FileName

Name of a file used to create BioReadQualityStatistics object.

FileType

Type of file from which a BioReadQualityStatistics object is created. Supported file
types are FASTQ, SAM, and BAM formats.

Encoding

String specifying the format of the character encoding sequence information and quality
scores in the file. Supported formats are: 'Sanger', 'Illumina13', 'Illumina15',
'Illumina18', and 'Solexa'. The default format is 'Illumina18'.

CharOffset

Integer specifying ASCII code where the quality score begins for a sequence.

NumberOfReads

Integer representing the number of short-read sequences BioReadQualityStatistics
object contains.

MaxReadLength

Integer representing maximum length of a short-read sequence among all sequences of
BioReadQualityStatistics object.

MinEncodingPhred

Integer specifying minimum Phred quality score [1] among all short-read sequences of a
BioReadQualityStatistics object.

MaxEncodingPhred

Integer specifying maximum Phred quality score among all short-read sequences of a
BioReadQualityStatistics object.

 BioReadQualityStatistics class

1-299

SkipPhred

Integer specifying the number of Phred scores that are not considered in the quality score
range.

PerSeqAverageQualityDist

Vector of integers representing average quality distribution per sequence.

PerPosQualities

s-by-p matrix of integers that represent quality scores (s) per base positions (p).

PerSeqGCDist

Vector of integers representing the distribution of G and C nucleotides per sequence.

PerPosBaseDist

n-by-p matrix of integers that represents distribution of all nucleotides (n = 5) per base
position (p).

Name

String describing the user-defined name for the object.

MaxScore

Integer representing maximum sequence quality score among all scores.

MinScore

Integer representing minimum sequence quality score among all scores.

FilterLength

Positive integer specifying the length of each read used in quality analysis.

QualityScoreThreshold

Scalar value specifying minimum average quality threshold for a read. Any read with an
average score of less than the specified threshold is ignored. The default value is –Inf,
which causes all reads to be considered.

1 Alphabetical List

1-300

Subset

Vector of integers specifying the index for subset of information from the original
sequence data used in analysis.

Methods

plotPerPositionCountByQuality
Plot fractions of reads with Phred scores in
ranges

plotPerPositionGC
Plot percentages of G or C nucleotides at
each base position

plotPerPositionQuality
Plot Phred score distributions

plotPerSequenceGC
Plot G or C nucleotide distribution

plotPerSequenceQuality
Plot distribution of average quality scores

plotSummary
Plot summary statistics of a
BioReadQualityStatistics object

plotTotalGC
Plot distribution of all nucleotides of short-
read sequences

Examples

Create a BioReadQualityStatistics object and plot its summary statistics

This example shows how to create a BioReadQualityStatistics object and plot summary
statistics of it.

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

 BioReadQualityStatistics class

1-301

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq', 'FilterLength',...

 40, 'QualityScoreThreshold', 5)

QSObj =

 BioReadQualityStatistics with properties:

 FileName: 'B:\matlab\toolbox\bioinfo\bioinfodata\SRR00...'

 FileType: 'FASTQ'

 Encoding: 'Illumina18'

 CharOffset: 33

 NumberOfReads: 50

 MaxReadLength: 40

 MinEncodingPhred: 0

 MaxEncodingPhred: 62

 SkipPhred: []

 PerSeqAverageQualityDist: [1x62 double]

 PerPosQualities: [63x40 double]

 PerSeqGCDist: [0 0 0 0 3 3 8 5 9 7 6 5 2 2 0 0 0 0 0 0]

 PerPosBaseDist: [5x40 double]

 Name: ''

 MaxScore: 34

 MinScore: 1

 FilterLength: 40

 QualityScoreThreshold: 5

 Subset: NaN

Plot the summary statistics of the object.

plotSummary(QSObj)

ans =

 1.0099

 2.0099

 3.0099

 4.0099

 5.0099

 6.0099

1 Alphabetical List

1-302
References

[1] Wikipedia. (2012). Phred quality score, http://en.wikipedia.org/wiki/
Phred_quality_score

 BioReadQualityStatistics class

1-303

See Also
BioMap | BioRead

1 Alphabetical List

1-304

blastformat
Create local BLAST database

Syntax

blastformat('Inputdb', InputdbValue)

blastformat(..., 'FormatPath', FormatPathValue, ...)

blastformat(..., 'Title', TitleValue, ...)

blastformat(..., 'Log', LogValue, ...)

blastformat(..., 'Protein', ProteinValue, ...)

blastformat(..., 'FormatArgs', FormatArgsValue, ...)

Arguments

InputdbValue String specifying a file name or path and file name of a FASTA
file containing a set of sequences to be formatted as a blastable
database. If you specify only a file name, that file must be on the
MATLAB search path or in the current folder. (This corresponds
to the formatdb option -i.)

FormatPathValue String specifying the full path to the formatdb executable file,
including the name and extension of the executable file. Default
is the system path.

TitleValue String specifying the title for the local database. Default is the
input FASTA file name. (This corresponds to the formatdb
option -t.)

LogValue String specifying the file name or path and file name for
the log file associated with the local database. Default is
formatdb.log. (This corresponds to the formatdb option -l.)

ProteinValue Specifies whether the sequences formatted as a local BLAST
database are protein or not. Choices are true (default) or false.
(This corresponds to the formatdb option -p.)

FormatArgsValue NCBI formatdb command string, that is, a string containing
one or more instances of -x and the option associated with it,

 blastformat

1-305

used to specify input arguments. For an example, see Using
blastformat with formatdb Syntax and Input Arguments.

Description

Note: To use the blastformat function, you must have a local copy of the NCBI
formatdb executable file available from your system. You can download the formatdb
executable file by accessing BLAST+ executables, then clicking the download link under
the blast column for your platform. Run the downloaded executable and configure it for
your system. .

For more information, see the readme file on the NCBI ftp site.

For convenience, consider placing the NCBI formatdb executable file on your system
path.

blastformat('Inputdb', InputdbValue) calls a local version of the NCBI
formatdb executable file with InputdbValue, a file name or path and file name of a
FASTA file containing a set of sequences. If you specify only a file name, that file must be
on the MATLAB search path or in the current folder. (This corresponds to the formatdb
option -i.)

It then formats the sequences as a local, blastable database, by creating multiple
files, each with the same name as the InputdbValue FASTA file, but with different
extensions. The database files are placed in the same location as the FASTA file.

Note: If you rename the database files, make sure they all have the same name.

blastformat(..., 'PropertyName', PropertyValue, ...) calls blastformat
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.2.17/
ftp://ftp.ncbi.nih.gov/blast/documents/blast.html

1 Alphabetical List

1-306

blastformat(..., 'FormatPath', FormatPathValue, ...) specifies the full
path to the formatdb executable file, including the name and extension of the executable
file. Default is the system path.

blastformat(..., 'Title', TitleValue, ...) specifies the title for the local
database. Default is the input FASTA file name. (This corresponds to the formatdb
option -t.)

Note: The 'Title' property does not change the file name of the database files.
This title is used internally only, and appears in the report structure returned by the
blastlocal function.

blastformat(..., 'Log', LogValue, ...) specifies the file name or path and file
name for the log file associated with the local database. Default is formatdb.log. The
log file captures the progress of the database creation and formatting. (This corresponds
to the formatdb option -l.)

blastformat(..., 'Protein', ProteinValue, ...) specifies whether the
sequences formatted as a local BLAST database are protein or not. Choices are true
(default) or false. (This corresponds to the formatdb option -p.)

blastformat(..., 'FormatArgs', FormatArgsValue, ...) specifies options
using the input arguments for the NCBI formatdb function. FormatArgsValue is
a string containing one or more instances of -x and the option associated with it. For
example, to specify that the input is a database in ASN.1 format, instead of a FASTA file,
you would use the following syntax:

blastformat('Inputdb', 'ecoli.asn', 'FormatArgs', '-a T')

Tip Use the 'FormatArgs' property to specify formatdb options for which there are no
corresponding property name/property value pairs.

Note: For a complete list of valid input arguments for the NCBI formatdb function,
make sure that the formatdb executable file is located on your system path or current
folder, then type the following at your system's command prompt.

formatdb -

 blastformat

1-307

Using formatdb Syntax

You can also use the syntax and input arguments accepted by the NCBI formatdb
function, instead of the property name/property value pairs listed previously. To do so,
supply a single string containing multiple options using the -x option syntax. For
example, you can specify the ecoli.nt FASTA file, a title of myecoli, and that the
sequences are not protein by using

blastformat('-i ecoli.nt -t myecoli -p F')

Note: For a complete list of valid input arguments for the NCBI formatdb function,
make sure that the formatdb executable file is located on your system path or current
folder, then type the following at your system's command prompt.

formatdb -

Examples

Using blastformat with Property Name/Value Pairs

The following example assumes you have a FASTA nucleotide file, such as the E. coli file
NC_004431.fna, which you can download from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
saved to your MATLAB current folder.

Create a local blastable database from the NC_004431.fna FASTA file and give it a title
using the 'title' property.

blastformat('inputdb', 'NC_004431.fna', 'protein', 'false',...

 'title', 'myecoli_nt');

Using blastformat with formatdb Syntax and Input Arguments

The following example assumes you have a FASTA amino acid file, such as the E. coli file
NC_004431.faa, which you can download from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
saved to your MATLAB current folder.

Create a local blastable database from the NC_004431.faa FASTA file and rename the
title and log file using formatdb syntax and input arguments.

blastformat('inputdb', 'NC_004431.faa',...

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

1 Alphabetical List

1-308

 'formatargs', '-t myecoli_aa -l ecoli_aa.log');

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

For more information on the NCBI formatdb function, see:

http://blast.ncbi.nlm.nih.gov/docs/formatdb.html

See Also
blastlocal | blastncbi | blastread | blastreadlocal | getblast

http://blast.ncbi.nlm.nih.gov/docs/formatdb.html

 blastlocal

1-309

blastlocal
Perform search on local BLAST database to create BLAST report

Syntax
blastlocal('InputQuery', InputQueryValue)

Data = blastlocal('InputQuery', InputQueryValue)

... blastlocal(..., 'Program', ProgramValue, ...)

... blastlocal(..., 'Database', DatabaseValue, ...)

... blastlocal(..., 'BlastPath', BlastPathValue, ...)

... blastlocal(..., 'Expect', ExpectValue, ...)

... blastlocal(..., 'Format', FormatValue, ...)

... blastlocal(..., 'ToFile', ToFileValue, ...)

... blastlocal(..., 'Filter', FilterValue, ...)

... blastlocal(..., 'GapOpen', GapOpenValue, ...)

... blastlocal(..., 'GapExtend', GapExtendValue, ...)

... blastlocal(..., 'BLASTArgs', BLASTArgsValue, ...)

Input Arguments
InputQueryValue String specifying the file name or path and file name of

a FASTA file containing query nucleotide or amino acid
sequence(s). (This corresponds to the blastall option -i.)

ProgramValue String specifying a BLAST program. Choices are:

• 'blastp' (default) — Search protein query versus protein
database.

• 'blastn' — Search nucleotide query versus nucleotide
database.

• 'blastx' — Search translated nucleotide query versus
protein database.

• 'tblastn' — Search protein query versus translated
nucleotide database.

• 'tblastx' — Search translated nucleotide query versus
translated nucleotide database.

1 Alphabetical List

1-310

(The ProgramValue argument corresponds to the blastall
option -p.)

DatabaseValue String specifying a file name or path and file name of a local
BLAST database (formatted using the NCBI formatdb
function) to search. Default is a local version of the nr database
in the MATLAB current folder. (This corresponds to the
blastall option -d.)

BlastPathValue String specifying the full path to the blastall executable
file, including the name and extension of the executable file.
Default is the system path.

ExpectValue Value specifying the statistical significance threshold for
matches against database sequences. Choices are any real
number. Default is 10. (This corresponds to the blastall
option -e.)

FormatValue Integer specifying the alignment format of the BLAST search
results. Choices are:

• 0 (default) — Pairwise
• 1 — Query-anchored, showing identities
• 2 — Query-anchored, no identities
• 3 — Flat query-anchored, showing identities
• 4 — Flat query-anchored, no identities
• 5 — Query-anchored, no identities and blunt ends
• 6 — Flat query-anchored, no identities and blunt ends
• 8 — Tabular
• 9 — Tabular with comment lines

(This corresponds to the blastall option -m.)
ToFileValue String specifying a file name or path and file name in which

to save the contents of the BLAST report. (This corresponds to
the blastall option -o.)

FilterValue Controls the application of a filter (DUST filter for the blastn
program or SEG filter for other programs) to the query
sequence(s). Choices are true (default) or false. (This
corresponds to the blastall option -F.)

 blastlocal

1-311

GapOpenValue Integer that specifies the penalty for opening a gap in the
alignment of sequences. Default is -1. (This corresponds to the
blastall option -G.)

GapExtendValue Integer that specifies the penalty for extending a gap in the
alignment of sequences. Default is -1. (This corresponds to the
blastall option -E.)

BLASTArgsValue NCBI blastall command string, that is a string containing
one or more instances of -x and the option associated with it,
used to specify input arguments. For an example, see step 2 in
“Examples” on page 1-316.

Output Arguments

Data MATLAB structure or array of structures (if multiple query
sequences) containing fields corresponding to BLAST keywords
and data from a local BLAST report.

Description

This function assumes that

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online or local
databases.

Note: To use the blastlocal function, you must have a local copy of the NCBI
blastall executable file (version 2.2.17) available from your system. You can download
the blastall executable file by accessing BLAST+ executables, then clicking the
download link under the blast column for your platform. Run the downloaded
executable and configure it for your system.

For more information, see the readme file on the NCBI ftp site.

For convenience, consider placing the NCBI blastall executable file on your system
path.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.2.17/
ftp://ftp.ncbi.nih.gov/blast/documents/blast.html

1 Alphabetical List

1-312

blastlocal('InputQuery', InputQueryValue) submits query sequence(s)
specified by InputQueryValue, a FASTA file containing nucleotide or amino acid
sequence(s), for a BLAST search of a local BLAST database, by calling a local version
of the NCBI blastall executable file. The BLAST search results are displayed in the
MATLAB Command Window. (This corresponds to the blastall option -i.)

Data = blastlocal('InputQuery', InputQueryValue) returns the BLAST search
results in Data, a MATLAB structure or array of structures (if multiple query sequences)
containing fields corresponding to BLAST keywords and data from a local BLAST report.

Data contains a subset of the following fields, based on the specified alignment format.

Field Description

Algorithm NCBI algorithm used to do a BLAST search.
Query Identifier of the query sequence submitted to a

BLAST search.
Length Length of the query sequence.
Database All databases searched.
Hits.Name Name of a database sequence (subject sequence)

that matched the query sequence.
Hits.Score Alignment score between the query sequence and

the subject sequence.
Hits.Expect Expectation value for the alignment between the

query sequence and the subject sequence.
Hits.Length Length of a subject sequence.
Hits.HSPs.Score Pairwise alignment score for a high-scoring

sequence pair between the query sequence and a
subject sequence.

Hits.HSPs.Expect Expectation value for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Hits.HSPs.Identities Identities (match, possible, and percent) for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Positives Identical or similar residues (match, possible,
and percent) for a high-scoring sequence pair

 blastlocal

1-313

Field Description

between the query sequence and a subject amino
acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences and/or
databases.

Hits.HSPs.Gaps Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits.HSPs.Mismatches Residues that are not similar to each other (match,
possible, and percent) for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Hits.HSPs.Frame Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair between
the query sequence and a subject sequence.

Note: This field applies only when performing
translated searches, that is, when using tblastx,
tblastn, and blastx.

Hits.HSPs.Strand Sense (Plus = 5' to 3' and Minus = 3' to 5') of
the DNA strands for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits.HSPs.Alignment Three-row matrix showing the alignment for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.QueryIndices Indices of the query sequence residue positions for
a high-scoring sequence pair between the query
sequence and a subject sequence.

1 Alphabetical List

1-314

Field Description

Hits.HSPs.SubjectIndices Indices of the subject sequence residue positions
for a high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.AlignmentLength Length of the pairwise alignment for a high-
scoring sequence pair between the query sequence
and a subject sequence.

Alignment Entire alignment for the query sequence and the
subject sequence(s).

Statistics Summary of statistical details about the
performed search, such as lambda values, gap
penalties, number of sequences searched, and
number of hits.

... blastlocal(..., 'PropertyName', PropertyValue, ...) calls
blastlocal with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows.

... blastlocal(..., 'Program', ProgramValue, ...) specifies the BLAST
program. Choices are 'blastp' (default), 'blastn', 'blastx', 'tblastn', and
'tblastx'. (This corresponds to the blastall option -p.) For help in selecting an
appropriate BLAST program, visit:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

... blastlocal(..., 'Database', DatabaseValue, ...) specifies the local
BLAST database (formatted using the NCBI formatdb function) to search. Default is a
local version of the nr database in the MATLAB current folder. (This corresponds to the
blastall option -d.)

... blastlocal(..., 'BlastPath', BlastPathValue, ...) specifies the full
path to the blastall executable file, including the name and extension of the executable
file. Default is the system path.

... blastlocal(..., 'Expect', ExpectValue, ...) specifies a statistical
significance threshold for matches against database sequences. Choices are any real
number. Default is 10. (This corresponds to the blastall option -e.) You can learn
more about the statistics of local sequence comparison at:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

 blastlocal

1-315

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2

... blastlocal(..., 'Format', FormatValue, ...) specifies the alignment
format of the BLAST search results. Choices are:

• 0 (default) — Pairwise
• 1 — Query-anchored, showing identities
• 2 — Query-anchored, no identities
• 3 — Flat query-anchored, showing identities
• 4 — Flat query-anchored, no identities
• 5 — Query-anchored, no identities and blunt ends
• 6 — Flat query-anchored, no identities and blunt ends
• 7 — Not used
• 8 — Tabular
• 9 — Tabular with comment lines

(This corresponds to the blastall option -m.)

... blastlocal(..., 'ToFile', ToFileValue, ...) saves the contents of the
BLAST report to the specified file. (This corresponds to the blastall option -o.)

... blastlocal(..., 'Filter', FilterValue, ...) specifies whether a filter
(DUST filter for the blastn program or SEG filter for other programs) is applied to
the query sequence(s). Choices are true (default) or false. (This corresponds to the
blastall option -F.)

... blastlocal(..., 'GapOpen', GapOpenValue, ...) specifies the penalty
for opening a gap in the alignment of sequences. Default is -1. (This corresponds to the
blastall option -G.)

... blastlocal(..., 'GapExtend', GapExtendValue, ...) specifies the
penalty for extending a gap in the alignment of sequences. Default is -1. (This
corresponds to the blastall option -E.)

... blastlocal(..., 'BLASTArgs', BLASTArgsValue, ...) specifies options
using the input arguments for the NCBI blastall function. BLASTArgsValue is a
string containing one or more instances or -x and the option associated with it. For
example, to specify the BLOSUM 45 matrix, you would use the following syntax:
blastlocal('InputQuery', ecoliquery.txt, 'BLASTArgs', '-M BLOSUM45')

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2

1 Alphabetical List

1-316

Tip Use the 'BlastArgs' property to specify blastall options for which there are no
corresponding property name/property value pairs.

Note: For a complete list of valid input arguments for the NCBI blastall function,
make sure that the blastall executable file is located on your system path or current
folder, then type the following at your system's command prompt.

blastall -

Using blastall Syntax

You can also use the syntax and input arguments accepted by the NCBI blastall
function, instead of the property name/property value pairs listed previously. To do so,
supply a single string containing multiple options using the -x option syntax. For
example, you can specify the ecoliquery.txt FASTA file as your query sequences, the
blastp program, and the ecoli local database, by using

blastlocal('-i ecoliquery.txt -p blastp -d ecoli')

Note: For a complete list of valid input arguments for the NCBI blastall function,
make sure that the blastall executable file is located on your system path or current
folder, then type the following at your system's command prompt.

blastall -

Examples

The following examples assume you have a FASTA nucleotide file and a FASTA amino
acid file for E. coli, such as the files NC_004431.fna and NC_004431.faa, which you
can download from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/, saved to your MATLAB
current folder.

Performing a Nucleotide Translated Search

1 Create local blastable databases from the NC_004431.fna and NC_004431.faa
FASTA files by using the blastformat function.

blastformat('inputdb', 'NC_004431.fna', 'protein', 'false');

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

 blastlocal

1-317

blastformat('inputdb', 'NC_004431.faa');

2 Use the getgenbank function to retrieve sequence information for the E. coli
threonine operon from the GenBank database.

S = getgenbank('M28570');

3 Create a query file by using the fastawrite function to create a FASTA file named
query_nt.fa from this sequence information, using only the accession number as
the header.

S.Header = S.Accession;

fastawrite('query_nt.fa', S);

4 Use MATLAB syntax to submit the query sequence in the query_nt.fa FASTA file
for a BLAST search of the local amino acid database NC_004431.faa. Specify the
BLAST program blastx. Return the BLAST search results in results, a MATLAB
structure.

results = blastlocal('inputquery', 'query_nt.fa',...

 'database', 'NC_004431.faa',...

 'program', 'blastx');

Performing a Nucleotide Search Using blastall Syntax

1 If you have not already done so, create local blastable databases and a query file as
described in steps 1 through 3 in Performing a Nucleotide Translated Search.

2 Use blastall syntax to submit the query sequence in the query_nt.fa FASTA
file for a BLAST search of the local nucleotide database NC_004431.fna. Specify the
BLAST program blastn and an expectation value of 0.0001. Return the BLAST
search results in results, a MATLAB structure.

results = blastlocal('-i query_nt.fa -d NC_004431.fna ...

 -p blastn -e 0.0001');

Performing a Nucleotide Search and Creating a Formatted Report

1 If you have not already done so, create local blastable databases and a query file as
described in steps 1 through 3 in Performing a Nucleotide Translated Search.

2 Submit the query sequence in the query_nt.fa FASTA file for a BLAST search of
the local nucleotide database NC_004431.fna. Specify the BLAST program blastn
and a tabular alignment format. Save the contents of the BLAST report to a file
named myecoli_nt.txt.

blastlocal('inputquery', 'query_nt.fa',...

1 Alphabetical List

1-318

 'database', 'NC_004431.fna', 'tofile',...

 'myecoli_nt.txt', 'blastargs', '-p blastn -m 8');

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

For more information on the NCBI blastall function, see:

http://blast.ncbi.nlm.nih.gov/docs/blastall.html

See Also
blastformat | blastncbi | blastread | blastreadlocal | getblast

http://blast.ncbi.nlm.nih.gov/docs/blastall.html

 blastncbi

1-319

blastncbi
Create remote NCBI BLAST report request ID or link to NCBI BLAST report

Syntax

blastncbi(Seq, Program)

RID = blastncbi(Seq, Program)

[RID, RTOE] = blastncbi(Seq, Program)

... blastncbi(Seq, Program, ...'Database', DatabaseValue, ...)

... blastncbi(Seq, Program, ...'Descriptions',

DescriptionsValue, ...)

... blastncbi(Seq, Program, ...'Alignments', AlignmentsValue, ...)

... blastncbi(Seq, Program, ...'Filter', FilterValue, ...)

... blastncbi(Seq, Program, ...'Expect', ExpectValue, ...)

... blastncbi(Seq, Program, ...'Word', WordValue, ...)

... blastncbi(Seq, Program, ...'Matrix', MatrixValue, ...)

... blastncbi(Seq, Program, ...'GapOpen', GapOpenValue, ...)

... blastncbi(Seq, Program, ...'ExtendGap', ExtendGapValue, ...)

... blastncbi(Seq, Program, ...'GapCosts', GapCostsValue, ...)

... blastncbi(Seq, Program, ...'Inclusion', InclusionValue, ...)

... blastncbi(Seq, Program, ...'Pct', PctValue, ...)

... blastncbi(Seq, Program, ...'Entrez', EntrezValue, ...)

Input Arguments

Seq Nucleotide or amino acid sequence specified by any of the
following:

• GenBank, GenPept, or RefSeq accession number
• GI sequence identifier
• FASTA file
• URL pointing to a sequence file
• String
• Character array

1 Alphabetical List

1-320

• MATLAB structure containing a Sequence field
Program String specifying a BLAST program. Choices are:

• 'blastn' — Search nucleotide query versus nucleotide
database.

• 'blastp' — Search protein query versus protein
database.

• 'blastx' — Search translated nucleotide query versus
protein database.

• 'megablast' — Quickly search for highly similar
nucleotide sequences.

• 'psiblast' — Search protein query using position-
specific iterative BLAST.

• 'tblastn' — Search protein query versus translated
nucleotide database.

• 'tblastx' — Search translated nucleotide query versus
translated nucleotide database.

DatabaseValue String specifying a database. Compatible databases depend
on the type of sequence specified by Seq, and the program
specified by Program.

For a list of database choices for nucleotide sequences
and amino acid sequences, see the lists in the section
“Description” on page 1-325.

DescriptionsValue Value specifying the number of short descriptions to
include in the report. Default is 100, unless Program =
'psiblast', then default is 500.

AlignmentsValue Value specifying the number of sequences for which high-
scoring segment pairs (HSPs) are reported. Default is 100,
unless Program = 'psiblast', then default is 500.

 blastncbi

1-321

FilterValue String specifying a filter. Possible choices are:

• 'L' (default) — Low complexity.
• 'R' — Human repeats.
• 'm' — Mask for lookup table.
• 'lcase' — Turn on the lowercase mask.

Choices vary depending on the selected Program. For more
information, see the table Choices for Optional Properties by
BLAST Program.

ExpectValue Value specifying the statistical significance threshold for
matches against database sequences. Choices are any real
number. Default is 10.

1 Alphabetical List

1-322

WordValue Value specifying a word length for the query sequence.

Choices for amino acid sequences are:

• 2

• 3 (default)

Choices for nucleotide sequences are:

• 7

• 11 (default)
• 15

Choices when Program = 'megablast' are:

• 11

• 12

• 16

• 20

• 24

• 28 (default)
• 32

• 48

• 64

MatrixValue String specifying the substitution matrix for amino acid
sequences only. The matrix assigns the score for a possible
alignment of any two amino acid residues. Choices are:

• 'PAM30'

• 'PAM70'

• 'BLOSUM45'

• 'BLOSUM62' (default)
• 'BLOSUM80'

 blastncbi

1-323

GapOpenValue Integer that specifies the penalty for opening a gap in the
alignment of amino acid sequences.

Choices and default depend on the substitution matrix
specified by the 'Matrix' property. For more information,
see the table Choices for the GapCosts Property by Matrix.

ExtendGapValue Integer that specifies the penalty for extending a gap in the
alignment of amino acid sequences.

Choices and default depend on the substitution matrix
specified by the 'Matrix' property. For more information,
see the table Choices for the GapCosts Property by Matrix.

GapCostsValue Vector containing two integers: the first is the penalty for
opening a gap, and the second is the penalty for extending
the gap, in the alignment of amino acid sequences.

Choices and default depend on the substitution matrix
specified by the 'Matrix' property. For more information,
see the table Choices for the GapCosts Property by Matrix.

InclusionValue Value specifying the statistical significance threshold for
including a sequence in the Position-Specific Scoring Matrix
(PSSM) created by PSI-BLAST for the subsequent iteration.
Default is 0.005.

Note: Specify an InclusionValue only when Program =
'psiblast'.

1 Alphabetical List

1-324

PctValue Value specifying the percent identity and the corresponding
match and mismatch score for matching existing sequences
in a public database. Choices are:

• None

• 99 (default) — 99, 1, -3
• 98 — 98, 1, -3
• 95 — 95, 1, -3
• 90 — 90, 1, -2
• 85 — 85, 1, -2
• 80 — 80, 2, -3
• 75 — 75, 4, -5
• 60 — 60, 1, -1

Note: Specify a PctValue only when Program =
'megablast'.

EntrezValue String specifying Entrez query syntax to search a subset of
the selected database.

Tip Use this property to limit searches based on molecule
types, sequence lengths, organisms, and so on.

Output Arguments

RID Request ID for the NCBI BLAST report.
RTOE Request Time Of Execution, which is an estimate of the time

(in minutes) until completion.

Tip Use this time estimate with the 'WaitTime' property
when using the getblast function.

 blastncbi

1-325

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online
databases.

blastncbi(Seq, Program) sends a BLAST request to NCBI against a Seq, a
nucleotide or amino acid sequence, using Program, a specified BLAST program, and then
returns a command window link to the NCBI BLAST report. For help in selecting an
appropriate BLAST program, visit:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

RID = blastncbi(Seq, Program) returns RID, the Request ID for the report.

[RID, RTOE] = blastncbi(Seq, Program) returns both RID, the Request ID for the
NCBI BLAST report, and RTOE, the Request Time Of Execution, which is an estimate of
the time until completion.

Tip Use RTOE with the 'WaitTime' property when using the getblast function.

... blastncbi(..., 'PropertyName', PropertyValue,...) calls blastncbi
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are
explained below. Additional information on these optional properties can be found at:

http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml

... blastncbi(Seq, Program, ...'Database', DatabaseValue, ...)

specifies a database for the alignment search. Compatible databases depend on the type
of sequence specified by Seq, and the program specified by Program.

Database choices for nucleotide sequences are:

• 'nr' (default)
• 'refseq_rna'

• 'refseq_genomic'

• 'est'

http://blast.ncbi.nlm.nih.gov/producttable.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml

1 Alphabetical List

1-326

• 'est_human'

• 'est_mouse'

• 'est_others'

• 'gss'

• 'htgs'

• 'pat'

• 'pdb'

• 'month'

• 'alu_repeats'

• 'dbsts'

• 'chromosome'

• 'wgs'

• 'env_nt'

Database choices for amino acid sequences are:

• 'nr' (default)
• 'refseq_protein'

• 'swissprot'

• 'pat'

• 'month'

• 'pdb'

• 'env_nr'

For help in selecting an appropriate database, visit:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

... blastncbi(Seq, Program, ...'Descriptions',

DescriptionsValue, ...) specifies the number of short descriptions to include in the
report, when you do not specify return values.

... blastncbi(Seq, Program, ...'Alignments', AlignmentsValue, ...)

specifies the number of sequences for which high-scoring segment pairs (HSPs) are
reported, when you do not specify return values.

http://blast.ncbi.nlm.nih.gov/producttable.shtml

 blastncbi

1-327

... blastncbi(Seq, Program, ...'Filter', FilterValue, ...) specifies the
filter to apply to the query sequence.

... blastncbi(Seq, Program, ...'Expect', ExpectValue, ...) specifies a
statistical significance threshold for matches against database sequences. Choices are
any real number. Default is 10. You can learn more about the statistics of local sequence
comparison at:

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2

... blastncbi(Seq, Program, ...'Word', WordValue, ...) specifies a word
size for the query sequence.

... blastncbi(Seq, Program, ...'Matrix', MatrixValue, ...) specifies the
substitution matrix for amino acid sequences only. This matrix assigns the score for a
possible alignment of two amino acid residues.

... blastncbi(Seq, Program, ...'GapOpen', GapOpenValue, ...) specifies
the penalty for opening a gap in the alignment of amino acid sequences. Choices and
default depend on the substitution matrix specified by the 'Matrix' property. For more
information, see the table Choices for the GapCosts Property by Matrix.

For more information about allowed gap penalties for various matrices, see:

http://blast.ncbi.nlm.nih.gov/html/sub_matrix.html

... blastncbi(Seq, Program, ...'ExtendGap', ExtendGapValue, ...)

specifies the penalty for extending a gap greater than one space in the alignment of
amino acid sequences. Choices and default depend on the substitution matrix specified
by the 'Matrix' property. For more information, see the table Choices for the GapCosts
Property by Matrix.

... blastncbi(Seq, Program, ...'GapCosts', GapCostsValue, ...)

specifies the penalty for opening and extending a gap in the alignment of amino acid
sequences. GapCostsValue is a vector containing two integers: the first is the penalty
for opening a gap, and the second is the penalty for extending the gap. Choices and
default depend on the substitution matrix specified by the 'Matrix' property. For more
information, see the table Choices for the GapCosts Property by Matrix.

... blastncbi(Seq, Program, ...'Inclusion', InclusionValue, ...)

specifies the statistical significance threshold for including a sequence in the Position-

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2
http://blast.ncbi.nlm.nih.gov/html/sub_matrix.html

1 Alphabetical List

1-328

Specific Scoring Matrix (PSSM) created by PSI-BLAST for the subsequent iteration.
Default is 0.005.

Note: Specify an InclusionValue only when Program = 'psiblast'.

... blastncbi(Seq, Program, ...'Pct', PctValue, ...) specifies the
percent identity and the corresponding match and mismatch score for matching existing
sequences in a public database. Default is 99.

Note: Specify a PctValue only when Program = 'megablast'.

... blastncbi(Seq, Program, ...'Entrez', EntrezValue, ...) specifies
Entrez query syntax to search a subset of the selected database.

Note: For more information about Entrez query syntax, see:
http://www.ncbi.nlm.nih.gov/books/NBK3837/

Tip Use this property to limit searches based on molecule types, sequence lengths,
organisms, and so on. For more information on limiting searches, see:

http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml#entrez_query

http://www.ncbi.nlm.nih.gov/books/NBK3837/
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml#entrez_query

 blastncbi

1-329

C
ho

ic
es

 f
or

 O
p
tio

na
l P

ro
p
er

tie
s

b
y

BL
A

ST
 P

ro
g
ra

m

Th
en

 c
ho

ic
es

 f
or

 t
he

 f
ol

lo
w

in
g
 p

ro
p
er

tie
s

a
re

..
.

W
he

n
BL

A
ST

p
ro

g
ra

m
 is

..
.

D
a
ta

b
a
se

Fi
lte

r
W

or
d

M
a
tr

ix
G

a
p
C

os
ts

Pc
t

'
b
l
a
s
t
n
'

'
L
'

 (d
ef

au
lt)

'
R
'

'
m
'

'
l
c
a
s
e
'

7 1
1 (d
ef

au
lt)

1
5

—

'
m
e
g
a
b
l
a
s
t
'

'
L
'

1
1

1
2

1
6

2
0

2
4

2
8 (d
ef

au
lt)

3
2

4
8

6
4

—
—

N
o
n
e

9
9 (d
ef

au
lt)

9
8

9
5

9
0

8
5

8
0

7
5

6
0

'
t
b
l
a
s
t
n
'

'
L
'

 (d
ef

au
lt)

'
m
'

'
l
c
a
s
e
'

'
t
b
l
a
s
t
x
'

'
n
r
'

 (d
ef

au
lt)

'
e
s
t
'

'
e
s
t
_
h
u
m
a
n
'

'
e
s
t
_
m
o
u
s
e
'

'
e
s
t
_
o
t
h
e
r
s
'

'
g
s
s
'

'
h
t
g
s
'

'
p
a
t
'

'
p
d
b
'

'
m
o
n
t
h
'

'
a
l
u
_
r
e
p
e
a
t
s
'

'
d
b
s
t
s
'

'
c
h
r
o
m
o
s
o
m
e
'

'
w
g
s
'

'
r
e
f
s
e
q
_
r
n
a
'

'
r
e
f
s
e
q
_
g
e
n
o
m
i
c
'

'
e
n
v
_
n
t
'

'
L
'

 (d
ef

au
lt)

'
R
'

'
m
'

'
l
c
a
s
e
'

'
b
l
a
s
t
p
'

'
b
l
a
s
t
x
'

'
p
s
i
b
l
a
s
t
'

'
n
r
'

 (d
ef

au
lt)

'
s
w
i
s
s
p
r
o
t
'

'
p
a
t
'

'
p
d
b
'

'
m
o
n
t
h
'

'
r
e
f
s
e
q
_
p
r
o
t
e
i
n
'

'
e
n
v
_
n
r
'

'
L
'

 (d
ef

au
lt)

'
m
'

'
l
c
a
s
e
'

2 3
 (d

ef
au

lt)
'
P
A
M
3
0
'

'
P
A
M
7
0
'

'
B
L
O
S
U
M
4
5
'

'
B
L
O
S
U
M
6
2
'

 (d
ef

au
lt)

'
B
L
O
S
U
M
8
0
'

Se
e

th
e

ne
xt

ta
bl

e.
—

1 Alphabetical List

1-330

Choices for the GapCosts Property by Matrix

When substitution matrix is... Then choices for GapCosts are...

'PAM30' [7 2]

[6 2]

[5 2]

[10 1]

[9 1] (default)
[8 1]

'PAM70'

'BLOSUM80'

[8 2]

[7 2]

[6 2]

[11 1]

[10 1] (default)
[9 1]

'BLOSUM45' [13 3]

[12 3]

[11 3]

[10 3]

[15 2] (default)
[14 2]

[13 2]

[12 2]

[19 1]

[18 1]

[17 1]

[16 1]

'BLOSUM62' [9 2]

[8 2]

[7 2]

[12 1]

[11 1] (default)
[10 1]

Examples

% Get a sequence from the Protein Data Bank and create

 blastncbi

1-331

% a MATLAB structure.

S = getpdb('1CIV')

% Use the structure as input for a BLAST search with an

% expectation of 1e-10.

blastncbi(S,'blastp','expect',1e-10)

% Click the URL link (Link to NCBI BLAST Request) to go

% directly to the NCBI request.

% You can also perform a typical BLAST protein search directly

% with an accession number and an alternative scoring matrix.

RID = blastncbi('AAA59174','blastp','matrix','PAM70',...

 'expect',1e-10)

% You can pass the RID to GETBLAST to parse the report and

% load it into a MATLAB structure.

Struct = getblast(RID)

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

See Also
blastformat | blastlocal | blastread | blastreadlocal | getblast

1 Alphabetical List

1-332

blastread
Read data from NCBI BLAST report file

Syntax

Data = blastread(BLASTReport)

Input Arguments

BLASTReport NCBI BLAST-formatted report specified by any of the following:

• File name or path and file name, such as returned by the
getblast function with the 'ToFile' property.

• URL pointing to an NCBI BLAST report.
• MATLAB character array that contains the text for an NCBI

BLAST report.

If you specify only a file name, that file must be on the
MATLAB search path or in the MATLAB Current Folder.

Output Arguments

Data MATLAB structure or array of structures (if multiple query
sequences) containing fields corresponding to BLAST keywords and
data from an NCBI BLAST report.

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online
databases. BLAST reports can be lengthy, and parsing the data from the various formats
can be cumbersome.

 blastread

1-333

Data = blastread(BLASTReport) reads a BLAST report from BLASTReport, an
NCBI-formatted report, and returns Data, a MATLAB structure or array of structures
(if multiple query sequences) containing fields corresponding to the BLAST keywords.
blastread parses the basic BLAST reports BLASTN, BLASTP, BLASTX, TBLASTN, and
TBLASTX.

Data contains the following fields.

Field Description

RID Request ID for retrieving results for a specific
NCBI BLAST search.

Algorithm NCBI algorithm used to do a BLAST search.
Query Identifier of the query sequence submitted to a

BLAST search.
Database All databases searched.
Hits.Name Name of a database sequence (subject sequence)

that matched the query sequence.
Hits.Length Length of a subject sequence.
Hits.HSPs.Score Pairwise alignment score for a high-scoring

sequence pair between the query sequence and a
subject sequence.

Hits.HSPs.Expect Expectation value for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Hits.HSPs.Identities Identities (match, possible, and percent) for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Positives Identical or similar residues (match, possible,
and percent) for a high-scoring sequence pair
between the query sequence and a subject amino
acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences and/or
databases.

1 Alphabetical List

1-334

Field Description

Hits.HSPs.Gaps Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits.HSPs.Frame Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair between
the query sequence and a subject sequence.

Note: This field applies only when performing
translated searches, that is, when using tblastx,
tblastn, and blastx.

Hits.HSPs.Strand Sense (Plus = 5' to 3' and Minus = 3' to 5') of
the DNA strands for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits.HSPs.Alignment Three-row matrix showing the alignment for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.QueryIndices Indices of the query sequence residue positions for
a high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.SubjectIndices Indices of the subject sequence residue positions
for a high-scoring sequence pair between the query
sequence and a subject sequence.

Statistics Summary of statistical details about the
performed search, such as lambda values, gap
penalties, number of sequences searched, and
number of hits.

 blastread

1-335

Examples

1 Create an NCBI BLAST report request using a GenPept accession number.

RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)

RID =

 '1175088155-31624-126008617054.BLASTQ3'

2 Pass the Request ID for the report to the getblast function, and save the report
data to a text file.

getblast(RID, 'ToFile' ,'AAA59174_BLAST.rpt');

Note: You may need to wait for the report to become available on the NCBI Web site
before you can run the preceding command.

3 Using the saved file, read the results into a MATLAB structure.

resultsStruct = blastread('AAA59174_BLAST.rpt')

resultsStruct =

 RID: '1175093446-29831-201366571074.BLASTQ2'

 Algorithm: 'BLASTP 2.2.16 [Mar-11-2007]'

 Query: [1x63 char]

 Database: [1x96 char]

 Hits: [1x50 struct]

 Statistics: [1x1034 char]

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

For more information about reading and interpreting NCBI BLAST reports, see:

1 Alphabetical List

1-336

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

See Also
blastformat | blastlocal | blastncbi | blastreadlocal | getblast

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

 blastreadlocal

1-337

blastreadlocal
Read data from local BLAST report

Syntax

Data = blastreadlocal(BLASTReport, Format)

Input Arguments

BLASTReport BLAST report specified by any of the following:

• File name or path and file name of a locally created BLAST
report file, such as returned by the blastlocal function with
the 'ToFile' property.

• MATLAB character array that contains the text for a local
BLAST report.

If you specify only a file name, that file must be on the MATLAB
search path or in the current folder.

Format Integer specifying the alignment format used to create
BLASTReport. Choices are:

• 0 — Pairwise
• 1 — Query-anchored, showing identities
• 2 — Query-anchored, no identities
• 3 — Flat query-anchored, showing identities
• 4 — Flat query-anchored, no identities
• 5 — Query-anchored, no identities and blunt ends
• 6 — Flat query-anchored, no identities and blunt ends
• 7 — Not used
• 8 — Tabular
• 9 — Tabular with comment lines

1 Alphabetical List

1-338

Output Arguments

Data MATLAB structure or array of structures (if multiple query
sequences) containing fields corresponding to BLAST keywords and
data from a local BLAST report.

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online and local
databases. BLAST reports can be lengthy, and parsing the data from the various formats
can be cumbersome.

Data = blastreadlocal(BLASTReport, Format) reads BLASTReport, a locally
created BLAST report file, and returns Data, a MATLAB structure or array of structures
(if multiple query sequences) containing fields corresponding to BLAST keywords and
data from a local BLAST report. Format is an integer specifying the alignment format
used to create BLASTReport.

Note: The function assumes the BLAST report was produced using version 2.2.17 of the
blastall executable.

Data contains a subset of the following fields, based on the specified alignment format.

Field Description

Algorithm NCBI algorithm used to do a BLAST
search.

Query Identifier of the query sequence submitted
to a BLAST search.

Length Length of the query sequence.
Database All databases searched.
Hits.Name Name of a database sequence (subject

sequence) that matched the query
sequence.

 blastreadlocal

1-339

Field Description

Hits.Score Alignment score between the query
sequence and the subject sequence.

Hits.Expect Expectation value for the alignment
between the query sequence and the
subject sequence.

Hits.Length Length of a subject sequence.
Hits.HSPs.Score Pairwise alignment score for a high-scoring

sequence pair between the query sequence
and a subject sequence.

Hits.HSPs.Expect Expectation value for a high-scoring
sequence pair between the query sequence
and a subject sequence.

Hits.HSPs.Identities Identities (match, possible, and percent) for
a high-scoring sequence pair between the
query sequence and a subject sequence.

Hits.HSPs.Positives Identical or similar residues (match,
possible, and percent) for a high-scoring
sequence pair between the query sequence
and a subject amino acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences
and/or databases.

Hits.HSPs.Gaps Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Hits.HSPs.Mismatches Residues that are not similar to each other
(match, possible, and percent) for a high-
scoring sequence pair between the query
sequence and a subject sequence.

1 Alphabetical List

1-340

Field Description

Hits.HSPs.Frame Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Note: This field applies only when
performing translated searches, that
is, when using tblastx, tblastn, and
blastx.

Hits.HSPs.Strand Sense (Plus = 5' to 3' and Minus = 3' to
5') of the DNA strands for a high-scoring
sequence pair between the query sequence
and a subject sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits.HSPs.Alignment Three-row matrix showing the alignment
for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits.HSPs.QueryIndices Indices of the query sequence residue
positions for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Hits.HSPs.SubjectIndices Indices of the subject sequence residue
positions for a high-scoring sequence pair
between the query sequence and a subject
sequence.

Hits.HSPs.AlignmentLength Length of the pairwise alignment for a
high-scoring sequence pair between the
query sequence and a subject sequence.

Alignment Entire alignment for the query sequence
and the subject sequence(s).

 blastreadlocal

1-341

Field Description

Statistics Summary of statistical details about
the performed search, such as lambda
values, gap penalties, number of sequences
searched, and number of hits.

Examples

The following examples assume you have a FASTA nucleotide file for E. coli, such as
the file NC_004431.fna, which you can download from ftp://ftp.ncbi.nih.gov/genomes/
Bacteria/, saved to your MATLAB current folder.

Reading Data Using a Tabular Alignment Format

1 Create a local blastable database from the NC_004431.fna FASTA file.

blastformat('inputdb', 'NC_004431.fna', 'protein', 'false');

2 Use the getgenbank function to retrieve two sequences from the GenBank
database.

S1 = getgenbank('M28570.1');

S2 = getgenbank('M12565');

3 Create a query file by using the fastawrite function to create a FASTA file named
query_multi_nt.fa from these two sequences, using the only accession number as
the header.

Seqs(1).Header = S1.Accession;

Seqs(1).Sequence = S1.Sequence;

Seqs(2).Header = S2.Accession;

Seqs(2).Sequence = S2.Sequence;

fastawrite('query_multi_nt.fa', Seqs);

4 Submit the query sequences in the query_multi_nt.fa FASTA file for a BLAST
search of the local nucleotide database NC_004431.fna. Specify the BLAST
program blastn and a tabular alignment format. Save the contents of the BLAST
report to a file named myecoli_nt8.txt, and then read the local BLAST report.

blastlocal('inputquery', 'query_multi_nt.fa',...

 'database', 'NC_004431.fna',...

 'tofile', 'myecoli_nt8.txt', 'program', 'blastn',...

 'format', 8);

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

1 Alphabetical List

1-342

blastreadlocal('myecoli_nt8.txt', 8);

Reading Data Using a Query Anchored Format

1 If you have not already done so, create a local blastable database and a query file as
described in steps 1 through 3 in Reading Data Using a Tabular Alignment Format.

2 Submit the query sequences in the query_multi_nt.fa FASTA file for a BLAST
search of the local nucleotide database NC_004431.fna. Specify the BLAST
program blastn and a query-anchored format. Save the contents of the BLAST
report to a file named myecoli_nt1.txt, and then read the local BLAST report,
saving the results in results, an array of structures.

blastlocal('inputquery', 'query_multi_nt.fa',...

 'database', 'NC_004431.fna',...

 'tofile', 'myecoli_nt1.txt', 'program', 'blastn',...

 'format', 1);

results = blastreadlocal('myecoli_nt1.txt', 1);

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

For more information about reading and interpreting BLAST reports, see:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

See Also
blastformat | blastlocal | blastncbi | blastread | getblast

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

 blosum

1-343

blosum
Return BLOSUM scoring matrix

Syntax

Matrix = blosum(Identity)

[Matrix, MatrixInfo] = blosum(Identity)

... = blosum(Identity, ...'Extended', ExtendedValue, ...)

... = blosum(Identity, ...'Order', OrderValue, ...)

Input Arguments

Identity Scalar specifying a percent identity level. Choices are:

• Values from 30 to 90 in increments of 5
• 62

• 100

ExtendedValue Controls the listing of extended amino acid codes. Choices are
true (default) or false.

OrderValue Character string of legal amino acid characters that specifies
the order amino acids are listed in the matrix. The length of the
character string must be 20 or 24.

Output Arguments

Matrix BLOSUM (Blocks Substitution Matrix) scoring matrix with a
specified percent identity.

MatrixInfo Structure of information about Matrix containing the following
fields:

• Name

• Scale

1 Alphabetical List

1-344

• Entropy

• ExpectedScore

• HighestScore

• LowestScore

• Order

Description

Matrix = blosum(Identity) returns a BLOSUM (Blocks Substitution Matrix)
scoring matrix with a specified percent identity. The default ordering of the output
includes the extended characters B, Z, X, and *.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

[Matrix, MatrixInfo] = blosum(Identity) returns MatrixInfo, a structure
of information about Matrix, a BLOSUM matrix. MatrixInfo contains the following
fields:

• Name

• Scale

• Entropy

• ExpectedScore

• HighestScore

• LowestScore

• Order

... = blosum(Identity, ...'PropertyName', PropertyValue, ...) calls
blosum with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = blosum(Identity, ...'Extended', ExtendedValue, ...) controls
the listing of extended amino acid codes. Choices are true (default) or false. If
ExtendedValue is false, returns the scoring matrix for the standard 20 amino acids.
Ordering of the output when ExtendedValue is false is

 blosum

1-345

A R N D C Q E G H I L K M F P S T W Y V

... = blosum(Identity, ...'Order', OrderValue, ...) returns a BLOSUM
matrix ordered by OrderValue, a character string of legal amino acid characters that
specifies the order amino acids are listed in the matrix. The length of the character string
must be 20 or 24.

Examples

Return a BLOSUM matrix with a percent identity level of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75,'Order','CSTPAGNDEQHRKMILVFYW')

See Also
dayhoff | gonnet | localalign | nuc44 | nwalign | pam | swalign

1 Alphabetical List

1-346

bowtie
Map short reads to reference sequence using Burrows-Wheeler transform

Syntax

bowtie(indexBaseName,reads,outputFileName)

bowtie(indexBaseName,reads,outputFileName,Name,Value)

Description

bowtie(indexBaseName,reads,outputFileName) aligns the reads specified in
reads to the indexed reference specified by indexBaseName, and writes the results to
the BAM-formatted file outputFileName.

Note: bowtie runs on Mac and UNIX® platforms only.

bowtie(indexBaseName,reads,outputFileName,Name,Value) aligns reads using
additional options specified by one or more name-value pair arguments.

Examples

Align Short Reads

Download the E. coli genome from NCBI.

getgenbank('NC_008253','tofile','NC_008253.fna','SequenceOnly',true)

Built a Bowtie index with the base name ECOLI.

bowtiebuild('NC_008253.fna','ECOLI')

Find the path to the example FASTQ file ecoli100.fq, which has E. Coli short reads.

fastqfile = which('ecoli100.fq')

 bowtie

1-347

Align the short reads in ecoli100.fq to the built index with base name ECOLI.

bowtie('ECOLI',fastqfile,'ecoli100.bam')

Access the mapped reads using BioMap.

bm = BioMap('ecoli100.bam')

bm =

BioMap with properties:

 SequenceDictionary: {'gi|110640213|ref|NC_008253.1|'}

 Reference: [73x1 File indexed property]

 Signature: [73x1 File indexed property]

 Start: [73x1 File indexed property]

 MappingQuality: [73x1 File indexed property]

 Flag: [73x1 File indexed property]

 MatePosition: [73x1 File indexed property]

 Quality: [73x1 File indexed property]

 Sequence: [73x1 File indexed property]

 Header: [73x1 File indexed property]

 NSeqs: 73

 Name: ''

Input Arguments

indexBaseName — Name of indexed reference file
string

Name of indexed reference file for short read alignment, specified as a string containing
the path and base name of the Bowtie index file.

reads — Short reads to align
string | cell array of strings

Short reads to align to the indexed reference, specified as a string or cell array of strings
indicating one or more FASTQ formatted files with the input reads.

outputFileName — Name for output file
string

1 Alphabetical List

1-348

Name for output file containing the results of the short read alignment, specified as a
string. By default, the output file is BAM-formatted, and bowtie automatically adds the
.bam extension if it is missing from the file name.

To specify a SAM-formatted output file, use the name-value pair argument
BamFileOutput,false. In this case, bowtie automatically adds the .sam extension if
it is missing from the file name.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'BamFileOutput',false,'Paired',true specifies the output file is SAM-
formatted, and bowtie performs pair-read alignment.

'BamFileOutput' — Indicator for output file format
true (default) | false

Indicator for the output file format, specified as the comma-separated pair consisting of
'BamFileOutput' and either true or false.

• If true (the default), then the output file is BAM-formatted, with a .bam extension.
• If false, then the output file is SAM-formatted, with a .sam extension.

bowtie automatically adds the corresponding file extension if it is missing from the
input argument outputFileName.

Example: 'BamFileOutput',false

Data Types: logical

'Paired' — Indicator for paired-read alignment performance
false (default) | true

Indicator for paired-read alignment performance, specified as the comma-separated pair
consisting of 'Paired' and either true or false (the default). If false, then bowtie
performs paired-read alignment using the odd elements in reads as the upstream mates
and the even elements in reads as the downstream mates.
Example: 'Paired',true

 bowtie

1-349

Data Types: logical

'BowtieOptions' — Additional bowtie options
valid bowtie option

Additional bowtie options, specified as the comma-separated pair consisting of
'BowtieOptions' and any valid bowtie option. Type bowtie('--help') for
available options.
Example: 'BowtieOptions','-k 5'

More About

Tips

• More information on the Bowtie algorithm (Version 0.12.7) can be found at http://
bowtie-bio.sourceforge.net/index.shtml.

• Some prebuilt index files for model organisms can be downloaded directly from the
Bowtie repository.

See Also
baminfo | BioMap | bowtiebuild | fastainfo | fastqinfo | saminfo | samread

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml

1 Alphabetical List

1-350

bowtiebuild
Generate index using Burrows-Wheeler transform

Syntax

bowtiebuild(input,indexBaseName)

bowtiebuild(input,indexBaseName,'BowtieBuildOptions',options)

Description

bowtiebuild(input,indexBaseName) builds an index using the reference sequence(s)
in input, and saves it to the index file indexBaseName.

Note: bowtiebuild runs on Mac and UNIX platforms only.

bowtiebuild(input,indexBaseName,'BowtieBuildOptions',options) specifies
additional options.

Examples

Build a Bowtie Index

Download the E. coli genome from NCBI.

getgenbank('NC_008253','tofile','NC_008253.fna','SequenceOnly',true)

Built a Bowtie index with the base name ECOLI.

bowtiebuild('NC_008253.fna','ECOLI')

Input Arguments

input — FASTA-formatted files
string | cell array of strings

 bowtiebuild

1-351

FASTA-formatted files with the reference sequences to be indexed, specified as a string
or cell array of strings. Use a cell array of strings to specify multiple files.

indexBaseName — Name for indexed reference file
string

Name for indexed reference file, specified as a string containing the path and base name
for the resulting Bowtie index file.

options — Additional bowtiebuild options
valid bowtiebuild option

Additional bowtiebuild options, specified as any valid bowtiebuild option. Type
bowtiebuild('--help') for available options.

More About

Tips

• More information on the Bowtie algorithm (Version 0.12.7) can be found at http://
bowtie-bio.sourceforge.net/index.shtml.

• Some prebuilt index files for model organisms can be downloaded directly from the
Bowtie repository.

See Also
baminfo | BioMap | bowtie | fastainfo | fastqinfo | saminfo | samread

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml

1 Alphabetical List

1-352

celintensityread
Read probe intensities from Affymetrix CEL files

Syntax

ProbeStructure = celintensityread(CELFiles, CDFFile)

ProbeStructure = celintensityread(..., 'CELPath', CELPathValue, ...)

ProbeStructure = celintensityread(..., 'CDFPath', CDFPathValue, ...)

ProbeStructure = celintensityread(..., 'PMOnly', PMOnlyValue, ...)

ProbeStructure = celintensityread(..., 'Verbose', VerboseValue, ...)

Input Arguments

CELFiles Any of the following:

• String specifying a single CEL file name.
• '*', which reads all CEL files in the current folder.
• ' ', which opens the Select CEL Files dialog box from which

you select the CEL files. From this dialog box, you can press
and hold Ctrl or Shift while clicking to select multiple CEL
files.

• Cell array of CEL file names.
CDFFile Either of the following:

• String specifying a CDF file name.
• ' ', which opens the Select CDF File dialog box from which

you select the CDF file.
CELPathValue String specifying the path and folder where the files specified in

CELFiles are stored.
CDFPathValue String specifying the path and folder where the file specified in

CDFFile is stored.
PMOnlyValue Property to include or exclude the mismatch (MM) probe

intensity values in the returned structure. Enter true to return

 celintensityread

1-353

only perfect match (PM) probe intensities. Enter false to
return both PM and MM probe intensities. Default is true.

VerboseValue Controls the display of a progress report showing the name of
each CEL file as it is read. When VerboseValue is false, no
progress report is displayed. Default is true.

Output Arguments
ProbeStructure MATLAB structure containing information from the CEL files,

including probe intensities, probe indices, and probe set IDs.

Description
ProbeStructure = celintensityread(CELFiles, CDFFile) reads the
specified Affymetrix CEL files and the associated CDF library file (created from
Affymetrix GeneChip arrays for expression or genotyping assays), and then creates
ProbeStructure, a structure containing information from the CEL files, including
probe intensities, probe indices, and probe set IDs. CELFiles is a string or cell array of
CEL file names. CDFFile is a string specifying a CDF file name.

If you set CELFiles to '*', then it reads all CEL files in the current folder. If you set
CELFiles to ' ', then it opens the Select CEL Files dialog box from which you select the
CEL files. From this dialog box, you can press and hold Ctrl or Shift while clicking to
select multiple CEL files.

If you set CDFFile to ' ', then it opens the Select CDF File dialog box from which you
select the CDF file.

ProbeStructure = celintensityread(..., 'PropertyName',

PropertyValue, ...) calls celintensityread with optional properties that use
property name/property value pairs. You can specify one or more properties in any order.
Each PropertyName must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

ProbeStructure = celintensityread(..., 'CELPath', CELPathValue, ...)

specifies a path and folder where the files specified by CELFiles are stored.

ProbeStructure = celintensityread(..., 'CDFPath', CDFPathValue, ...)

specifies a path and folder where the file specified by CDFFile is stored.

1 Alphabetical List

1-354

ProbeStructure = celintensityread(..., 'PMOnly', PMOnlyValue, ...)

includes or excludes the mismatch (MM) probe intensity values. When PMOnlyValue
is true, celintensityread returns only perfect match (PM) probe intensities.
When PMOnlyValue is false, celintensityread returns both PM and MM probe
intensities. Default is true.

You can learn more about the Affymetrix CEL files and download sample files from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note: Some Affymetrix CEL files are combined with other data files in a DTT or CAB
file. You must download and use the Affymetrix Data Transfer Tool to extract these files
from the DTT or CAB file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

You will have to register and log in at the Affymetrix Web site to download the
Affymetrix Data Transfer Tool.

Tip Reading a large number of CEL files and/or a large CEL file can require extended
amounts of memory from the operating system. If you receive any errors related to
memory or have trouble reading CEL files, try the following:

• Increase the virtual memory (swap space) for your operating system (with a
recommended initial size of 3,069 and a maximum size of 16,368) as described in
“Memory Usage”.

• Set the 3 GB switch (32-bit Windows® XP only) as described in “Memory Usage”.

ProbeStructure contains the following fields.

Field Description

CDFName File name of the Affymetrix CDF library file.
CELNames Cell array of names of the Affymetrix CEL files.
NumChips Number of CEL files read into the structure.
NumProbeSets Number of probe sets in each CEL file.
NumProbes Number of probes in each CEL file.

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

 celintensityread

1-355

Field Description

ProbeSetIDs Cell array of the probe set IDs from the Affymetrix CDF
library file.

ProbeIndices Column vector containing probe indexing information.
Probes within a probe set are numbered 0 through N - 1,
where N is the number of probes in the probe set.

GroupNumbers Column vector containing group numbers for probes within
the probe set. For gene expression data, the group number
for all probes is 1. For SNP (genotyping) data, the group
numbers for probes are:

• 1 — Allele A – (sense)
• 2 — Allele B – (sense)
• 3 — Allele A + (antisense)
• 4 — Allele B + (antisense)

PMIntensities Matrix containing perfect match (PM) probe intensity
values. Each row corresponds to a probe, and each column
corresponds to a CEL file. The rows are ordered the same
way as in ProbeIndices, and the columns are ordered the
same way as in the CELFiles input argument.

MMIntensities (optional) Matrix containing mismatch (MM) probe intensity values.
Each row corresponds to a probe, and each column
corresponds to a CEL file. The rows are ordered the same
way as in ProbeIndices, and the columns are ordered the
same way as in the CELFiles input argument.

ProbeStructure = celintensityread(..., 'Verbose', VerboseValue, ...)

controls the display of a progress report showing the name of each CEL file as it is read.
When VerboseValue is false, no progress report is displayed. Default is true.

Examples

The following example assumes that you have the HG_U95Av2.CDF library file stored
at D:\Affymetrix\LibFiles\HGGenome, and that your current folder points to a
location containing CEL files associated with this CDF library file. In this example, the
celintensityread function reads all the CEL files in the current folder and a CDF file

1 Alphabetical List

1-356

in a specified folder. The next command line uses the rmabackadj function to perform
background adjustment on the PM probe intensities in the PMIntensities field of
PMProbeStructure.

PMProbeStructure = celintensityread('*', 'HG_U95Av2.CDF',...

 'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');

BackAdjustedMatrix = rmabackadj(PMProbeStructure.PMIntensities);

The following example lets you select CEL files and a CDF file to read using Open File
dialog boxes:

PMProbeStructure = celintensityread(' ', ' ');

See Also
affygcrma | affyinvarsetnorm | affyprobeseqread | affyread | affyrma
| affysnpintensitysplit | agferead | gcrma | gcrmabackadj | gprread
| ilmnbsread | probelibraryinfo | probesetlink | probesetlookup |
probesetplot | probesetvalues | rmabackadj | rmasummary | sptread

 cghcbs

1-357

cghcbs
Perform circular binary segmentation (CBS) on array-based comparative genomic
hybridization (aCGH) data

Syntax

SegmentStruct = cghcbs(CGHData)

SegmentStruct = cghcbs(CGHData, ...'Alpha', AlphaValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Permutations',

PermutationsValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Method', MethodValue, ...)

SegmentStruct = cghcbs(CGHData, ...'StoppingRule',

StoppingRuleValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Smooth', SmoothValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Prune', PruneValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Errsum', ErrsumValue, ...)

SegmentStruct = cghcbs(CGHData, ...'WindowSize',

WindowSizeValue, ...)

SegmentStruct = cghcbs(CGHData, ...'SampleIndex',

SampleIndexValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Chromosome',

ChromosomeValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Showplot', ShowplotValue, ...)

SegmentStruct = cghcbs(CGHData, ...'Verbose', VerboseValue, ...)

Input Arguments

CGHData Array-based comparative genomic hybridization (aCGH) data
in either of the following forms:

• Structure with the following fields:

• Sample — Cell array of strings containing the sample
names (optional).

• Chromosome — Vector containing the chromosome
numbers on which the clones are located.

1 Alphabetical List

1-358

• GenomicPosition — Vector containing the genomic
positions (in any unit) to which the clones are mapped.

• Log2Ratio — Matrix containing log2 ratio of test to
reference signal intensity for each clone. Each row
corresponds to a clone, and each column corresponds to
a sample.

• Matrix in which each row corresponds to a clone. The first
column contains the chromosome number, the second
column contains the genomic position, and the remaining
columns each contain the log2 ratio of test to reference
signal intensity for a sample.

AlphaValue Scalar that specifies the significance level for the statistical
tests to accept change points. Default is 0.01.

PermutationsValue Scalar that specifies the number of permutations used for p-
value estimation. Default is 10,000.

MethodValue String that specifies the method to estimate the p-values.
Choices are 'Perm' or 'Hybrid' (default). 'Perm' does
a full permutation, while 'Hybrid' uses a faster, tail
probability-based permutation. When using the 'Hybrid'
method, the 'Perm' method is applied automatically when
segment data length becomes less than 200.

StoppingRuleValue Controls the use of a heuristic stopping rule, based on the
method described by Venkatraman and Olshen (2007),
to declare a change without performing the full number
of permutations for the p-value estimation, whenever it
becomes very likely that a change has been detected. Choices
are true or false (default).

Tip Set this property to true to increase processing speed.
Set this property to false to maximize accuracy.

SmoothValue Controls the smoothing of outliers before segmenting using
the procedure explained by Olshen et al. (2004). Choices are
true (default) or false.

 cghcbs

1-359

PruneValue Controls the elimination of change points identified due to
local trends in the data that are not indicative of real copy
number change, using the procedure explained by Olshen et
al. (2004). Choices are true or false (default).

ErrsumValue Scalar that specifies the allowed proportional increase in the
error sum of squares when eliminating change points using
the 'Prune' property. Commonly used values are 0.05 and
0.1. Default is 0.05.

WindowSizeValue Scalar that specifies the size of the window (in data points)
used to divide the data when using the 'Perm' method on
large data sets. Default is 200.

SampleIndexValue A single sample index or a vector of sample indices that
specify the sample(s) to analyze. Default is all sample indices.

ChromosomeValue A single chromosome number or a vector of chromosome
numbers that specify the data to analyze. Default is all
chromosome numbers.

ShowplotValue Controls the display of plots of the segment means over the
original data. Choices are either:

• true — All chromosomes in all samples are plotted. If
there are multiple samples in CGHData, then each sample
is plotted in a separate Figure window.

• false — No plot.
• W — The layout displays all chromosomes in the whole

genome in one plot in the Figure window.
• S — The layout displays each chromosome in a subplot in

the Figure window.
• I — An integer specifying only one of the chromosomes in

CGHData to be plotted.

Default is:

• false — When return values are specified.
• true and W — When return values are not specified.

VerboseValue Controls the display of a progress report of the analysis.
Choices are true (default) or false.

1 Alphabetical List

1-360

Output Arguments

SegmentStruct Structure containing segmentation information in the
following fields:

• Sample — Sample name from CGHData input argument. If
the input argument does not include sample names, then
sample names are assigned as Sample1, Sample2, and so
forth.

• SegmentData — Structure array containing segment data
for the sample in the following fields:

• Chromosome — Chromosome number on which the
segment is located.

• Start — Genomic position at the start of the segment
(in the same units as used for the CGHData input).

• End — Genomic position at the end of the segment (in
the same units as used for the CGHData input).

• Mean — Mean value of the log2 ratio of the test to
reference signal intensity for the segment.

Description

SegmentStruct = cghcbs(CGHData) performs circular binary segmentation (CBS)
on array-based comparative genomic hybridization (aCGH) data to determine the copy
number alteration segments (neighboring regions of DNA that exhibit a statistical
difference in copy number) and change points.

Note: The CBS algorithm recursively splits chromosomes into segments based on a
maximum t statistic estimated by permutation. This computation can be time consuming.
If n = number of data points, then computation time ~ O(n2).

SegmentStruct = cghcbs(CGHData, ...'PropertyName',

PropertyValue, ...) calls cghcbs with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each

 cghcbs

1-361

PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

SegmentStruct = cghcbs(CGHData, ...'Alpha', AlphaValue, ...) specifies
the significance level for the statistical tests to accept change points. Default is 0.01.

SegmentStruct = cghcbs(CGHData, ...'Permutations',

PermutationsValue, ...) specifies the number of permutations used for p-value
estimation. Default is 10,000.

SegmentStruct = cghcbs(CGHData, ...'Method', MethodValue, ...)

specifies the method to estimate the p-values. Choices are 'Perm' or 'Hybrid'
(default). 'Perm' does a full permutation, while 'Hybrid' uses a faster, tail probability-
based permutation. When using the 'Hybrid' method, the 'Perm' method is applied
automatically when segment data length becomes less than 200.

SegmentStruct = cghcbs(CGHData, ...'StoppingRule',

StoppingRuleValue, ...) controls the use of a heuristic stopping rule, based on
the method described by Venkatraman and Olshen (2007), to declare a change without
performing the full number of permutations for the p-value estimation, whenever
it becomes very likely that a change has been detected. Choices are true or false
(default).

SegmentStruct = cghcbs(CGHData, ...'Smooth', SmoothValue, ...) controls
the smoothing of outliers before segmenting, using the procedure explained by Olshen et
al. (2004). Choices are true (default) or false.

SegmentStruct = cghcbs(CGHData, ...'Prune', PruneValue, ...) controls
the elimination of change points identified due to local trends in the data that are not
indicative of real copy number change, using the procedure explained by Olshen et al.
(2004). Choices are true or false (default).

SegmentStruct = cghcbs(CGHData, ...'Errsum', ErrsumValue, ...)

specifies the allowed proportional increase in the error sum of squares when eliminating
change points using the 'Prune' property. Commonly used values are 0.05 and 0.1.
Default is 0.05.

SegmentStruct = cghcbs(CGHData, ...'WindowSize',

WindowSizeValue, ...) specifies the size of the window (in data points) used to divide
the data when using the 'Perm' method on large data sets. Default is 200.

1 Alphabetical List

1-362

SegmentStruct = cghcbs(CGHData, ...'SampleIndex',

SampleIndexValue, ...) analyzes only the sample(s) specified by
SampleIndexValue, which can be a single sample index or a vector of sample indices.
Default is all sample indices.

SegmentStruct = cghcbs(CGHData, ...'Chromosome',

ChromosomeValue, ...) analyzes only the data on the chromosomes specified
by ChromosomeValue, which can be a single chromosome number or a vector of
chromosome numbers. Default is all chromosome numbers.

SegmentStruct = cghcbs(CGHData, ...'Showplot', ShowplotValue, ...)

controls the display of plots of the segment means over the original data. Choices are
true, false, W, S, or I, an integer specifying one of the chromosomes in CGHData.
When ShowplotValue is true, all chromosomes in all samples are plotted. If there
are multiple samples in CGHData, then each sample is plotted in a separate Figure
window. When ShowplotValue is W, the layout displays all chromosomes in one plot in
the Figure window. When ShowplotValue is S, the layout displays each chromosome
in a subplot in the Figure window. When ShowplotValue is I, only the specified
chromosome is plotted. Default is either:

• false — When return values are specified.
• true and W — When return values are not specified.

SegmentStruct = cghcbs(CGHData, ...'Verbose', VerboseValue, ...)

controls the display of a progress report of the analysis. Choices are true (default) or
false.

Examples

Analyzing Data from the Coriell Cell Line Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
coriell_data, a structure of array-based CGH data.

load coriell_baccgh

2 Analyze all chromosomes of sample 3 (GM05296) of the aCGH data and return
segmentation data in a structure, S. Plot the segment means over the original data
for all chromosomes of this sample.

S = cghcbs(coriell_data,'sampleindex',3,'showplot',true);

 cghcbs

1-363

Chromosome 10 shows a gain, while chromosome 11 shows a loss.

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

Analyzing Data from a Pancreatic Cancer Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
pancrea_data, a structure of array-based CGH data from a pancreatic cancer
study.

load pancrea_oligocgh

1 Alphabetical List

1-364

2 Analyze only chromosome 9 in sample 32 of the CGH data and return the
segmentation data in a structure, PS. Plot the segment means over the original data
for chromosome 9 in this sample.

PS = cghcbs(pancrea_data,'sampleindex',32,'chromosome',9,...

 'showplot',9);

Chromosome 9 contains two segments that indicate losses. For more detailed
information on interpreting the data, see Aguirre et al. (2004).

3 Use the chromosomeplot function with the 'addtoplot' property to add the
ideogram of chromosome 9 for Homo sapiens to the plot of the segmentation data.

chromosomeplot('hs_cytoBand.txt', 9, 'addtoplot', gca)

 cghcbs

1-365

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al.,
2004.

Displaying Copy Number Alteration Regions Aligned to a Chromosome Ideogram

1 Create a structure containing segment gain and loss information for chromosomes
10 and 11 from sample 3 from the Coriell cell line study, making sure the segment
data is in bp units. (You can determine copy number variance (CNV) information by
exploring S, the structure of segments returned by the cghcbs function in Analyzing
Data from the Coriell Cell Line Study.) For the 'CNVType' field, use 1 to indicate a
loss and 2 to indicate a gain.

cnvStruct = struct('Chromosome', [10 11],...

1 Alphabetical List

1-366

 'CNVType', [2 1],...

 'Start', [S.SegmentData(10).Start(2),...

 S.SegmentData(11).Start(2)]*1000,...

 'End', [S.SegmentData(10).End(2),...

 S.SegmentData(11).End(2)]*1000)

cnvStruct =

 Chromosome: [10 11]

 CNVType: [2 1]

 Start: [66905000 35416000]

 End: [110412000 43357000]

2 Pass the structure to the chromosomeplot function using the 'CNV' property
to display the copy number gains (green) and losses (red) aligned to the human
chromosome ideogram. Specify kb units for the display of segment information in the
data tip.

chromosomeplot('hs_cytoBand.txt', 'cnv', cnvStruct, 'unit', 2)

 cghcbs

1-367

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

References

[1] Olshen, A.B., Venkatraman, E.S., Lucito, R., and Wigler, M. (2004). Circular
binary segmentation for the analysis of array-based DNA copy number data.
Biostatistics 5, 4, 557–572.

[2] Venkatraman, E.S., and Olshen, A.B. (2007). A Faster Circular Binary Segmentation
Algorithm for the Analysis of Array CGH Data. Bioinformatics 23(6), 657–663.

1 Alphabetical List

1-368

[3] Venkatraman, E.S., and Olshen, A.B. (2006). DNAcopy: A Package for Analyzing DNA
Copy Data. http://www.bioconductor.org/packages/2.1/bioc/html/DNAcopy.html

[4] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J.,
Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer,
J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G.
(2001). Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics 29, 263–264.

[5] Aguirre, A.J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y., Zhang,
J., Gans, J.D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.S.,
DePinho, R.A., and Chin, L. (2004). High-resolution characterization of the
pancreatic adenocarcinoma genome. PNAS 101, 24, 9067–9072.

See Also
chromosomeplot | cytobandread

http://www.bioconductor.org/packages/2.1/bioc/html/DNAcopy.html

 cghfreqplot

1-369

cghfreqplot

Display frequency of DNA copy number alterations across multiple samples

Syntax

FreqStruct = cghfreqplot(CGHData)

FreqStruct = cghfreqplot(CGHData, ...'Threshold',

ThresholdValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Group', GroupValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Subgrp', SubgrpValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Subplot', SubplotValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Cutoff', CutoffValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Chromosome',

ChromosomeValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'IncludeX', IncludeXValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'IncludeY', IncludeYValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Chrominfo',

ChrominfoValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'ShowCentr',

ShowCentrValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Color', ColorValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'YLim', YLimValue, ...)

FreqStruct = cghfreqplot(CGHData, ...'Titles', TitlesValue, ...)

Input Arguments

CGHData Array-based comparative genomic hybridization (aCGH) data in
either of the following forms:

• Structure with the following fields:

• Sample — Cell array of strings containing the sample
names (optional).

• Chromosome — Vector containing the chromosome
numbers on which the clones are located.

1 Alphabetical List

1-370

• GenomicPosition — Vector containing the genomic
positions (in bp, kb, or mb units) to which the clones are
mapped.

• Log2Ratio — Matrix containing log2 ratio of test to
reference signal intensity for each clone. Each row
corresponds to a clone, and each column corresponds to a
sample.

• Matrix in which each row corresponds to a clone. The first
column contains the chromosome number, the second
column contains the genomic position, and the remaining
columns each contain the log2 ratio of test to reference signal
intensity for a sample.

ThresholdValue Positive scalar or vector that specifies the gain/loss threshold.
A clone is considered to be a gain if its log2 ratio is above
ThresholdValue, and a loss if its log2 ratio is below negative
ThresholdValue.

The ThresholdValue is applied as follows:

• If a positive scalar, it is the gain and loss threshold for all
the samples.

• If a two-element vector, the first element is the gain
threshold for all samples, and the second element is the loss
threshold for all samples.

• If a vector of the same length as the number of samples, each
element in the vector is considered as a unique gain and loss
threshold for each sample.

Default is 0.25.

 cghfreqplot

1-371

GroupValue Specifies the sample groups to calculate the frequency from.
Choices are:

• A vector of sample column indices (for data with only one
group). The samples specified in the vector are considered a
group.

• A cell array of vectors of sample column indices (for data
divided into multiple groups). Each element in the cell array
is considered a group.

Default is a single group of all the samples in CGHData.
SubgrpValue Controls the analysis of samples by subgroups. Choices are

true (default) or false.
SubplotValue Controls the display of all plots in one Figure window when

more than one subgroup is analyzed. Choices are true (default)
or false (displays plots in separate windows).

CutoffValue Scalar or two-element numeric vector that specifies a cutoff,
which controls the plotting of only the clones with frequency
gains or losses greater than or equal to CutoffValue. If a two-
element vector, the first element is the cutoff for gains, and the
second element is for losses. Default is 0.

ChromosomeValue Single chromosome number or a vector of chromosome numbers
that specify the chromosomes for which to display frequency
plots. Default is all chromosomes in CGHData.

IncludeXValue Controls the inclusion of the X chromosome in the analysis.
Choices are true (default) or false.

IncludeYValue Controls the inclusion of the Y chromosome in the analysis.
Choices are true or false (default) .

1 Alphabetical List

1-372

ChrominfoValue Cytogenetic banding information specified by either of the
following:

• Structure returned by the cytobandread function
• String specifying the file name of an NCBI ideogram text file

or a UCSC Genome Browser cytoband text file

Default is Homo sapiens cytogenetic banding information
from the UCSC Genome Browser, NCBI Build 36.1 (http://
genome.UCSC.edu).

ShowCentrValue Controls the display of the centromere positions as vertical
dashed lines in the frequency plot. Choices are true (default) or
false.

Tip The centromere positions are obtained from
ChrominfoValue.

ColorValue Color scheme for the vertical lines in the plot, indicating the
frequency of the gains and losses, specified by either of the
following:

• Name of or handle to a function that returns a colormap
• M-by-3 matrix containing RGB values. If M equals 1, then

that single color is used for all gains and losses. If M equals
2 or more, then the first row is used for gains, the second
row is used for losses, and remaining rows are ignored. For
example, [0 1 0;1 0 0] specifies green for gain and red
for loss.

The default color scheme is a range of colors from pure green
(gain = 1) through yellow (0) to pure red (loss = –1).

YLimValue Two-element vector specifying the minimum and maximum
values on the vertical axis. Default is [1, -1].

TitlesValue Single string or a cell array of strings that specifies titles for the
group(s), which are added to the tops of the plot(s).

http://genome.UCSC.edu
http://genome.UCSC.edu

 cghfreqplot

1-373

Output Arguments

FreqStruct Structure containing frequency data in the following fields:

• Group — Structure array, with each structure representing
a group of samples. Each structure contains the following
fields:

• Sample — Cell array containing names of samples
within the group.

• GainFrequency — Column vector containing the
average gain for each clone for a group of samples.

• LossFrequency — Column vector containing the
average loss for each clone for a group of samples.

• Chromosome — Column vector containing the chromosome
numbers on which the clones are located.

• GenomicPosition — Column vector containing the
genomic positions of the clones.

Tip You can use this output structure as input to the
cghfreqplot function.

Description

FreqStruct = cghfreqplot(CGHData) displays the frequency of copy number gain
or loss across multiple samples for each clone on an array against their genomic position
along the chromosomes.

FreqStruct = cghfreqplot(CGHData, ...'PropertyName',

PropertyValue, ...) calls cghfreqplot with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

FreqStruct = cghfreqplot(CGHData, ...'Threshold',

ThresholdValue, ...) specifies the gain/loss threshold. A clone is considered to be

1 Alphabetical List

1-374

a gain if its log2 ratio is above ThresholdValue, and a loss if its log2 ratio is below
negative ThresholdValue.

The ThresholdValue is applied as follows:

• If a positive scalar, it is the gain and loss threshold for all the samples.
• If a two-element vector, the first element is the gain threshold for all samples, and the

second element is the loss threshold for all samples.
• If a vector of the same length as the number of samples, each element in the vector is

considered as a unique gain and loss threshold for each sample.

Default is 0.25.

FreqStruct = cghfreqplot(CGHData, ...'Group', GroupValue, ...)

specifies the sample groups to calculate the frequency from. Choices are:

• A vector of sample column indices (for data with only one group). The samples
specified in the vector are considered a group.

• A cell array of vectors of sample column indices (for data divided into multiple
groups). Each element in the cell array is considered a group.

Default is a single group of all the samples in CGHData.

FreqStruct = cghfreqplot(CGHData, ...'Subgrp', SubgrpValue, ...)

controls the analysis of samples by subgroups. Choices are true (default) or false.

FreqStruct = cghfreqplot(CGHData, ...'Subplot', SubplotValue, ...)

controls the display of all plots in one Figure window when more than one subgroup is
analyzed. Choices are true (default) or false (displays plots in separate windows).

FreqStruct = cghfreqplot(CGHData, ...'Cutoff', CutoffValue, ...)

specifies a cutoff value, which controls the plotting of only the clones with frequency
gains or losses greater than or equal to CutoffValue. CutoffValue is a scalar or two-
element numeric vector. If a two-element numeric vector, the first element is the cutoff
for gains, and the second element is for losses. Default is 0.

FreqStruct = cghfreqplot(CGHData, ...'Chromosome',

ChromosomeValue, ...) displays the frequency plots only of chromosome(s) specified
by ChromosomeValue, which can be a single chromosome number or a vector of
chromosome numbers. Default is all chromosomes in CGHData.

 cghfreqplot

1-375

FreqStruct = cghfreqplot(CGHData, ...'IncludeX', IncludeXValue, ...)

controls the inclusion of the X chromosome in the analysis. Choices are true (default) or
false.

FreqStruct = cghfreqplot(CGHData, ...'IncludeY', IncludeYValue, ...)

controls the inclusion of the Y chromosome in the analysis. Choices are true or false
(default).

FreqStruct = cghfreqplot(CGHData, ...'Chrominfo',

ChrominfoValue, ...) specifies the cytogenetic banding information for the
chromosomes. ChrominfoValue can be either of the following

• Structure returned by the cytobandread function
• String specifying the file name of an NCBI ideogram text file or a UCSC Genome

Browser cytoband text file

Default is Homo sapiens cytogenetic banding information from the UCSC Genome
Browser, NCBI Build 36.1 (http://genome.UCSC.edu).

Tip You can download files containing cytogenetic G-banding data from the NCBI or
UCSC Genome Browser ftp site. For example, you can download the cytogenetic banding
data for Homo sapiens from:

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz

or
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

FreqStruct = cghfreqplot(CGHData, ...'ShowCentr',

ShowCentrValue, ...) controls the display of the centromere positions as vertical
dashed lines in the frequency plot. Choices are true (default) or false.

Tip The centromere positions are obtained from ChrominfoValue.

FreqStruct = cghfreqplot(CGHData, ...'Color', ColorValue, ...)

specifies a color scheme for the vertical lines in the plot, indicating the frequency of the
gains and losses. Choices are:

• Name of or handle to a function that returns a colormap.

http://genome.UCSC.edu
ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

1 Alphabetical List

1-376

• M-by-3 matrix containing RGB values. If M equals 1, then that single color is used
for all gains and losses. If M equals 2 or more, then the first row is used for gains, the
second row is used for losses, and remaining rows are ignored. For example, [0 1
0;1 0 0] specifies green for gain and red for loss.

The default color scheme is a range of colors from pure green (gain = 1) through yellow
(0) to pure red (loss = –1).

FreqStruct = cghfreqplot(CGHData, ...'YLim', YLimValue, ...) specifies
the y vertical limits for the frequency plot. YLimValue is a two-element vector specifying
the minimum and maximum values on the vertical axis. Default is [1, -1].

FreqStruct = cghfreqplot(CGHData, ...'Titles', TitlesValue, ...)

specifies titles for the group(s), which are added to the tops of the plot(s). TitlesValue
can be a single string or a cell array of strings.

Examples

Plotting Data from the Coriell Cell Line Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
coriell_data, a structure of array-based CGH data.

load coriell_baccgh

2 Display a frequency plot of the copy number alterations across all samples in the
Coriell aCGH data.

Struct = cghfreqplot(coriell_data);

 cghfreqplot

1-377

3 View data tips for the data, chromosomes, and centromeres by clicking the Data

Cursor button on the toolbar, then clicking data, a blue chromosome boundary
line, or a dotted centromere line in the plot. To delete this data tip, right-click it,
then select Delete Current Datatip.

4 Display a color bar indicating the degree of gain or loss by clicking the Insert

Colorbar button on the toolbar.

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

Plotting Pancreatic Cancer Study Data Using a Green and Red Color Scheme

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
pancrea_data, a structure of array-based CGH data from a pancreatic cancer
study.

1 Alphabetical List

1-378

load pancrea_oligocgh

2 Display a frequency plot of the copy number alterations across all samples in the
pancreatic cancer data, using a green and red color scheme.

cghfreqplot(pancrea_data, 'Color', [0 1 0; 1 0 0])

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al.,
2004.

Plotting Groups of aCGH Data, Specifying a Frequency Value Cutoff, and Adding a
Chromosome Ideogram

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
pancrea_data, a structure of array-based CGH data from a pancreatic cancer
study.

load pancrea_oligocgh

 cghfreqplot

1-379

2 Define two groups of data.

grp1 = strncmp('PA.C', pancrea_data.Sample,4);

grp1_ind = find(grp1);

grp2 = strncmp('PA.T', pancrea_data.Sample,4);

grp2_ind = find(grp2);

3 Display a frequency plot of the copy number alterations across all samples in the two
groups and limit the plotting to only the clones with frequency gains or losses greater
than or equal to 0.25.

SP = cghfreqplot(pancrea_data, 'Group', {grp1_ind, grp2_ind},...

 'Title', {'CL', 'PT'}, 'Cutoff', 0.25);

4 Display a frequency plot of the copy number alterations across all samples in the
first group and limit the plot to chromosome 4 only.

SP = cghfreqplot(pancrea_data, 'Group', grp1_ind, ...

 'Title', 'CL Group on Chr 4', 'Chromosome', 4);

1 Alphabetical List

1-380

5 Use the chromosomeplot function with the 'addtoplot' property to add the
ideogram of chromosome 4 for Homo sapiens to this frequency plot. Because the plot
of the frequency data from the pancreatic cancer study is in kb units, use the 'Unit'
property to convert the ideogram data to kb units.

chromosomeplot('hs_cytoBand.txt', 4, 'addtoplot', gca, 'unit', 2);

 cghfreqplot

1-381

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al.,
2004.

References

[1] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J.,
Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer,
J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G.
(2001). Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics 29, 263–264.

[2] Aguirre, A.J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y., Zhang,
J., Gans, J.D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.S.,
DePinho, R.A., and Chin, L. (2004). High-resolution characterization of the
pancreatic adenocarcinoma genome. PNAS 101, 24, 9067–9072.

1 Alphabetical List

1-382

See Also
cghcbs | chromosomeplot | cytobandread

 chromosomeplot

1-383

chromosomeplot
Plot chromosome ideogram with G-banding pattern

Syntax
chromosomeplot(CytoData)

chromosomeplot(CytoData, ChromNum)

chromosomeplot(CytoData, ChromNum, ...,'Orientation',

OrientationValue, ...)

chromosomeplot(CytoData, ChromNum, ...,'ShowBandLabel',

ShowBandLabelValue, ...)

chromosomeplot(CytoData, ChromNum, ...,'AddToPlot',

AddToPlotValue, ...)

chromosomeplot(..., 'Unit', UnitValue, ...)

chromosomeplot(..., 'CNV', CNVValue, ...)

Arguments

CytoData Either of the following:

• String specifying a file containing cytogenetic G-banding
data (in bp units), such as an NCBI ideogram text file or
a UCSC Genome Browser cytoband text file.

• Structure containing cytogenetic G-banding data (in bp
units) in the following fields:

• ChromLabels

• BandStartBPs

• BandEndBPs

• BandLabels

• GieStains

Tip Use the cytobandread function to create the structure
to use for CytoData.

1 Alphabetical List

1-384

ChromNum Scalar or string specifying a single chromosome to plot.
Valid entries are integers, 'X', and 'Y'.

Note: Setting ChromNum to 0 will plot ideograms for all
chromosomes.

OrientationValue String or number that specifies the orientation of the
ideogram of a single chromosome specified by ChromNum.
Choices are 'Vertical' or 1 (default) and 'Horizontal'
or 2.

ShowBandLabelValue Controls the display of band labels (such as q25.3) when
plotting a single chromosome ideogram, specified by
ChromNum. Choices are true (default) or false.

AddToPlotValue Variable name of a figure axis to which to add the single
chromosome ideogram, specified by ChromNum.

Note: If you use this property to add the ideogram to a
plot of genomic data that is in units other than bp, use
the 'Unit' property to convert the ideogram data to the
appropriate units.

Tip Before printing a figure containing an added
chromosome ideogram, change the background to white by
issuing the following command:

set(gcf,'color','w')

UnitValue Integer that specifies the units (base pairs, kilo base pairs,
or mega base pairs) for the starting and ending genomic
positions. This unit is used in the data tip displayed when
you hover the cursor over chromosomes in the ideogram.
This unit can also be used when using the 'AddToPlot'
property to add the ideogram to a plot that is in units other
than bp. Choices are 1 (bp), 2 (kb), or 3 (mb). Default is 1
(bp).

 chromosomeplot

1-385

CNVValue Controls the display of copy number variance (CNV)
data, provided by CNVValue, aligned to the chromosome
ideogram. Gains are shown in green to the right or above
the ideogram, while losses are shown in red to the left
or below the ideogram. CNVValue is a structure array
containing the four fields described in the table below.

Description
chromosomeplot(CytoData) plots the ideogram of all chromosomes, using information
from CytoData, a structure containing cytogenetic G-banding data (in bp units), or a
string specifying a file containing cytogenetic G-banding data (in bp units), such as an
NCBI ideogram text file or a UCSC Genome Browser cytoband text file. The G bands
distinguish different areas of the chromosome. For example, for the Homo sapiens
ideogram, possible G bands are:

• gneg — white
• gpos25 — light gray
• gpos50 — medium gray
• gpos75 — dark gray
• gpos100 — black
• acen — red (centromere)
• stalk — light blue (regions with repeats)
• gvar — indented region

Darker bands are AT-rich, while lighter bands are GC-rich.

chromosomeplot(CytoData, ChromNum) plots the ideogram of a single chromosome
specified by ChromNum.

chromosomeplot(..., 'PropertyName', PropertyValue, ...) calls
chromosomeplot with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

chromosomeplot(CytoData, ChromNum, ...,'Orientation',

OrientationValue, ...) specifies the orientation of the ideogram of a single

1 Alphabetical List

1-386

chromosome specified by ChromNum. Choices are 'Vertical' or 1 (default) and
'Horizontal' or 2.

Note: When plotting the ideogram of all chromosomes, the orientation is always vertical.

chromosomeplot(CytoData, ChromNum, ...,'ShowBandLabel',

ShowBandLabelValue, ...) displays band labels (such as q25.3) when plotting a
single chromosome ideogram, specified by ChromNum. Choices are true (default) or
false.

chromosomeplot(CytoData, ChromNum, ...,'AddToPlot',

AddToPlotValue, ...) adds the single chromosome ideogram, specified by ChromNum,
to a figure axis specified by AddToPlotValue.

Note: If you use this property to add the ideogram to a plot of genomic data that is
in units other than bp, use the 'Unit' property to convert the ideogram data to the
appropriate units.

Tip Before printing a figure containing an added chromosome ideogram, change the
background to white by issuing the following command:

set(gcf,'color','w')

chromosomeplot(..., 'Unit', UnitValue, ...) specifies the units (base pairs,
kilo base pairs, or mega base pairs) for the starting and ending genomic positions. This
unit is used in the data tip displayed when you hover the cursor over chromosomes in
the ideogram. This unit can also be used when using the 'AddToPlot' property to add
the ideogram to a plot that is in units other than bp. Choices are 1 (bp), 2 (kb), or 3 (mb).
Default is 1 (bp).

chromosomeplot(..., 'CNV', CNVValue, ...) displays copy number variance
(CNV) data, provided by CNVValue, aligned to the chromosome ideogram. Gains are
shown in green to the right or above the ideogram, while losses are shown in red to the
left or below the ideogram. CNVValue is a structure array containing the following fields.
Each field must contain the same number of elements.

 chromosomeplot

1-387

Field Description

Chromosome Either of the following:

• Numeric vector containing the chromosome number on which each
CNV is located.

Note: For the sex chromosome, X, use N, where N = number of
autosomes + 1. For the sex chromosome, Y, use M, where M =
number of autosomes + 2. For example, for Homo sapiens use 23 for
X and 24 for Y, and for Mus musculus (lab mouse), use 20 for X and
21 for Y.

• Character array containing the chromosome number on which each
CNV is located.

Note: Using a character array lets you use the characters X and Y
(instead of numbers) for sex chromosomes. However, all elements
in the array must be the same width, which may require you to add
spaces to the strings. For example:

[' 1'; ' 2'; '10'; ' X']

Or you can use the char function with a cell array to create a
character array of the chromosome numbers and letters. For
example: .

char({'1', '2', '10', 'X'})

CNVType Numeric vector containing the type of each CNV, either 1 (loss) or 2
(gain).

Start Numeric vector containing the starting genomic position of each CNV.
Units must be in base pairs.

End Numeric vector containing the ending genomic position of each CNV.
Units must be in base pairs.

1 Alphabetical List

1-388

Examples

Plotting Chromosome Ideograms

1 Read the cytogenetic banding information for Homo sapiens into a structure.

hs_cytobands = cytobandread('hs_cytoBand.txt')

hs_cytobands =

 ChromLabels: {862x1 cell}

 BandStartBPs: [862x1 int32]

 BandEndBPs: [862x1 int32]

 BandLabels: {862x1 cell}

 GieStains: {862x1 cell}

2 Plot the entire chromosome ideogram for Homo sapiens.

chromosomeplot(hs_cytobands);

title('Human Karyogram')

 chromosomeplot

1-389

3 Display the ideogram of only chromosome 7 for Homo sapiens by right-clicking
chromosome 7 in the plot, then selecting Display in New Figure > Vertical.

1 Alphabetical List

1-390

4 Plot the ideogram of only chromosome 15 for Homo sapiens in a horizontal
orientation. Set the units used in the data tip to kilo base pairs.

chromosomeplot(hs_cytobands, 15, 'Orientation', 2, 'Unit', 2);

 chromosomeplot

1-391

5 View a data tip with information about the chromosome by hovering the cursor over
the chromosome. View a data tip with detailed information about a specific band by

clicking the Data Cursor button on the toolbar, then clicking the band in the
plot. To delete this data tip, right-click it, then select Delete Current Datatip.

Tip You can change the orientation of a single chromosome ideogram by right-clicking,
selecting Display > Vertical or Horizontal. You can show or hide the band labels of a
single chromosome ideogram by right-clicking, then selecting Show G-band Labels or
Hide G-band Labels.

1 Alphabetical List

1-392

Adding a Chromosome Ideogram to a Plot

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
coriell_data, a structure of CGH data.

load coriell_baccgh

2 Use the cghcbs function to analyze chromosome 10 of sample 3 (GM05296) of the
CGH data and return copy number variance (CNV) data in a structure, S. Plot the
segment means over the original data for only chromosome 10 of sample 3.

S = cghcbs(coriell_data,'sampleindex',3,'chromosome',10,...

 'showplot',10);

 chromosomeplot

1-393

3 Use the chromosomeplot function with the 'addtoplot' property to add the
ideogram of chromosome 10 for Homo sapiens to the plot. Because the plot of the
CNV data from the Coriell cell line study is in kb units, use the 'Unit' property to
convert the ideogram data to kb units.

chromosomeplot('hs_cytoBand.txt', 10, 'addtoplot', gca,...

 'Unit', 2)

Tip Before printing the above figure containing an added chromosome ideogram, change
the background to white by issuing the following command:

set(gcf,'color','w')

1 Alphabetical List

1-394

Displaying Copy Number Alteration Regions Aligned to a Chromosome Ideogram

1 Create a structure containing segment gain and loss information for chromosomes
10, 11, and X from sample 3 from the Coriell cell line study, making sure the
segment data is in bp units. (You can determine copy number variance (CNV)
information by exploring S, the structure of segments returned by the cghcbs
function in step 2 in Adding a Chromosome Ideogram to a Plot.) For the 'CNVType'
field, use 1 to indicate a loss and 2 to indicate a gain.

cnvStruct = struct('Chromosome', char({'10', '11', 'X'}),...

 'CNVType', [2 1 2],...

 'Start', [66905000 25416000 1],...

 'End', [110412000 39389000 154913755]);

2 Pass the structure to the chromosomeplot function using the 'CNV' property
to display the copy number gains (green) and losses (red) aligned to the human
chromosome ideogram.

chromosomeplot('hs_cytoBand.txt', 'cnv', cnvStruct);

 chromosomeplot

1-395

The coriell_baccgh.mat file used in this example contains data from Snijders et al.,
2001.

References

[1] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J.,
Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer,
J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G.
(2001). Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics 29, 263–264.

See Also
cghcbs | cytobandread

1 Alphabetical List

1-396

cigar2align
Convert unaligned sequences to aligned sequences using Compact Idiosyncratic Gapped
Alignment Report (CIGAR) format strings

Syntax

Alignment = cigar2align(Seqs,Cigars)

[GapSeq, Indices] = cigar2align(Seqs,Cigars)

... = cigar2align(Seqs,Cigars,Name,Value)

Description

Alignment = cigar2align(Seqs,Cigars) converts unaligned sequences in Seqs, a
cell array of strings, into Alignment, a matrix of aligned sequences, using the information
stored in Cigars, a cell array of CIGAR strings.

[GapSeq, Indices] = cigar2align(Seqs,Cigars) converts unaligned sequences
in Seqs, a cell array of strings, into GapSeq, a cell array of strings of aligned sequences,
and also returns Indices, a vector of numeric indices, using the information stored in
Cigars, a cell array of CIGAR strings. When an alignment has many columns, this syntax
uses less memory and is faster.

... = cigar2align(Seqs,Cigars,Name,Value) converts unaligned sequences in
Seqs, a cell array of strings, into Alignment, a matrix of aligned sequences, using the
information stored in Cigars, a cell array of CIGAR strings, with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

Seqs

Cell array of strings containing unaligned sequences. Seqs must contain the same
number of elements as Cigars.

Default:

 cigar2align

1-397

Cigars

Cell array of valid CIGAR strings. Cigars must contain the same number of elements as
Seqs.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Start'

Vector of positive integers specifying the reference sequence position at which each
aligned sequence starts. By default, each aligned sequence starts at position 1 of the
reference sequence.

Default:

'GapsInRef'

Logical specifying whether to display positions in the aligned sequences that correspond
to gaps in the reference sequence. Choices are true (1) or false (0). If your reference
sequence has gaps and you set GapsInRef to false (0), and then later use Alignment as
input to align2cigar, the returned CIGAR strings will not match the original CIGAR
strings.

Default: false (0)

'SoftClipping'

Logical specifying whether to include characters in the aligned read sequences
corresponding to soft clipping ends. Choices are true (1) or false (0).

Default: false (0)

'OffsetPad'

Logical specifying whether to add padding blanks to the left of each aligned read
sequence to represent the offset of the start position from the first position of the

1 Alphabetical List

1-398

reference sequence. Choices are true (1) or false (0). When false, the matrix of
aligned sequences starts at the start position of the leftmost aligned read sequence.

Default: false (0)

Output Arguments

Alignment

Matrix of aligned sequences, in which the number of rows equals the number of strings in
Seqs.

GapSeq

Cell array of strings of aligned sequences, in which the number strings equals the
number of strings in Seqs.

Indices

Vector of numeric indices indicating the starting column for each aligned sequence
in Alignment. These indices are not necessarily the same as the start positions in the
reference sequence for each aligned sequence. This is because either of the following:

• The reference sequence can be extended to account for insertions.
• An aligned sequence can have leading soft clippings, padding, or insertion characters.

Examples

Create a cell array of strings containing unaligned sequences, create a cell array of
strings containing corresponding CIGAR strings associated with a reference sequence of
ACGTATGC, and then reconstruct the alignment:

r = {'ACGACTGC', 'ACGTTGC', 'AGGTATC'}; % unaligned sequences

c = {'3M1D1M1I3M', '4M1D1P3M', '5M1P1M1D1M'}; % cigar strings

aln1 = cigar2align(r, c)

aln1 =

ACG-ATGC

ACGT-TGC

 cigar2align

1-399

AGGTAT-C

Reconstruct the same alignment to display positions in the aligned sequences that
correspond to gaps in the reference sequence:

aln2 = cigar2align(r, c,'GapsInRef',true)

aln2 =

ACG-ACTGC

ACGT--TGC

AGGTA-T-C

Reconstruct the alignment adding an offset padding of 5:

aln3 = cigar2align(r, c, 'start', [5 5 5], 'OffsetPad', true)

aln3 =

 ACG-ATGC

 ACGT-TGC

 AGGTAT-C

Alternatives

If your CIGAR information is captured in the Signature property of a BioMap object,
you can use the getAlignment method to construct the alignment.

More About

Algorithms

When cigar2align reconstructs the alignment, it does not display hard clipped
positions (H) or soft clipped positions (S). Also, it does not consider soft clipped positions
as start positions for aligned sequences.

• “Manage Short-Read Sequence Data in Objects”
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-400

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
getAlignment | align2cigar | seqalignviewer | getBaseCoverage |
getCompactAlignment | BioMap

 classperf

1-401

classperf
Evaluate performance of classifier

Syntax
classperf

CP = classperf(truelabels)

CP = classperf(truelabels, classout)

CP = classperf(..., 'Positive', PositiveValue, 'Negative',

NegativeValue)

classperf(CP, classout)

classperf(CP, classout, testidx)

Input Arguments
truelabels True class labels for each observation, specified by one of the

following:

• Numeric vector
• Cell array of strings

Note: When used in a cross-validation design experiment,
truelabels should have the same size as the total number of
observations.

classout Classifier output, specified by one of the following:

• Numeric vector
• Cell array of strings

Note: classout must contain the same number of elements as
truelabels.

PositiveValue Numeric vector or cell array of strings that specifies the positive
labels to identify the target class(es). Default is the first class
returned by grp2idx(truelabels).

1 Alphabetical List

1-402

NegativeValue Numeric vector or cell array of strings that specifies the negative
labels to identify the control class(es). Default is all classes other
than the first class returned by grp2idx(truelabels).

testidx Vector that indicates the observations that were used in the
current validation. Choices are:

• Index vector
• Logical index vector of the same size as truelabels used to

construct the classifier performance object

Output Arguments

CP Classifier performance object with performance properties listed
in the following table.

Description

classperf provides an interface to keep track of the performance during the validation
of classifiers. classperf creates and, optionally, updates a classifier performance object,
CP, which accumulates the results of the classifier. The performance properties of a
classifier performance object are listed in the following table.

classperf, without input arguments, displays all the performance properties of a
classifier performance object.

CP = classperf(truelabels) creates and initializes an empty classifier performance
object. CP is the handle to the object. truelabels is a vector or cell array of strings
containing the true class labels for every observation. When used in a cross-validation
design experiment, truelabels must have the same size as the total number of
observations.

CP = classperf(truelabels, classout) creates CP using truelabels, then
updates CP using the classifier output, classout.

Tip This syntax is useful when you want to know the performance of a single validation.

 classperf

1-403

CP = classperf(..., 'Positive', PositiveValue, 'Negative',

NegativeValue) specifies the positive and negative labels to identify the target and
the control classes, respectively. These labels are used to compute clinical diagnostic test
performance.

If truelabels is a numeric vector, PositiveValue and NegativeValue must be
numeric vectors whose entries are subsets of grp2idx(truelabels). If truelabels
is a cell array of strings, PositiveValue and NegativeValue can be cell arrays
of strings or numeric vectors whose entries are subsets of grp2idx(truelabels).
PositiveValue defaults to the first class returned by grp2idx(truelabels), while
NegativeValue defaults to all other classes.

PositiveValue and NegativeValue must consist of disjoint sets of the labels used in
truelabels. For example, if

truelabels = [1 2 2 1 3 4 4 1 3 3 3 2]

you could set

p = [1 2];

n = [3 4];

For example, if you have a data set with data from six samples: five different types
of cancer (ovarian, lung, prostate, skin, brain) and no cancer, then ClassLabels =
{'Ovarian', 'Lung', 'Prostate', 'Skin', 'Brain', 'Healthy'}.

You could test a detector for lung cancer by using a PositiveValue of 2, and a
NegativeValue = [1 3 4 5 6].

Or you can test for any type of cancer by using PositiveValue = [1 2 3 4 5] and a
NegativeValue of 6.

In clinical tests, inconclusive values such as '' or NaN are counted as false negatives
for the computation of the specificity, and as false positives for the computation of the
sensitivity. That is, inconclusive results may decrease the diagnostic value of the test.
Tested observations for which truelabels is not within the union of PositiveValue
and NegativeValue are not considered. However, tested observations that result in a
class not covered by the vector truelabels are counted as inconclusive.

classperf(CP, classout) updates CP, the classifier performance object, with the
classifier output classout. classout must be the same size as truelabels, the vector

1 Alphabetical List

1-404

or cell array used to construct the classifier performance object. When classout is a cell
array of strings, an empty string, '', represents an inconclusive result of the classifier.
For numeric arrays, NaN represents an inconclusive result.

classperf(CP, classout, testidx) updates CP, the classifier performance object,
with the classifier output classout. classout has a smaller size than truelabels.
testidx is an index vector or a logical index vector of the same size as truelabels, the
vector or cell array used to construct the classifier performance object. testidx indicates
the observations that were used in the current validation.

Note: In the two previous syntaxes, you do not need to create a separate output variable
to update the classifier performance object, CP.

Properties of a Classifier Performance Object

You can access classifier performance object properties by using the get function

get(CP, 'ControlClasses')

or using dot notation

CP.ControlClasses

You cannot directly modify the classifier performance object properties by using the set
function, with the exception of the Label and Description properties.

Tip To modify properties, use either of the following syntaxes:

classperf(CP, classout)

classperf(CP, classout, testidx)

Property Description

Label String to label the classifier performance object.
Default is ''.

Description String to describe the classifier performance
object. Default is ''.

 classperf

1-405

Property Description

ClassLabels Numeric vector or cell array of strings
specifying a unique set of class labels from
unique(truelabels).

GroundTruth Numeric vector or cell array of strings
that specifies the true class labels for each
observation. The number of elements =
NumberOfObservations.

NumberOfObservations Positive integer specifying the number of
observations in the study.

ControlClasses Indices to the ClassLabels vector or cell array,
indicating which classes to be considered as the
control or negative classes in a diagnostic test.

Tip You set the ControlClasses property
with the 'Negative' property name/value
pair. If you do not specify the 'Negative'
property, ControlClasses defaults to all
classes other than the first class returned by
grp2idx(truelabels).

TargetClasses Indices to the ClassLabels vector or cell array,
indicating which classes to be considered as the
target or positive classes in a diagnostic test.

Tip You set the TargetClasses property with
the 'Positive' property name/value pair. If
you do not specify the 'Positive' property,
TargetClasses defaults to the first class
returned by grp2idx(truelabels).

ValidationCounter Positive integer specifying the number of
validations performed.

1 Alphabetical List

1-406

Property Description

SampleDistribution Numeric vector indicating how many times each
sample was considered in the validation.

For example, if you use resubstitution,
SampleDistribution is a vector of ones and
ValidationCounter = 1. If you have a ten-fold
cross-validation, SampleDistribution is also a
vector of ones, but ValidationCounter = 10.

Tip SampleDistribution is more useful when
doing Monte Carlo partitions of the test sets, as
this will help determine if all the samples are
being equally tested.

ErrorDistribution Numeric vector indicating how many times each
sample was misclassified.

SampleDistributionByClass Numeric vector indicating the frequency of the
true classes in the validation.

ErrorDistributionByClass Numeric vector indicating the frequency of errors
for each class in the validation.

CountingMatrix The classification confusion matrix. The
order of rows and columns is the same as
grp2idx(truelabels). Columns represent the
true classes, and rows represent the classifier
prediction. The last row in CountingMatrix
is reserved to count inconclusive results. There
are some families of classifiers that can reserve
the right to make a hard class assignment; this
can be based on metrics, such as the posterior
probabilities, or on how close a sample is to the
class boundaries.

CorrectRate Correctly Classified Samples / Classified Samples

Note: Inconclusive results are not counted.

 classperf

1-407

Property Description

ErrorRate Incorrectly Classified Samples / Classified
Samples

Note: Inconclusive results are not counted.
LastCorrectRate The following equation applies only to

samples considered the last time the classifier
performance object was updated:

Correctly Classified Samples / Classified Samples
LastErrorRate The following equation applies only to

samples considered the last time the classifier
performance object was updated:

Incorrectly Classified Samples / Classified
Samples

InconclusiveRate Nonclassified Samples / Total Number of Samples
ClassifiedRate Classified Samples / Total Number of Samples
Sensitivity Correctly Classified Positive Samples / True

Positive Samples

Note: Inconclusive results that are true
positives are counted as errors for computing
Sensitivity (following a conservative
approach). This is the same as being incorrectly
classified as negatives.

Specificity Correctly Classified Negative Samples / True
Negative Samples

Note: Inconclusive results that are true
negatives are counted as errors for computing
Specificity (following a conservative
approach). This is the same as being incorrectly
classified as positives.

1 Alphabetical List

1-408

Property Description

PositivePredictiveValue Correctly Classified Positive Samples / Positive
Classified Samples

Note: Inconclusive results are
classified as negatives when computing
PositivePredictiveValue.

NegativePredictiveValue Correctly Classified Negative Samples / Negative
Classified Samples

Note: Inconclusive results are
classified as positives when computing
NegativePredictiveValue.

PositiveLikelihood Sensitivity / (1 – Specificity)
NegativeLikelihood (1 – Sensitivity) / Specificity
Prevalence True Positive Samples / Total Number of Samples
DiagnosticTable A 2-by-2 numeric array with diagnostic counts.

The first row indicates the number of samples
that were classified as positive, with the number
of true positives in the first column, and the
number of false positives in the second column.
The second row indicates the number of samples
that were classified as negative, with the number
of false negatives in the first column, and the
number of true negatives in the second column.

Correct classifications appear in the diagonal
elements, and errors appear in the off-diagonal
elements. Inconclusive results are considered
errors and counted in the off-diagonal elements.

For an illustration of a diagnostic table, see
below.

 classperf

1-409

Example Diagnostic Table

In a cancer study of ten patients, suppose we get the following results:

Patient Classifier Output Has Cancer

1 Positive Yes
2 Positive Yes
3 Positive Yes
4 Positive No
5 Negative Yes
6 Negative No
7 Negative No
8 Negative No
9 Negative No
10 Inconclusive Yes

The diagnostic table would look as follows:

Examples
% Classify the fisheriris data with a K-Nearest Neighbor classifier

load fisheriris

c = knnclassify(meas,meas,species,4,'euclidean','Consensus');

cp = classperf(species,c)

get(cp)

% 10-fold cross-validation on the fisheriris data using linear

% discriminant analysis and the third column as only feature for

1 Alphabetical List

1-410

% classification

load fisheriris

indices = crossvalind('Kfold',species,10);

cp = classperf(species); % initializes the CP object

for i = 1:10

 test = (indices == i); train = ~test;

 class = classify(meas(test,3),meas(train,3),species(train));

 % updates the CP object with the current classification results

 classperf(cp,class,test)

end

cp.CorrectRate % queries for the correct classification rate

cp =

 biolearning.classperformance

 Label: ''

 Description: ''

 ClassLabels: {3x1 cell}

 truelabels: [150x1 double]

 NumberOfObservations: 150

 ControlClasses: [2x1 double]

 TargetClasses: 1

 ValidationCounter: 1

 SampleDistribution: [150x1 double]

 ErrorDistribution: [150x1 double]

 SampleDistributionByClass: [3x1 double]

 ErrorDistributionByClass: [3x1 double]

 CountingMatrix: [4x3 double]

 CorrectRate: 1

 ErrorRate: 0

 InconclusiveRate: 0.0733

 ClassifiedRate: 0.9267

 Sensitivity: 1

 Specificity: 0.8900

 PositivePredictiveValue: 0.8197

 NegativePredictiveValue: 1

 PositiveLikelihood: 9.0909

 NegativeLikelihood: 0

 Prevalence: 0.3333

 DiagnosticTable: [2x2 double]

ans =

 0.9467

See Also
crossvalind | classify | grp2idx | knnclassify | svmclassify

 cleave

1-411

cleave
Cleave amino acid sequence with enzyme

Syntax

Fragments = cleave(SeqAA, Enzyme)

Fragments = cleave(SeqAA, PeptidePattern, Position)

[Fragments, CuttingSites] = cleave(...)

[Fragments, CuttingSites, Lengths] = cleave(...)

[Fragments, CuttingSites, Lengths, Missed] = cleave(...)

cleave(..., 'PartialDigest', PartialDigestValue, ...)

cleave(..., 'MissedSites', MissedSitesValue, ...)

cleave(..., 'Exception', ExceptionValue, ...)

Input Arguments

SeqAA One of the following:

• String of single-letter codes specifying an amino acid
sequence.

• Row vector of integers specifying an amino acid
sequence.

• MATLAB structure containing a Sequence field that
contains an amino acid sequence, such as returned by
fastaread, getgenpept, genpeptread, getpdb, or
pdbread.

Examples: 'ARN' or [1 2 3].
Enzyme String specifying a name or abbreviation code for an

enzyme or compound for which the literature specifies a
cleavage rule.

Tip Use the cleavelookup function to display the names
of enzymes and compounds in the cleavage rule library.

1 Alphabetical List

1-412

PeptidePattern Short amino acid sequence to search for in SeqAA, a larger
sequence. PeptidePattern can be any of the following:

• Character string
• Vector of integers
• “Regular expression”

Position Integer from 0 to the length of the PeptidePattern, that
specifies a position in the PeptidePattern to cleave.

Note: Position 0 corresponds to the N terminal end of
PeptidePattern.

PartialDigestValue Value from 0 to 1 (default) specifying the probability that a
cleavage site will be cleaved.

MissedSitesValue Nonnegative integer specifying the maximum number
of missed cleavage sites. The output includes all
possible peptide fragments that can result from missing
MissedSitesValue or less cleavage sites. Default is 0,
which is equivalent to an ideal digestion.

ExceptionValue “Regular expression” specifying an exception rule to the
cleavage rule associated with Enzyme. By default, cleave
applies no exception rule.

Output Arguments

Fragments Cell array of strings representing the fragments from the
cleavage.

CuttingSites Numeric vector containing indices representing the
cleavage sites.

Note: The cleave function adds a 0 to the list, so
numel(CuttingSites)==numel(Fragments). Use
CuttingSites + 1 to point to the first amino acid of every
fragment respective to the original sequence.

 cleave

1-413

Lengths Numeric vector containing the length of each fragment.
Missed Numeric vector containing the number of missed cleavage

sites for every peptide fragment.

Description

Fragments = cleave(SeqAA, Enzyme) cuts SeqAA, an amino acid sequence, into
parts at the cleavage sites specific for Enzyme, a string specifying a name or abbreviation
code for an enzyme or compound for which the literature specifies a cleavage rule. It
returns Fragments, a cell array of strings representing the fragments from the cleavage.

Tip Use the cleavelookup function to display the names of enzymes and compounds in
the cleavage rule library.

Fragments = cleave(SeqAA, PeptidePattern, Position) cuts SeqAA, an amino
acid sequence, into parts at the cleavage sites specified by a peptide pattern and position.

[Fragments, CuttingSites] = cleave(...) returns a numeric vector containing
indices representing the cleavage sites.

Note: The cleave function adds a 0 to the list, so
numel(CuttingSites)==numel(Fragments). Use CuttingSites + 1 to point to the
first amino acid of every fragment respective to the original sequence.

[Fragments, CuttingSites, Lengths] = cleave(...) returns a numeric vector
containing the length of each fragment.

[Fragments, CuttingSites, Lengths, Missed] = cleave(...) returns a
numeric vector containing the number of missed cleavage sites for every fragment.

cleave(..., 'PropertyName', PropertyValue, ...) calls cleave with optional
properties that use property name/property value pairs. You can specify one or more
properties in any order. Enclose each PropertyName in single quotation marks. Each
PropertyName is case insensitive. These property name/property value pairs are as
follows:

1 Alphabetical List

1-414

cleave(..., 'PartialDigest', PartialDigestValue, ...) simulates a partial
digestion where PartialDigestValue is the probability of a cleavage site being cut.
PartialDigestValue is a value from 0 to 1 (default).

This table lists some common proteases and their cleavage sites.

Protease Peptide Pattern Position

Aspartic acid N D 1

Chymotrypsin [WYF](?!P) 1

Glutamine C [ED](?!P) 1

Lysine C [K](?!P) 1

Trypsin [KR](?!P) 1

cleave(..., 'MissedSites', MissedSitesValue, ...) returns all possible
peptide fragments that can result from missing MissedSitesValue or less cleavage
sites. MissedSitesValue is a nonnegative integer. Default is 0, which is equivalent to
an ideal digestion.

cleave(..., 'Exception', ExceptionValue, ...) specifies an exception rule to
the cleavage rule associated with Enzyme. ExceptionValue is a “regular expression”.
By default, cleave applies no exception rule.

Examples
1 Retrieve a protein sequence from the GenPept database.

S = getgenpept('AAA59174');

2 Cleave the sequence using proteinase K.

[partsPK, sitesPK, lengthsPK] = cleave(S.Sequence, ...

 'proteinase K');

3 Display the indices of the cleavage sites, lengths, and sequences of the first ten
fragments.

for i=1:10

 fprintf('%5d%5d %s\n',sitesPK(i),lengthsPK(i),partsPK{i})

 end

 0 3 MGT

 cleave

1-415

 3 6 GGRRGA

 9 1 A

10 1 A

11 1 A

12 2 PL

14 1 L

15 1 V

16 1 A

17 1 V

4 Cleave the same sequence using one of trypsin's cleavage rules (cleave after K or R
when the next residue is not P).

[partsT, sitesT, lengthsT] = cleave(S.Sequence,'[KR](?!P)',1);

5 Display the indices of the cleavage sites, lengths, and sequences of the first ten
fragments.

 for i=1:10

 fprintf('%5d%5d %s\n',sitesT(i),lengthsT(i),partsT{i})

 end

 0 6 MGTGGR

 6 1 R

 7 34 GAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIR

 41 5 NNLTR

 46 21 LHELENCSVIEGHLQILLMFK

 67 7 TRPEDFR

 74 6 DLSFPK

 80 12 LIMITDYLLLFR

 92 8 VYGLESLK

100 10 DLFPNLTVIR

6 Cleave the same sequence using trypsin's cleavage rule, but allow for one missed
cleavage site.

[partsT2, sitesT2, lengthsT2, missedT2] = cleave(S.Sequence, ...

 'trypsin','missedsites',1);

7 Cleave the same sequence using trypsin's cleavage rule, except do not to cleave after
K when K is following by a D.

partsT3 = cleave(S.Sequence, 'trypsin', 'exception', 'KD');

See Also
cleavelookup | rebasecuts | restrict | seqshowwords | regexp

1 Alphabetical List

1-416

cleavelookup
Find cleavage rule for enzyme or compound

Syntax

cleavelookup

cleavelookup('Code', CodeValue)

cleavelookup('Name', NameValue)

Arguments

CodeValue String specifying a code representing an abbreviation code
for an enzyme or compound. For valid codes, see the table
Cleave Lookup.

NameValue String specifying an enzyme or compound name. For valid
names, see the table Cleave Lookup.

Description

cleavelookup displays a table of abbreviation codes, cleavage positions, cleavage
patterns, and full names of enzymes and compounds for which cleavage rules
are specified by the cleavage rule library. For more information, see the ExPASy
PeptideCutter tool.

Cleave Lookup

Code Position Pattern Full Name

ARG-C 1 R ARG-C
proteinase

ASP-N 2 D ASP-N
endopeptidase

BNPS 1 W BNPS-Skatole
CASP1 1 (?<=[FWYL]\w[HAT])D(?=[^PEDQKR]) Caspase 1

http://web.expasy.org/peptide_cutter/
http://web.expasy.org/peptide_cutter/

 cleavelookup

1-417

Code Position Pattern Full Name

CASP2 1 (?<=DVA)D(?=[^PEDQKR]) Caspase 2
CASP3 1 (?<=DMQ)D(?=[^PEDQKR]) Caspase 3
CASP4 1 (?<=LEV)D(?=[^PEDQKR]) Caspase 4
CASP5 1 (?<=[LW]EH)D Caspase 5
CASP6 1 (?<=VE[HI])D(?=[^PEDQKR]) Caspase 6
CASP7 1 (?<=DEV)D(?=[^PEDQKR]) Caspase 7
CASP8 1 (?<=[IL]ET)D(?=[^PEDQKR]) Caspase 8
CASP9 1 (?<=LEH)D Caspase 9
CASP10 1 (?<=IEA)D Caspase 10
CH-HI 1 ([FY](?=[^P]))|(W(?=[^MP])) Chymotrypsin-

high specificity
CH-LO 1 ([FLY](?=[^P]))|(W(?=[^MP]))|

(M(?=[^PY]))|(H(?=[^DMPW]))

Chymotrypsin-
low specificity

CLOST 1 R Clostripain
CNBR 1 M CNBR
ENTKIN 1 (?<=[DN][DN][DN])K Enterokinase
FACTXA 1 (?<=[AFGILTVM][DE]G)R Factor XA
FORMIC 1 D Formic acid
GLUEND 1 E Glutamyl

endopeptidase
GRANB 1 (?<=IEP)D Granzyme B
HYDROX 1 N(?=G) Hydroxylamine
IODOB 1 W Iodosobenzoic

acid
LYSC 1 K Lysc
NTCB 1 C NTCB
PEPS 1 ((?<=[^HKR][^P])[^R](?=[FLWY][^P]))|

((?<=[^HKR][^P])[FLWY](?=\w[^P]))

Pepsin
PH = 1.3

1 Alphabetical List

1-418

Code Position Pattern Full Name

PEPS2 1 ((?<=[^HKR][^P])[^R](?=[FL][^P]))|

((?<=[^HKR][^P])[FL](?=\w[^P]))

Pepsin
PH > 2

PROEND 1 (?<=[HKR])P(?=[^P]) Proline
endopeptidase

PROTK 1 [AEFILTVWY] Proteinase K
STAPHP 1 (?<=[^E])E Staphylococcal

peptidase I
THERMO 1 [^DE](?=[AFILMV]) Thermolysin
THROMB 1 ((?<=\w\wG)R(?=G))| ((?<=[AFGILTVM]

[AFGILTVWA]P)R(?=[^DE][^DE]))

Thrombin

TRYPS 1 ((?<=\w)[KR](?=[^P]))| ((?

<=W)K(?=P))|((?<=M)R(?=P))

Trypsin

cleavelookup('Code', CodeValue) displays the cleavage position, cleavage pattern,
and full name of the enzyme or compound specified by CodeValue, a string specifying an
abbreviation code.

cleavelookup('Name', NameValue) displays the cleavage position, cleavage pattern,
and abbreviation code of the enzyme or compound specified by NameValue, a string
specifying an enzyme or compound name.

Examples

Using cleavelookup with an Enzyme Name

Display the cleavage position, cleavage pattern, and abbreviation code of the enzyme
Caspase 1.

cleavelookup('name', 'CASPASE 1')

ans =

1 (?<=[FWYL]\w[HAT])D(?=[^PEDQKR]) CASP1

 cleavelookup

1-419

Using cleavelookup with an Abbreviation Code

Display the cleavage position, cleavage pattern, and full name of the enzyme with a
abbreviation code of CASP1.

cleavelookup('code', 'CASP1')

ans =

1 (?<=[FWYL]\w[HAT])D(?=[^PEDQKR]) CASPASE 1

See Also
cleave | rebasecuts | restrict

1 Alphabetical List

1-420

cluster (phytree)
Validate clusters in phylogenetic tree

Syntax

LeafClusters = cluster(Tree, Threshold)

[LeafClusters, NodeClusters] = cluster(Tree, Threshold)

[LeafClusters, NodeClusters, Branches] = cluster(Tree, Threshold)

cluster(..., 'Criterion', CriterionValue, ...)

cluster(..., 'MaxClust', MaxClustValue, ...)

cluster(..., 'Distances', DistancesValue, ...)

Input Arguments

Tree Phylogenetic tree object created, such as created with the
phytree constructor function.

Threshold Scalar specifying a threshold value.
CriterionValue String specifying the criterion to determine the number of

clusters as a function of the species pairwise distances. Choices
are:

• 'maximum' (default) — Maximum within cluster pairwise
distance (Wmax). Cluster splitting stops when Wmax ≤
Threshold.

• 'median' — Median within cluster pairwise distance (Wmed).
Cluster splitting stops when Wmed ≤ Threshold.

• 'average' — Average within cluster pairwise distance (Wavg).
Cluster splitting stops when Wavg ≤ Threshold.

• 'ratio' — Between/within cluster pairwise distance ratio,
defined as
BWrat = (trace(B)/(k - 1)) / (trace(W)/(n - k))
where B and W are the between- and within-scatter matrices,
respectively. k is the number of clusters, and n is the number

 cluster (phytree)

1-421

of species in the tree. Cluster splitting stops when BWrat ≥
Threshold.

• 'gain' — Within cluster pairwise distance gain, defined as
Wgain = (trace(Wold)/ (trace(W) - 1) * (n - k - 1))
where W and Wold are the within-scatter matrices for k and
k - 1, respectively. k is the number of clusters, and n is the
number of species in the tree. Cluster splitting stops when
Wgain ≤ Threshold.

• 'silhouette' — Average silhouette width (SWavg). SWavg
ranges from -1 to +1. Cluster splitting stops when SWavg ≥
Threshold. For more information, see silhouette.

MaxClustValue Positive integer specifying the maximum number of possible
clusters for the tested partitions. Default is the number of leaves
in the tree.

Tip When using the 'maximum', 'median', or 'average'
criteria, set Threshold to [] (empty) to force cluster to
return MaxClustValue clusters. It does so because such metrics
monotonically decrease as k increases.

Tip When using the 'ratio', 'gain', or 'silhouette'
criteria, you may find it hard to estimate an appropriate
Threshold in advance. Set Threshold to [] (empty) to find
the optimal number of clusters below MaxClustValue. Also, set
MaxClustValue to a small value to avoid expensive computation
due to testing all possible number of clusters.

DistancesValue Matrix of pairwise distances, such as returned by the seqpdist
function, containing biological distances between each pair of
sequences. cluster substitutes this matrix for the patristic
distances in Tree. For example, this matrix can contain the real
sample pairwise distances.

1 Alphabetical List

1-422

Output Arguments

LeafClusters Column vector containing a cluster index for each species (leaf) in
Tree, a phylogenetic tree object.

NodeClusters Column vector containing the cluster index for each leaf node and
branch node in Tree.

Tip Use the LeafClusters or NodeClusters output vectors
with the handle returned by the plot method to modify graphic
elements of the phylogenetic tree object. For more information,
see “Examples” on page 1-423.

Branches Two-column matrix containing, for each step in the algorithm,
the index of the branch being considered and the value of the
criterion. Each row corresponds to a step in the algorithm. The
first column contains branch indices, and the second column
contains criterion values.

Tip To obtain the whole curve of the criterion versus the number
of clusters in Branches, set Threshold to [] (empty) and do not
specify a MaxClustValue. Be aware that computation of some
criteria can be computationally intensive.

Description

LeafClusters = cluster(Tree, Threshold) returns a column vector containing
a cluster index for each species (leaf) in a phylogenetic tree object. It determines the
optimal number of clusters as follows:

• Starting with two clusters (k = 2), selects the partition that optimizes the criterion
specified by the 'Criterion' property

• Increments k by 1 and again selects the optimal partition
• Continues incrementing k and selecting the optimal partition until a criterion value =

Threshold or k = the maximum number of clusters (that is, number of leaves)
• From all possible k values, selects the k value whose partition optimizes the criterion

 cluster (phytree)

1-423

[LeafClusters, NodeClusters] = cluster(Tree, Threshold) returns a column
vector containing the cluster index for each leaf node and branch node in Tree.

[LeafClusters, NodeClusters, Branches] = cluster(Tree, Threshold)

returns a two-column matrix containing, for each step in the algorithm, the index of the
branch being considered and the value of the criterion. Each row corresponds to a step in
the algorithm. The first column contains branch indices, and the second column contains
criterion values.

cluster(..., 'PropertyName', PropertyValue, ...) calls cluster with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:.

cluster(..., 'Criterion', CriterionValue, ...) specifies the criterion to
determine the number of clusters as a function of the species pairwise distances.

cluster(..., 'MaxClust', MaxClustValue, ...) specifies the maximum number
of possible clusters for the tested partitions. Default is the number of leaves in the tree.

cluster(..., 'Distances', DistancesValue, ...) substitutes the patristic
distances in Tree with a user-provided pairwise distance matrix.

Examples

Validate the clusters in a phylogenetic tree:

% Read sequences from a multiple alignment file into a MATLAB

% structure

gagaa = multialignread('aagag.aln');

% Build a phylogenetic tree from the sequences

gag_tree = seqneighjoin(seqpdist(gagaa),'equivar',gagaa);

% Validate the clusters in the tree and find the best partition

% using the 'gain' criterion

[i,j] = cluster(gag_tree,[],'criterion','gain','maxclust',10);

% Use the returned vector of indices to color the branches of each

% cluster in a plot of the tree

1 Alphabetical List

1-424

h = plot(gag_tree);

set(h.BranchLines(j==2),'Color','b')

set(h.BranchLines(j==1),'Color','r')

More About
• “phytree object”

References

[1] Dudoit, S. and Fridlyan, J. (2002). A prediction-based resampling method for
estimating the number of clusters in a dataset. Genome Biology 3(7), research
0036.1–0036.21.

[2] Theodoridis, S. and Koutroumbas, K. (1999). Pattern Recognition (Academic Press),
pp. 434–435.

 cluster (phytree)

1-425

[3] Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to
Cluster Analysis (New York, Wiley).

[4] Calinski, R. and Harabasz, J. (1974). A dendrite method for cluster analysis. Commun
Statistics 3, 1–27.

[5] Hartigan, J.A. (1985). Statistical theory in clustering. J Classification 2, 63–76.

See Also
phytree | plot | view | cluster | phytreeread | phytreeviewer | seqlinkage
| seqneighjoin | seqpdist | silhouette

1 Alphabetical List

1-426

clustergram object
Object containing hierarchical clustering analysis data

Description

A clustergram object contains hierarchical clustering analysis data that you can view in a
heat map and dendrograms.

Create a clustergram object using the object constructor function clustergram. View a
graphical representation of the clustergram object in a heat map and dendrograms using
the view method.

The clustergram class is a subclass of the HeatMap class.

Method Summary

Following are methods of a clustergram object:

addTitle (clustergram)
Add title to clustergram

addXLabel (clustergram)
Label x-axis of clustergram

addYLabel (clustergram)
Label y-axis of clustergram

clusterGroup (clustergram)
Select cluster group

get (clustergram)
Retrieve information about clustergram
object

plot (clustergram)
Render clustergram and dendrograms for
clustergram object

set (clustergram)
Set property of clustergram object

 clustergram object

1-427

view (clustergram)
View clustergram and dendrograms of
clustergram object

Property Summary

Properties for Clustering Analysis and Clustergram Creation

Property Name Description

Standardize String or number specifying the dimension for standardizing
the data values. This property transforms the standardized
values so that the mean is 0 and the standard deviation is 1
in the specified dimension. Choices are:

• 'column' or 1 — Standardize along the columns of data.
• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

Cluster String or number specifying the dimension for clustering the
values in the data. Choices are:

• 'column' or 1 — Cluster along the columns of data only,
which results in clustered rows.

• 'row' or 2 — Cluster along the rows of data only, which
results in clustered columns.

• 'all' or 3 (default) — Cluster along the columns of data,
then cluster along the rows of row-clustered data.

RowPDist String specifying the distance metric to pass to the pdist
function (Statistics Toolbox™ software) to calculate the
pairwise distances between rows. For information on choices,
see the pdist function. Default is 'euclidean'.

Note: If the distance metric requires extra arguments,
then RowPDistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would use
{'minkowski', P}.

1 Alphabetical List

1-428

Property Name Description

ColumnPDist String specifying the distance metric to pass to the pdist
function (Statistics Toolbox software) to calculate the
pairwise distances between columns. For information on
choices, see the pdist function. Default is 'euclidean'.

Note: If the distance metric requires extra arguments, then
ColumnPDistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would use
{'minkowski', P}.

Linkage String or two-element cell array of strings specifying the
linkage method to pass to the linkage function (Statistics
Toolbox software) to create the hierarchical cluster tree for
rows and columns. If a two-element cell array of strings, this
property uses the first element for linkage between rows,
and the second element for linkage between columns. For
information on choices, see the linkage function. Default is
'average'.

Dendrogram Scalar or two-element numeric vector or cell array of strings
specifying the 'colorthreshold' property to pass to the
dendrogram function (Statistics Toolbox software) to create
the dendrogram plot. If a two-element numeric vector or
cell array, the first element is for the rows, and the second
element is for the columns. For more information, see the
dendrogram function.

OptimalLeafOrder Enables or disables the optimal leaf ordering calculation,
which determines the leaf order that maximizes the
similarity between neighboring leaves. Choices are true
(enable) or false (disable). Default depends on the size
of Data, the matrix of data used to create the clustergram
object. If the number of rows or columns in Data exceeds
1500, default is false; otherwise, default is true.

Tip Disabling the optimal leaf ordering calculation can be
useful when working with large data sets, because this
calculation consumes a lot of memory and time.

 clustergram object

1-429

Property Name Description

Colormap Either of the following:

• M-by-3 matrix of RGB values
• Name or function handle of a function that returns a

colormap, such as redgreencmap or redbluecmap

Default is redgreencmap.
DisplayRange Positive scalar specifying the display range of standardized

values. Default is 3, which means there is a color variation
for values between –3 and 3, but values >3 are the same color
as 3, and values < –3 are the same color as –3.

For example, if you specify redgreencmap for the
'Colormap' property, pure red represents values ≥
DisplayRangeValue, and pure green represents values ≤
–DisplayRangeValue.

Symmetric Forces the color scale of the heat map to be symmetric
around zero. Choices are true (default) or false.

LogTrans Controls the log2 transform of the data from natural scale.
Choices are true or false (default).

DisplayRatio Either of the following:

• Scalar
• Two-element vector

This property specifies the ratio of space that the row and
column dendrograms occupy relative to the heat map. If
DisplayRatio is a scalar, it is used as the ratio for both
dendrograms. If DisplayRatio is a two-element vector,
the first element is used for the ratio of the row dendrogram
width to the heat map width, and the second element is
used for the ratio of the column dendrogram height to the
heat map height. The second element is ignored for one-
dimensional clustergrams. Default is 1/5.

ImputeFun One of the following:

• Name of a function that imputes missing data.

1 Alphabetical List

1-430

Property Name Description

• Handle to a function that imputes missing data.
• Cell array where the first element is the name of or

handle to a function that imputes missing data. The
remaining elements are property name/property value
pairs used as inputs to the function.

ShowDendrogram Shows and hides the dendrogram tree diagrams with the
clustergram. Choices are 'on' (default) or 'off'.

Tip After displaying a clustergram in a Clustergram window,

click the Show Dendrogram button on the toolbar to
show and hide the dendrograms.

Properties for Group Labels

Property Name Description

RowGroupMarker Structure or structure array containing information for
annotating the groups (clusters) of rows determined by the
clustergram function. The structure or structures contain
the following fields. If a single structure, then the fields
contain a cell array of elements. If a structure array, then the
fields contain one element:

• GroupNumber — Scalar specifying the row group number
to annotate.

• Annotation — String specifying text to annotate the row
group.

• Color — String or three-element vector of RGB values
specifying a color to label the row group. For more
information on specifying colors, see ColorSpec. If this
field is empty, default is 'blue'.

ColumnGroupMarker Structure or structure array containing information for
annotating the groups (clusters) of columns determined by
the clustergram function. The structure or structures
contain the following fields. If a single structure, then the

 clustergram object

1-431

Property Name Description

fields contain a cell array of elements. If a structure array,
then the fields contain one element:

• GroupNumber — Scalar specifying the column group
number to annotate.

• Annotation — String specifying text to annotate the
column group.

• Color — String or three-element vector of RGB values
specifying a color to label the column group. For more
information on specifying colors, see ColorSpec. If this
field is empty, default is 'blue'.

Properties for Row and Column Labels

Property Name Description

RowLabels Vector of numbers or cell array of text strings to label the
rows in the dendrogram and heat map. Default is a vector
of values 1 through M, where M is the number of rows in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

ColumnLabels Vector of numbers or cell array of text strings to label the
columns in the dendrogram and heat map. Default is a vector
of values 1 through M, where M is the number of columns in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

ColumnLabelsLocation Read-only string specifying the location of the column labels.
For clustergram objects, it is always 'bottom' (default).

RowLabelsLocation Read-only string specifying the location of the row labels. For
clustergram objects, it is always 'right' (default).

RowLabelsColor Structure or structure array containing color information for
labeling the rows (y-axis) of the clustergram. The structure or
structures contain the following fields. If a single structure,
then the fields contain a cell array of elements. If a structure
array, then the fields contain one element:

• Labels — String specifying a row label listed in the
RowLabels vector.

1 Alphabetical List

1-432

Property Name Description

• Colors — String or three-element vector of RGB values
specifying a color for the row label specified in the Labels
field. For more information on specifying colors, see
ColorSpec. If this field is empty, default colors are
assigned to the row label.

ColumnLabelsColor Structure or structure array containing color information
for labeling the columns (x-axis) of the clustergram. The
structure or structures contain the following fields. If a single
structure, then the fields contain a cell array of elements. If a
structure array, then the fields contain one element:

• Labels — String specifying a column label listed in the
ColumnLabels vector.

• Colors — String or three-element vector of RGB values
specifying a color for the column label specified in the
Labels field. For more information on specifying colors,
see ColorSpec. If this field is empty, default colors are
assigned to the column label.

LabelsWithMarkers Controls the display of colored markers instead of colored
text for the row labels and column labels. Choices are true
or false (default).

RowLabelsRotate Numeric value in degrees rotation specifying the orientation
of row (y-axis) labels. Default is 0 degrees, which is
horizontal. Positive values cause counterclockwise rotation.

ColumnLabelsRotate Numeric value in degrees rotation specifying the
orientation of column (x-axis) labels. Default is 90 degrees,
which is vertical. Values greater than 90 degrees cause
counterclockwise rotation.

Properties for Annotating Data

Property Name Description

Annotate Controls the display of intensity values on each area of the
heat map. Choices are true or false (default).

 clustergram object

1-433

Property Name Description

Tip After displaying a clustergram in a Clustergram window,

click the Annotate button on the toolbar to show and
hide the intensity values.

AnnotPrecision Positive integer specifying the precision of the intensity
values when displayed on the heat map. Default is 2.

AnnotColor String or three-element vector of RGB values specifying a
color, which is used for the text of the intensity values when
displayed on the heat map. Default is 'white'. For more
information on specifying colors, see ColorSpec.

Examples

Note: The following examples use the get and set methods with property names and
values of a clustergram object. When supplying a PropertyName, be aware that it is case
sensitive.

Determining Properties and Property Values of a Clustergram Object

Display all properties and their current values of a clustergram object, CGobj:

get(CGobj)

Return all properties and their current values of CGobj, a clustergram object, to
CGstruct, a scalar structure, in which each field name is a property of a clustergram
object, and each field contains the value of that property:

CGstruct = get(CGobj)

Return the value of a specific property of a clustergram object, CGobj, using either:

PropertyValue = get(CGobj, 'PropertyName')

PropertyValue = CGobj.PropertyName

Return the value of specific properties of a clustergram object, CGobj:

1 Alphabetical List

1-434

[Property1Value, Property2Value, ...] = get(CGobj, ...

'Property1Name', 'Property2Name', ...)

Determining Possible Values of Clustergram Object Properties

Display possible values for all properties that have a fixed set of property values in a
clustergram object, CGobj:

set(CGobj)

Display possible values for a specific property that has a fixed set of property values in a
clustergram object, CGobj:

set(CGobj, 'PropertyName')

Specifying Properties of a Clustergram Object

Set a specific property of a clustergram object, CGobj, using either:

set(CGobj, 'PropertyName', PropertyValue)

CGobj.PropertyName = PropertyValue

Set multiple properties of a clustergram object, CGobj:

set(CGobj, 'Property1Name', Property1Value, ...

 'Property2Name', Property2Value, ...)

More About
• “HeatMap object”

See Also
clustergram | addXLabel | clusterGroup | plot | set | addTitle | addYLabel
| get | view | display

 clustergram

1-435

clustergram

Compute hierarchical clustering, display dendrogram and heat map, and create
clustergram object

Syntax

CGobj = clustergram(Data)

CGobj = clustergram(Data, ...'RowLabels', RowLabelsValue, ...)

CGobj = clustergram(Data, ...'ColumnLabels', ColumnLabelsValue, ...)

CGobj = clustergram(Data, ...'Standardize', StandardizeValue, ...)

CGobj = clustergram(Data, ...'Cluster', ClusterValue, ...)

CGobj = clustergram(Data, ...'RowPDist', RowPDistValue, ...)

CGobj = clustergram(Data, ...'ColumnPDist', ColumnPDistValue, ...)

CGobj = clustergram(Data, ...'Linkage', LinkageValue, ...)

CGobj = clustergram(Data, ...'Dendrogram', DendrogramValue, ...)

CGobj = clustergram(Data, ...'OptimalLeafOrder',

OptimalLeafOrderValue, ...)

CGobj = clustergram(Data, ...'Colormap', ColormapValue, ...)

CGobj = clustergram(Data, ...'DisplayRange', DisplayRangeValue, ...)

CGobj = clustergram(Data, ...'Symmetric', SymmetricValue, ...)

CGobj = clustergram(Data, ...'LogTrans', LogTransValue, ...)

CGobj = clustergram(Data, ...'DisplayRatio', DisplayRatioValue, ...)

CGobj = clustergram(Data, ...'ImputeFun', ImputeFunValue, ...)

CGobj = clustergram(Data, ...'RowGroupMarker',

RowGroupMarkerValue, ...)

CGobj = clustergram(Data, ...'ColumnGroupMarker',

ColumnGroupMarkerValue, ...)

Arguments

Data DataMatrix object or numeric matrix of data. If
the matrix contains gene expression data, typically
each row corresponds to a gene and each column
corresponds to a sample.

1 Alphabetical List

1-436

RowLabelsValue Vector of numbers or cell array of text strings to label
the rows in the dendrogram and heat map. Default
is a vector of values 1 through M, where M is the
number of rows in Data.

Note: If the number of row labels is 200 or more, the
labels do not appear in the clustergram plot unless
you zoom in on the plot.

ColumnLabelsValue Vector of numbers or cell array of text strings to label
the columns in the dendrogram and heat map. Default
is a vector of values 1 through N, where N is the
number of columns in Data.

Note: If the number of column labels is 200 or more,
the labels do not appear in the clustergram plot unless
you zoom in on the plot.

StandardizeValue String or number specifying the dimension for
standardizing the values in Data. The clustergram
function transforms the standardized values so that
the mean is 0 and the standard deviation is 1 in the
specified dimension. Choices are:

• 'column' or 1 — Standardize along the columns
of data.

• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

 clustergram

1-437

ClusterValue String or number specifying the dimension for
clustering the values in Data. Choices are:

• 'column' or 1 — Cluster along the columns of
data only, which results in clustered rows.

• 'row' or 2 — Cluster along the rows of data only,
which results in clustered columns.

• 'all' or 3 (default) — Cluster along the columns
of data, then cluster along the rows of row-
clustered data.

RowPDistValue String, function handle, or cell array specifying
the distance metric to pass to the pdist function
(Statistics Toolbox software) to calculate the pairwise
distances between rows. For information on choices,
see the pdist function. Default is 'euclidean'.

Note: If the distance metric requires extra arguments,
then RowistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would
use {'minkowski', P}.

ColumnPDistValue String, function handle, or cell array specifying
the distance metric to pass to the pdist function
(Statistics Toolbox software) to use to calculate the
pairwise distances between columns. For information
on choices, see the pdist function. Default is
'euclidean'.

Note: If the distance metric requires extra arguments,
then ColumnPDistValue is a cell array. For example,
to use the Minkowski distance with exponent P, you
would use {'minkowski', P}.

1 Alphabetical List

1-438

LinkageValue String or two-element cell array of strings specifying
the linkage method to pass to the linkage function
(Statistics Toolbox software) to create the hierarchical
cluster tree for rows and columns. If a two-element
cell array of strings, the clustergram function uses
the first element for linkage between rows, and the
second element for linkage between columns. For
information on choices, see the linkage function.
Default is 'average'.

Tip To specify the linkage method for only one
dimension, set the other dimension to ''.

DendrogramValue Scalar or two-element numeric vector or cell array of
strings specifying the 'colorthreshold' property to
pass to the dendrogram function (Statistics Toolbox
software) to create the dendrogram plot. If a two-
element numeric vector or cell array, the first element
is for the rows, and the second element is for the
columns. For more information, see the dendrogram
function.

Tip To specify the 'colorthreshold' property for
only one dimension, set the other dimension to ''.

OptimalLeafOrderValue Enables or disables the optimal leaf ordering
calculation, which determines the leaf order that
maximizes the similarity between neighboring leaves.
Choices are true (enable) or false (disable). Default
depends on the size of Data. If the number of rows
or columns in Data exceeds 1500, default is false;
otherwise, default is true.

Note: Disabling the optimal leaf ordering calculation
can be useful when working with large data sets,
because this calculation consumes a lot of memory
and time.

 clustergram

1-439

ColormapValue Either of the following:

• M-by-3 matrix of RGB values
• Name of or handle to a function that returns

a colormap, such as redgreencmap or
redbluecmap

Default is redgreencmap, in which red represents
values above the mean, black represents the mean,
and green represents values below the mean of a row
(gene) across all columns (samples).

DisplayRangeValue Positive scalar that specifies the display range of
standardized values. Default is 3, which means there
is a color variation for values between –3 and 3, but
values >3 are the same color as 3, and values < –3 are
the same color as –3.

For example, if you specify redgreencmap for the
'Colormap' property, pure red represents values
≥ DisplayRangeValue, and pure green represents
values ≤ –DisplayRangeValue.

SymmetricValue Forces the color scale of the heat map to be symmetric
around zero. Choices are true (default) or false.

LogTransValue Controls the log2 transform of Data from natural
scale. Choices are true or false (default).

1 Alphabetical List

1-440

DisplayRatioValue Either of the following:

• Scalar
• Two-element vector

This property specifies the ratio of space that the
row and column dendrograms occupy relative to the
heat map. If DisplayRatioValue is a scalar, the
clustergram function uses it as the ratio for both
dendrograms. If DisplayRatioValue is a two-
element vector, the clustergram function uses the
first element for the ratio of the row dendrogram
width to the heat map width, and the second element
for the ratio of the column dendrogram height to the
heat map height. The clustergram function ignores
the second element for one-dimensional clustergrams.
Default is 1/5.

ImputeFunValue One of the following:

• Name of a function that imputes missing data.
• Handle to a function that imputes missing data.
• Cell array where the first element is the name

of or handle to a function that imputes missing
data. The remaining elements are property name/
property value pairs used as inputs to the function.

Caution If data points are missing, use the
'ImputeFun' property. Otherwise, the clustergram
function errors.

 clustergram

1-441

RowGroupMarkerValue Structure or structure array containing information
for annotating the groups (clusters) of rows
determined by the clustergram function. The
structure or structures contain the following fields.
If a single structure, then the fields contain a cell
array of elements. If a structure array, then the fields
contain a single element.

• GroupNumber — Scalar specifying the row group
number to annotate.

• Annotation — String specifying text to annotate
the row group.

• Color — String or three-element vector of RGB
values specifying a color, which the clustergram
function uses to label the row group. For more
information on specifying colors, see ColorSpec. If
this field is empty, default is 'blue'.

ColumnGroupMarkerValue Structure or structure array containing information
for annotating the groups (clusters) of columns
determined by the clustergram function. The
structure or structures contain the following fields.
If a single structure, then the fields contain a cell
array of elements. If a structure array, then the fields
contain a single element.

• GroupNumber — Scalar specifying the column
group number to annotate.

• Annotation — String specifying text to annotate
the column group.

• Color — String or three-element vector of RGB
values specifying a color, which the clustergram
function uses to label the column group. For more
information on specifying colors, see ColorSpec. If
this field is empty, default is 'blue'.

1 Alphabetical List

1-442

Description
CGobj = clustergram(Data) performs hierarchical clustering analysis on the
values in Data, a DataMatrix object or numeric matrix. It creates CGobj, an object
containing the analysis data, and displays a dendrogram and heat map. It uses
hierarchical clustering with Euclidean distance metric and average linkage to generate
the hierarchical tree. It clusters first along the columns (producing row-clustered data),
and then along the rows in the matrix Data. If Data contains gene expression data,
typically the rows correspond to genes and the columns correspond to samples.

CGobj = clustergram(Data, ...'PropertyName', PropertyValue, ...) calls
clustergram with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Enclose each PropertyName in single
quotation marks. Each PropertyName is case insensitive. These property name/property
value pairs are as follows:

CGobj = clustergram(Data, ...'RowLabels', RowLabelsValue, ...) uses
the contents of RowLabelsValue, a vector of numbers or cell array of text strings, as
labels for the rows in the dendrogram and heat map. Default is a vector of values 1
through M, where M is the number of rows in Data.

CGobj = clustergram(Data, ...'ColumnLabels', ColumnLabelsValue, ...)

uses the contents of ColumnLabelsValue, a vector of numbers or cell array of text
strings, as labels for the columns in the dendrogram and heat map. Default is a vector of
values 1 through M, where M is the number of columns in Data.

CGobj = clustergram(Data, ...'Standardize', StandardizeValue, ...)

specifies the dimension for standardizing the values in Data. The clustergram function
transforms the standardized values so that the mean is 0 and the standard deviation is 1
in the specified dimension. StandardizeValue can be:

• 'column' or 1 — Standardize along the columns of data.
• 'row' or 2 (default) — Standardize along the rows of data.
• 'none' or 3 — Do not standardize.

CGobj = clustergram(Data, ...'Cluster', ClusterValue, ...) specifies the
dimension for clustering the values in Data. ClusterValue can be:

• 'column' or 1 — Cluster along the columns of data only, which results in clustered
rows.

• 'row' or 2 — Cluster along the rows of data only, which results in clustered columns.

 clustergram

1-443

• 'all' or 3 (default) — Cluster along the columns of data, then cluster along the rows
of row-clustered data.

CGobj = clustergram(Data, ...'RowPDist', RowPDistValue, ...) specifies
the distance metric to pass to the pdist function (Statistics Toolbox software) to use
to calculate the pairwise distances between rows. RowPDistValue is a string, function
handle, or cell array. For information on choices, see the pdist function. Default is
'euclidean'.

CGobj = clustergram(Data, ...'ColumnPDist', ColumnPDistValue, ...)

specifies the distance metric to pass to the pdist function (Statistics Toolbox software)
to use to calculate the pairwise distances between columns. ColumnPDistValue is a
string, function handle, or cell array. For information on choices, see the pdist function.
Default is 'euclidean'.

Note: If the distance metric requires extra arguments, then RowPDistValue or
ColumnPDistValue is a cell array. For example, to use the Minkowski distance with
exponent P, you would use {'minkowski', P}.

CGobj = clustergram(Data, ...'Linkage', LinkageValue, ...) specifies the
linkage method to pass to the linkage function (Statistics Toolbox software) to use to
create the hierarchical cluster tree for rows and columns. LinkageValue is a string or
two-element cell array of strings. If a two-element cell array of strings, the clustergram
function uses first element for linkage between rows, and the second element for linkage
between columns. For information on choices, see the linkage function. Default is
'average'.

Tip To specify the linkage method for only one dimension, set the other dimension to ''.

CGobj = clustergram(Data, ...'Dendrogram', DendrogramValue, ...)

specifies the 'colorthreshold' property to pass to the dendrogram function
(Statistics Toolbox software) to create the dendrogram plot. DendrogramValue
is a scalar or two-element numeric vector or cell array of strings that specifies the
'colorthreshold' property. If a two-element numeric vector or cell array, the first
element is for the rows, and the second element is for the columns. For more information,
see the dendrogram function.

1 Alphabetical List

1-444

Tip To specify the 'colorthreshold' property for only one dimension, set the other
dimension to ''.

CGobj = clustergram(Data, ...'OptimalLeafOrder',

OptimalLeafOrderValue, ...) enables or disables the optimal leaf ordering
calculation, which determines the leaf order that maximizes the similarity between
neighboring leaves. Choices are true (enable) or false (disable). Default depends on the
size of Data. If the number of rows or columns in Data exceeds 1500, default is false;
otherwise, default is true.

Tip Disabling the optimal leaf ordering calculation can be useful when working with
large data sets, because this calculation consumes a lot of memory and time.

CGobj = clustergram(Data, ...'Colormap', ColormapValue, ...) specifies
the colormap to use to create the clustergram. The colormap controls the colors used
to display the heat map. ColormapValue is either an M-by-3 matrix of RGB values or
the name of or handle to a function that returns a colormap, such as redgreencmap or
redbluecmap. Default is redgreencmap.

Note: In redgreencmap, red represents values above the mean, black represents the
mean, and green represents values below the mean of a row (gene) across all columns
(samples). In redbluecmap, red represents values above the mean, white represents
the mean, and blue represents values below the mean of a row (gene) across all columns
(samples).

CGobj = clustergram(Data, ...'DisplayRange', DisplayRangeValue, ...)

specifies the display range of standardized values. DisplayRangeValue must be a
positive scalar. Default is 3, which means there is a color variation for values between –3
and 3, but values >3 are the same color as 3, and values < –3 are the same color as –3.

For example, if you specify redgreencmap for the 'Colormap' property, pure
red represents values ≥ DisplayRangeValue, and pure green represents values ≤
–DisplayRangeValue.

 clustergram

1-445

CGobj = clustergram(Data, ...'Symmetric', SymmetricValue, ...) controls
whether the color scale of the heat map is symmetric around zero. SymmetricValue can
be true (default) or false.

CGobj = clustergram(Data, ...'LogTrans', LogTransValue, ...) controls
the log2 transform of Data from natural scale. Choices are true or false (default).

CGobj = clustergram(Data, ...'DisplayRatio', DisplayRatioValue, ...)

specifies the ratio of space that the row and column dendrograms occupy relative to the
heat map. If DisplayRatioValue is a scalar, the clustergram function uses it as
the ratio for both dendrograms. If DisplayRatioValue is a two-element vector, the
clustergram function uses the first element for the ratio of the row dendrogram width
to the heat map width, and the second element for the ratio of the column dendrogram
height to the heat map height. The clustergram function ignores the second element for
one-dimensional clustergrams. Default is 1/5.

CGobj = clustergram(Data, ...'ImputeFun', ImputeFunValue, ...)

specifies a function and optional inputs that impute missing data. ImputeFunValue can
be any of the following:

• Name of a function that imputes missing data.
• Handle to a function that imputes missing data.
• Cell array where the first element is the name of or handle to a function that imputes

missing data. The remaining elements are property name/property value pairs used
as inputs to the function.

Tip If data points are missing, use the 'ImputeFun' property. Otherwise, the
clustergram function errors.

CGobj = clustergram(Data, ...'RowGroupMarker',

RowGroupMarkerValue, ...) specifies a structure or structure array containing
information for annotating the groups (clusters) of rows determined by the clustergram
function.

CGobj = clustergram(Data, ...'ColumnGroupMarker',

ColumnGroupMarkerValue, ...) specifies a structure or structure array containing
information for annotating the groups of columns determined by the clustergram
function.

1 Alphabetical List

1-446

Tip If necessary, view row labels (right) and column labels (bottom) by clicking the Zoom

In button on the toolbar to zoom the clustergram.

Examples

The following example uses data from an experiment (DeRisi et al., 1997) that used DNA
microarrays to study temporal gene expression of almost all genes in Saccharomyces
cerevisiae (yeast) during the metabolic shift from fermentation to respiration. Expression
levels were measured at seven time points during the diauxic shift.

1 Load the MAT-file, provided with Bioinformatics Toolbox, that contains filtered yeast
data.

load filteredyeastdata

This MAT-file includes three variables, which are added to the MATLABWorkspace:

• yeastvalues — A matrix of gene expression data from Saccharomyces cerevisiae
(yeast) during the metabolic shift from fermentation to respiration

• genes — A cell array of GenBank accession numbers for labeling the rows in
yeastvalues

• times — A vector of time values for labeling the columns in yeastvalues
2 Create a clustergram object and display the heat map from the gene expression data

in the first 30 rows of the yeastvalues matrix and standardize along the rows of
data.

cgo = clustergram(yeastvalues(1:30,:),'Standardize','Row')

Clustergram object with 30 rows of nodes and 7 columns of nodes.

 clustergram

1-447

3 Use the set method and the genes and times vectors to add meaningful row and
column labels to the clustergram.

set(cgo,'RowLabels',genes(1:30),'ColumnLabels',times)

1 Alphabetical List

1-448

4
Add a color bar to the clustergram by clicking the Insert Colorbar button on the
toolbar.

5 View a data tip containing the intensity value, row label, and column label for

a specific area of the heat map by clicking the Data Cursor button on the
toolbar, then clicking an area in the heat map. To delete this data tip, right-click it,
then select Delete Current Datatip.

6 Display intensity values for each area of the heat map by clicking the Annotate

 button on the toolbar. Click the Annotate button again to remove the intensity
values.

 clustergram

1-449

Tip If the amount of data is large enough, the cells within the clustergram are too
small to display the intensity annotations. Zoom the clustergram to see the intensity
annotations.

7 Remove the dendrogram tree diagrams from the figure by clicking the Show

Dendrogram button on the toolbar. Click the Show Dendrogram button again to
display the dendrograms.

8 Use the get method to display the properties of the clustergram object, cgo:

get(cgo)

 Cluster: 'ALL'

 RowPDist: {'Euclidean'}

 ColumnPDist: {'Euclidean'}

 Linkage: {'Average'}

 Dendrogram: {}

 OptimalLeafOrder: 1

 LogTrans: 0

 DisplayRatio: [0.2000 0.2000]

 RowGroupMarker: []

 ColumnGroupMarker: []

 ShowDendrogram: 'on'

 ColumnLabels: {' 9.5' ' 0' '11.5' '13.5' '15.5' '20.5' '18.5'}

 RowLabels: {30x1 cell}

 ColumnLabelsRotate: 90

 RowLabelsRotate: 0

 ColumnLabelsLocation: 'bottom'

 RowLabelsLocation: 'right'

 Standardize: 'ROW'

 Symmetric: 1

 DisplayRange: 3

 Colormap: [11x3 double]

 ImputeFun: []

 Annotate: 'off'

 AnnotPrecision: 2

 AnnotColor: 'w'

 ColumnLabelsColor: []

 RowLabelsColor: []

 LabelsWithMarkers: 0

9 Change the clustering parameters by changing the linkage method and changing the
color of the groups of nodes in the dendrogram whose linkage is less than a threshold
of 3.

set(cgo,'Linkage','complete','Dendrogram',3)

1 Alphabetical List

1-450

10 Place the cursor on a branch node in the dendrogram to highlight (in blue) the group
associated with it. Press and hold the mouse button to display a data tip listing the
group number and the nodes (genes or samples) in the group.

 clustergram

1-451

11 Right-click a branch node in the dendrogram to display a menu of options.

1 Alphabetical List

1-452

The following options are available:

• Set Group Color — Change the cluster group color.
• Print Group to Figure — Print the group to a Figure window.
• Copy Group to New Clustergram — Copy the group to a new Clustergram

window.
• Export Group to Workspace — Create a clustergram object of the group in the

MATLAB Workspace.
• Export Group Info to Workspace — Create a structure containing information

about the group in the MATLAB Workspace. The structure contains these fields:

• GroupNames — Cell array of text strings containing the names of the row or
column groups.

 clustergram

1-453

• RowNodeNames — Cell array of text strings containing the names of the row
nodes.

• ColumnNodeNames — Cell array of text strings containing the names of the
column nodes.

• ExprValues — An M-by-N matrix of intensity values, where M and N are
the number of row nodes and of column nodes respectively. If the matrix
contains gene expression data, typically each row corresponds to a gene and
each column corresponds to sample.

12 Create a clustergram object in the MATLAB Workspace of Group 18 by right-clicking
it, then selecting Export Group to Workspace. In the Export to Workspace dialog
box, type Group18, then click OK.

13 Use the get method to display the properties of the clustergram object, Group18.

get(Group18)

 Cluster: 'ALL'

 RowPDist: {'Euclidean'}

 ColumnPDist: {'Euclidean'}

 Linkage: 'complete'

 Dendrogram: 3

 OptimalLeafOrder: 1

 LogTrans: 0

 DisplayRatio: [0.2000 0.2000]

 RowGroupMarker: []

 ColumnGroupMarker: []

 ShowDendrogram: 'on'

 ColumnLabels: {' 9.5' ' 0' '11.5' '13.5' '15.5' '20.5' '18.5'}

 RowLabels: {3x1 cell}

 ColumnLabelsRotate: 90

 RowLabelsRotate: 0

 ColumnLabelsLocation: 'bottom'

 RowLabelsLocation: 'right'

 Standardize: 'ROW'

 Symmetric: 1

 DisplayRange: 3

 Colormap: [11x3 double]

 ImputeFun: []

 Annotate: 'off'

 AnnotPrecision: 2

 AnnotColor: 'w'

 ColumnLabelsColor: []

 RowLabelsColor: []

 LabelsWithMarkers: 0

14 Use the view method to view the clustergram (dendrograms and heat map) of the
clustergram object, Group18.

view(Group18)

1 Alphabetical List

1-454

15 View all the gene expression data using a diverging red and blue colormap and
standardize along the rows of data.

cgo_all = clustergram(yeastvalues,'Colormap',redbluecmap,'Standardize','Row')

Clustergram object with 614 rows of nodes and 7 columns of nodes.

 clustergram

1-455

16 Create structure arrays to specify marker colors and annotations for two groups of
rows (510 and 593) and two groups of columns (4 and 5).

rm = struct('GroupNumber',{510,593},'Annotation',{'A','B'},...

 'Color',{'b','m'});

cm = struct('GroupNumber',{4,5},'Annotation',{'Time1','Time2'},...

 'Color',{[1 1 0],[0.6 0.6 1]});

17 Use the 'RowGroupMarker' and 'ColumnGroupMarker' properties to add the
color markers and annotations to the clustergram.

set(cgo_all,'RowGroupMarker',rm,'ColumnGroupMarker',cm)

1 Alphabetical List

1-456

18 Click the color column markers to display the annotations.

More About
• “clustergram object”

References

[1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for
hierarchical clustering. Bioinformatics 17, Suppl 1:S22 – 9. PMID: 11472989.

[2] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis
and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95,
14863–8.

 clustergram

1-457

[3] DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science 278, 680–686s.

[4] Golub, T.R., Slonim, D.K., and Tamayo, P., et al. (1999). Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring.
Science 286 (15), 531–537.

See Also
redbluecmap | addXLabel | clustergroup | plot | set | redgreencmap |
addTitle | addYLabel | get | view | cluster | dendrogram | linkage | pdist

1 Alphabetical List

1-458

clusterGroup (clustergram)

Select cluster group

Syntax

clusterGroup(CGobj1, GroupIndex, Dim)

CGobj2 = clusterGroup(CGobj1, GroupIndex, Dim)

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, 'InfoOnly',

InfoOnlyValue)

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, 'Color',

ColorValue)

Input Arguments

CGobj1 Clustergram object created with the function clustergram.
GroupIndex Positive integer specifying a group index for a cluster in CGobj1.
Dim String specifying the dimension of the cluster group. Choices are

'column' or 'row'.
InfoOnlyValue Controls the return of a structure (instead of a clustergram object)

containing information about the cluster group. Choices are true
or false (default).

ColorValue Color to highlight the dendrogram of the selected cluster group.
Specify the color with one of the following:

• Three-element numeric vector of RGB values
• String containing a predefined single-letter color code
• String containing a predefined color name

For example, to use cyan, enter [0 1 1], 'c', or 'cyan'. For
more information on specifying colors, see ColorSpec.

 clusterGroup (clustergram)

1-459

Output Arguments

CGobj2 Clustergram object created from the selected cluster group in
CGobj1.

CGStruct Structure containing information about the cluster group in the
following fields:

• GroupNames — Cell array of text strings containing the names
of the row or column groups in the selected cluster group.

• RowNodeNames — Cell array of text strings containing the
names of the row nodes in the selected cluster group.

• ColumnNodeNames — Cell array of text strings containing the
names of the column nodes in the selected cluster group.

• ExprValues — An M-by-N matrix of intensity values, where
M and N are the number of row nodes and of column nodes
respectively in the selected cluster group. If the matrix contains
gene expression data, typically each row corresponds to a gene
and each column corresponds to a sample.

Description

clusterGroup(CGobj1, GroupIndex, Dim) selects and highlights a cluster group in
the Clustergram window, specified by a clustergram object, group index, and dimension.

CGobj2 = clusterGroup(CGobj1, GroupIndex, Dim) creates a clustergram
object from the specified cluster group. This syntax is equivalent to selecting the Export
Group to Workspace command from the context menu after right-clicking a group in
the Clustergram window.

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, 'InfoOnly',

InfoOnlyValue) controls the return of a structure (instead of a clustergram object)
containing information about the cluster group. Choices are true or false (default).
Setting this property to true is equivalent to selecting the Export Group Info
to Workspace command from the context menu after right-clicking a group in the
Clustergram window.

CGStruct = clusterGroup(CGobj1, GroupIndex, Dim, 'Color',

ColorValue) specifies a color for the dendrogram of the selected cluster group.

1 Alphabetical List

1-460

Examples

Select and highlight column cluster Group 4 in the Clustergram window, from the
clustergram object created in the first two steps of the “Examples” on page 1-446 section
of the clustergram function reference page.

clusterGroup(cgo,4,'column')

More About
• “clustergram object”

See Also
clustergram | set | view | get

 codonbias

1-461

codonbias

Calculate codon frequency for each amino acid coded for in nucleotide sequence

Syntax

CodonFreq = codonbias(SeqNT)

CodonFreq = codonbias(SeqNT, ...'GeneticCode',

GeneticCodeValue, ...)

CodonFreq = codonbias(SeqNT, ...'Frame', FrameValue, ...)

CodonFreq = codonbias(SeqNT, ...'Reverse', ReverseValue, ...)

CodonFreq = codonbias(SeqNT, ...'Ambiguous', AmbiguousValue, ...)

CodonFreq = codonbias(SeqNT, ...'Pie', PieValue, ...)

Input Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence
• Row vector of integers specifying a nucleotide sequence
• MATLAB structure containing a Sequence field that

contains a nucleotide sequence, such as returned
by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank

Valid characters include A, C, G, T, and U.

codonbias does not count ambiguous nucleotides or gaps.
GeneticCodeValue Integer or string specifying a genetic code number or

code name from the table Genetic Code. Default is 1 or
'Standard'.

Tip If you use a code name, you can truncate the name to
the first two letters of the name.

1 Alphabetical List

1-462

FrameValue Integer specifying a reading frame in the nucleotide
sequence. Choices are 1 (default), 2, or 3.

ReverseValue Controls the return of the codon frequency for the reverse
complement sequence of the nucleotide sequence specified
by SeqNT. Choices are true or false (default).

AmbiguousValue String specifying how to treat codons containing
ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V,
or N). Choices are:

• 'ignore' (default) — Skips codons containing
ambiguous characters

• 'prorate' — Counts codons containing ambiguous
characters and distributes them proportionately in the
appropriate codon fields. For example, the counts for
the codon ART are distributed evenly between the AAT
and AGT fields.

• 'warn' — Skips codons containing ambiguous
characters and displays a warning.

PieValue Controls the creation of a figure of 20 pie charts, one for
each amino acid. Choices are true or false (default).

Output Arguments

CodonFreq MATLAB structure containing a field for each amino acid,
each of which contains the associated codon frequencies as
percentages.

Description

Many amino acids are coded by two or more nucleic acid codons. However, the probability
that a specific codon (from all possible codons for an amino acid) is used to code an amino
acid varies between sequences. Knowing the frequency of each codon in a protein coding
sequence for each amino acid is a useful statistic.

 codonbias

1-463

CodonFreq = codonbias(SeqNT) calculates the codon frequency in percent for
each amino acid coded for in SeqNT, a nucleotide sequence, and returns the results in
CodonFreq, a MATLAB structure containing a field for each amino acid.

CodonFreq = codonbias(SeqNT, ...'PropertyName', PropertyValue, ...)

calls codonbias with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

CodonFreq = codonbias(SeqNT, ...'GeneticCode',

GeneticCodeValue, ...) specifies a genetic code. Choices for GenetidCodeValue
are an integer or string specifying a code number or code name from the table Genetic
Code. If you use a code name, you can truncate the name to the first two characters of the
name. Default is 1 or 'Standard'.

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

CodonFreq = codonbias(SeqNT, ...'Frame', FrameValue, ...) calculates the
codon frequency in the reading frame specified by FrameValue, which can be 1 (default),
2, or 3.

CodonFreq = codonbias(SeqNT, ...'Reverse', ReverseValue, ...) controls
the return of the codon frequency for the reverse complement of the nucleotide sequence
specified by SeqNT. Choices are true or false (default).

CodonFreq = codonbias(SeqNT, ...'Ambiguous', AmbiguousValue, ...)

specifies how to treat codons containing ambiguous nucleotide characters. Choices are
'ignore' (default), 'prorate', and 'warn'.

CodonFreq = codonbias(SeqNT, ...'Pie', PieValue, ...) controls the
creation of a figure of 20 pie charts, one for each amino acid. Choices are true or false
(default).

Genetic Code

Code Number Code Name

1 Standard

1 Alphabetical List

1-464

Code Number Code Name

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Examples

Calculate Codon Frequency for Each Amino Acid

Import a nucleotide sequence from the GenBank database into the MATLAB software.
For example, retrieve the DNA sequence that codes for a human insulin receptor.

S = getgenbank('M10051');

Calculate the codon frequency for each amino acid coded for by the DNA sequence, and
then plot the results.

cb = codonbias(S.Sequence,'PIE',true)

 codonbias

1-465

Get the codon frequency for the alanine (A) amino acid.

cb.Ala

ans =

 Codon: {'GCA' "GCC' "GCG' 'GCT'}

 Freq: [0.1600 0.3867 0.2533 02000]

See Also
aminolookup | codoncount | geneticcode | nt2aa

1 Alphabetical List

1-466

codoncount
Count codons in nucleotide sequence

Syntax

Codons = codoncount(SeqNT)

[Codons, CodonArray] = codoncount(SeqNT)

... = codoncount(SeqNT, ...'Frame', FrameValue, ...)

... = codoncount(SeqNT, ...'Reverse', ReverseValue, ...)

... = codoncount(SeqNT, ...'Ambiguous', AmbiguousValue, ...)

... = codoncount(SeqNT, ...'Figure', FigureValue, ...)

... = codoncount(SeqNT, ...'GeneticCode', GeneticCodeValue, ...)

Input Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers

• Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes

• MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned
by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank.

Examples: 'ACGT' or [1 2 3 4]
FrameValue Integer specifying a reading frame in the nucleotide sequence.

Choices are 1 (default), 2, or 3.
ReverseValue Controls the return of the codon count for the reverse

complement sequence of the nucleotide sequence specified by
SeqNT. Choices are true or false (default).

 codoncount

1-467

AmbiguousValue String specifying how to treat codons containing ambiguous
nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N). Choices
are:

• 'ignore' (default) — Skips codons containing ambiguous
characters

• 'bundle' — Counts codons containing ambiguous
characters and reports the total count in the Ambiguous
field of the Codons output structure.

• 'prorate' — Counts codons containing ambiguous
characters and distributes them proportionately in the
appropriate codon fields containing standard nucleotide
characters. For example, the counts for the codon ART are
distributed evenly between the AAT and AGT fields.

• 'warn' — Skips codons containing ambiguous characters
and displays a warning.

FigureValue Controls the display of a heat map of the codon counts. Choices
are true or false (default).

GeneticCodeValue Integer or string specifying a genetic code number or
code name from the table Genetic Code. Default is 1 or
'Standard'. You can also specify 'None'.

Tip If you use a code name, you can truncate the name to the
first two letters of the name.

Output Arguments

Codons MATLAB structure containing fields for the 64 possible codons
(AAA, AAC, AAG, ..., TTG, TTT), which contain the codon counts in
SeqNT.

CodonArray A 4-by-4-by-4 array containing the raw count data for each codon.
The three dimensions correspond to the three positions in the
codon, and the indices to each element are represented by 1 = A, 2
= C, 3 = G, and 4 = T. For example, the element (2,3,4) in the
array contains the number of CGT codons.

1 Alphabetical List

1-468

Description
Codons = codoncount(SeqNT) counts the codons in SeqNT, a nucleotide sequence,
and returns the codon counts in Codons, a MATLAB structure containing fields for the
64 possible codons (AAA, AAC, AAG, ..., TTG, TTT).

• For sequences that have codons containing the character U, these codons are added to
the corresponding codons containing a T.

• If the sequence contains gaps indicated by a hyphen (-), then codons containing gaps
are ignored.

• If the sequence contains unrecognized characters, then codons containing these
characters are ignored, and the following warning message appears:

Warning: Unknown symbols appear in the sequence. These will be ignored.

[Codons, CodonArray] = codoncount(SeqNT) returns CodonArray, a 4-by-4-by-4
array containing the raw count data for each codon. The three dimensions correspond to
the three positions in the codon, and the indices to each element are represented by 1 =
A, 2 = C, 3 = G, and 4 = T. For example, the element (2,3,4) in the array contains
the number of CGT codons.

... = codoncount(SeqNT, ...'PropertyName', PropertyValue, ...) calls
codoncount with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = codoncount(SeqNT, ...'Frame', FrameValue, ...) counts the codons in
the reading frame specified by FrameValue, which can be 1 (default), 2, or 3.

... = codoncount(SeqNT, ...'Reverse', ReverseValue, ...) controls the
return of the codon count for the reverse complement sequence of SeqNT. Choices are
true or false (default).

... = codoncount(SeqNT, ...'Ambiguous', AmbiguousValue, ...) specifies
how to treat codons containing ambiguous nucleotide characters. Choices are:

• 'ignore' (default)
• 'bundle'

• 'prorate'

• 'warn'

 codoncount

1-469

... = codoncount(SeqNT, ...'Figure', FigureValue, ...) controls the
display of a heat map of the codon counts. Choices are true or false (default).

... = codoncount(SeqNT, ...'GeneticCode', GeneticCodeValue, ...)

controls the overlay of a grid on the heat map figure. The grid groups the synonymous
codons according to GeneticCodeValue.

Examples

• Count the codons in a nucleotide sequence.

codons = codoncount('AAACGTTA')

codons =

 AAA: 1 ATC: 0 CGG: 0 GCT: 0 TCA: 0

 AAC: 0 ATG: 0 CGT: 1 GGA: 0 TCC: 0

 AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0

 AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0

 ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0

 ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0

 ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0

 ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0

 AGA: 0 CCC: 0 GAG: 0 GTT: 0 TTA: 0

 AGC: 0 CCG: 0 GAT: 0 TAA: 0 TTC: 0

 AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0

 AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0

 ATA: 0 CGC: 0 GCG: 0 TAT: 0

• Count the codons in the second frame for the reverse complement of a sequence.

r2codons = codoncount('AAACGTTA','Frame',2,'Reverse',true)

r2codons =

 AAA: 0 ATC: 0 CGG: 0 GCT: 0 TCA: 0

 AAC: 1 ATG: 0 CGT: 0 GGA: 0 TCC: 0

 AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0

 AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0

 ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0

 ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0

 ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0

 ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0

1 Alphabetical List

1-470

 AGA: 0 CCC: 0 GAG: 0 GTT: 1 TTA: 0

 AGC: 0 CCG: 0 GAT: 0 TAA: 0 TTC: 0

 AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0

 AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0

 ATA: 0 CGC: 0 GCG: 0 TAT: 0

• Create a heat map of the codons in a random nucleotide sequence and overlay a grid
that groups the synonymous codons according to the Standard genetic code.

a = randseq(1000);

codoncount(a,'Figure', true);

 codoncount

1-471

See Also
aacount | basecount | baselookup | codonbias | dimercount | nmercount |
ntdensity | seqcomplement | seqrcomplement | seqreverse | seqwordcount

1 Alphabetical List

1-472

colnames (DataMatrix)

Retrieve or set column names of DataMatrix object

Syntax

ReturnColNames = colnames(DMObj)

ReturnColNames = colnames(DMObj, ColIndices)

DMObjNew = colnames(DMObj, ColIndices, ColNames)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

ColIndices One or more columns in DMObj, specified by any of the following:

• Positive integer
• Vector of positive integers
• String specifying a column name
• Cell array of strings
• Logical vector

ColNames Column names specified by any of the following:

• Numeric vector
• Cell array of strings
• Character array
• Single string, which is used as a prefix for column names,

with column numbers appended to the prefix
• Logical true or false (default). If true, unique column

names are assigned using the format col1, col2, col3, etc.
If false, no column names are assigned.

 colnames (DataMatrix)

1-473

Note: The number of elements in ColNames must equal the
number of elements in ColIndices.

Output Arguments

ReturnColNames String or cell array of strings containing column names in DMObj.
DMObjNew DataMatrix object created with names specified by ColIndices

and ColNames.

Description

ReturnColNames = colnames(DMObj) returns ReturnColNames, a cell array of
strings specifying the column names in DMObj, a DataMatrix object.

ReturnColNames = colnames(DMObj, ColIndices) returns the column names
specified by ColIndices. ColIndices can be a positive integer, vector of positive
integers, string specifying a column name, cell array of strings, or a logical vector.

DMObjNew = colnames(DMObj, ColIndices, ColNames) returns DMObjNew, a
DataMatrix object with columns specified by ColIndices set to the names specified by
ColNames. The number of elements in ColIndices must equal the number of elements
in ColNames.

More About
• “DataMatrix object”

See Also
DataMatrix | rownames

1 Alphabetical List

1-474

combine
Class: bioma.data.ExptData
Package: bioma.data

Combine two ExptData objects

Syntax

NewEDObj = combine(EDObj1, EDObj2)

Description

NewEDObj = combine(EDObj1, EDObj2) combines data from two ExptData objects
and returns a new ExptData object. The number and names of features (rows) in both
ExptData objects must match. The number and names of samples (columns) in both
ExptData objects must match.

Input Arguments

EDObj#

Object of the bioma.data.ExptData class.

Default:

See Also
bioma.data.ExptData

How To
• “Representing Expression Data Values in ExptData Objects”

 combine

1-475

combine
Class: bioma.data.MetaData
Package: bioma.data

Combine two MetaData objects

Syntax

NewMDObj = combine(MDObj1, MDObj2)

Description

NewMDObj = combine(MDObj1, MDObj2) combines data from two MetaData objects
and returns a new MetaData object. The sample or feature names in the two MetaData
objects being combined must be unique. The variable names in the two MetaData objects
can be unique or the same. If a variable name is common to the two MetaData objects,
then the variable occupies one column in the new MetaData object. Variable names
unique to either of the two MetaData objects occupy their own column and contain values
only for the samples or features where the variable is present.

Input Arguments

MDObj#

Object of the bioma.data.MetaData class.

Default:

See Also
bioma.data.MetaData

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

1 Alphabetical List

1-476

combine
Class: bioma.data.MIAME
Package: bioma.data

Combine two MIAME objects

Syntax

NewMIAMEObj = combine(MIAMEObj1, MIAMEObj2)

Description

NewMIAMEObj = combine(MIAMEObj1, MIAMEObj2) combines data from two MIAME
objects and returns a new MIAME object. The combine method concatenates the
properties of the two objects together.

Input Arguments

MIAMEObj#

Object of the bioma.data.MIAME class.

Default:

Examples

Construct two MIAME objects, and then combine them:

% Create a MATLAB structure containing GEO Series data

geoStruct1 = getgeodata('GSE4616');

% Create a second MATLAB structure containing GEO Series data

geoStruct2 = getgeodata('GSE11287');

% Import bioma.data package to make constructor function

% available

import bioma.data.*

 combine

1-477

% Construct MIAME object from the first structure

MIAMEObj1 = MIAME(geoStruct1);

% Construct MIAME object from the second structure

MIAMEObj2 = MIAME(geoStruct2);

% Combine the two MIAME objects

newMIAMEObj = combine(MIAMEObj1, MIAMEObj2)

See Also
bioma.data.MIAME

How To
• “Representing Experiment Information in a MIAME Object”

1 Alphabetical List

1-478

combine
Class: BioRead

Combine two objects

Syntax

NewObj = combine(BioObj1, BioObj2)

NewObj = combine(BioObj1, BioObj2, Name,Value)

Description

NewObj = combine(BioObj1, BioObj2) combines data from two objects of the same
class and returns a new object. The combine method concatenates the properties of the
two objects.

NewObj = combine(BioObj1, BioObj2, Name,Value) combines data from two
objects of the same class with additional options specified by one or more Name,Value
pair arguments.

Input Arguments

BioObj#

Object of the BioRead or BioMap class.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 combine

1-479

'Name'

String describing NewObj. This string populates the Name property of NewObj.

Default:

Output Arguments

NewObj

Object of the BioRead or BioMap class.

Examples

Construct two BioRead objects, and then combine them:

% Create two structures with data from a FASTQ file

struct1 = fastqread('SRR005164_1_50.fastq', 'blockread', [1 10],...

 'trimheaders', true);

struct2 = fastqread('SRR005164_1_50.fastq', 'blockread', [11 20],...

 'trimheaders', true);

% Construct two BioRead objects from the two structures

BRObj1 = BioRead(struct1);

BRObj2 = BioRead(struct2);

% Combine the two BioRead objects and set the Name property

% of the new object

NewBRObj = combine(BRObj1, BRObj2, 'Name', 'BRObj1 + BRObj2')

NewBRObj =

 BioRead with properties:

 Quality: {20x1 cell}

 Sequence: {20x1 cell}

 Header: {20x1 cell}

 NSeqs: 20

 Name: 'BRObj1 + BRObj2'

See Also
BioRead | BioMap

1 Alphabetical List

1-480

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 conncomp (biograph)

1-481

conncomp (biograph)

Find strongly or weakly connected components in biograph object

Syntax

[S, C] = conncomp(BGObj)

[S, C] = conncomp(BGObj, ...'Directed', DirectedValue, ...)

[S, C] = conncomp(BGObj, ...'Weak', WeakValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).
DirectedValue Property that indicates whether the graph is directed or

undirected. Enter false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is
true.

A DFS-based algorithm computes the connected components.
Time complexity is O(N+E), where N and E are number of nodes
and edges respectively.

WeakValue Property that indicates whether to find weakly connected
components or strongly connected components. A weakly
connected component is a maximal group of nodes that are
mutually reachable by violating the edge directions. Set
WeakValue to true to find weakly connected components.
Default is false, which finds strongly connected components.
The state of this parameter has no effect on undirected graphs
because weakly and strongly connected components are the same
in undirected graphs. Time complexity is O(N+E), where N and E
are number of nodes and edges respectively.

1 Alphabetical List

1-482

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[S, C] = conncomp(BGObj) finds the strongly connected components of an N-by-N
adjacency matrix extracted from a biograph object, BGObj using Tarjan's algorithm. A
strongly connected component is a maximal group of nodes that are mutually reachable
without violating the edge directions. The N-by-N sparse matrix represents a directed
graph; all nonzero entries in the matrix indicate the presence of an edge.

The number of components found is returned in S, and C is a vector indicating to which
component each node belongs.

Tarjan's algorithm has a time complexity of O(N+E), where N and E are the number of
nodes and edges respectively.

[S, C] = conncomp(BGObj, ...'PropertyName', PropertyValue, ...) calls
conncomp with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property value pairs are as
follows:

[S, C] = conncomp(BGObj, ...'Directed', DirectedValue, ...) indicates
whether the graph is directed or undirected. Set DirectedValue to false for an
undirected graph. This results in the upper triangle of the sparse matrix being ignored.
Default is true. A DFS-based algorithm computes the connected components. Time
complexity is O(N+E), where N and E are number of nodes and edges respectively.

[S, C] = conncomp(BGObj, ...'Weak', WeakValue, ...) indicates whether
to find weakly connected components or strongly connected components. A weakly
connected component is a maximal group of nodes that are mutually reachable by
violating the edge directions. Set WeakValue to true to find weakly connected
components. Default is false, which finds strongly connected components. The state
of this parameter has no effect on undirected graphs because weakly and strongly
connected components are the same in undirected graphs. Time complexity is O(N+E),
where N and E are number of nodes and edges respectively.

 conncomp (biograph)

1-483

Note: By definition, a single node can be a strongly connected component.

Note: A directed acyclic graph (DAG) cannot have any strongly connected components
larger than one.

More About
• “biograph object”

References

[1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–160.

[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | allshortestpaths | isomorphism | maxflow | shortestpath |
traverse | graphconncomp | isdag | isspantree | minspantree | topoorder

1 Alphabetical List

1-484

cpgisland

Locate CpG islands in DNA sequence

Syntax

cpgStruct = cpgisland(SeqDNA)

cpgStruct = cpgisland(SeqDNA, ...'Window', WindowValue, ...)

cpgStruct = cpgisland(SeqDNA, ...'MinIsland', MinIslandValue, ...)

cpgStruct = cpgisland(SeqDNA, ...'GCmin', GCminValue, ...)

cpgStruct = cpgisland(SeqDNA, ...'CpGoe', CpGoeValue, ...)

cpgStruct = cpgisland(SeqDNA, ...'Plot', PlotValue, ...)

Input Arguments

SeqDNA One of the following:

• String of codes specifying a DNA nucleotide sequence
• Row vector of integers specifying a DNA nucleotide sequence
• MATLAB structure containing a Sequence field that

contains a DNA nucleotide sequence, such as returned by
fastaread, fastqread, emblread, getembl, genbankread,
or getgenbank

Valid characters include A, C, G, and T.

cpgisland does not count ambiguous nucleotides or gaps.
WindowValue Integer specifying the window size for calculating GC content and

CpGobserved/CpGexpected ratios. Default is 100 bases. A smaller
window size increases the noise in a plot.

MinIslandValue Integer specifying the minimum number of consecutive marked
bases to report as a CpG island. Default is 200 bases.

GCminValue Value specifying the minimum GC percent in a window needed to
mark a base. Choices are a value between 0 and 1. Default is 0.5.

 cpgisland

1-485

CpGoeValue Value specifying the minimum CpGobserved/CpGexpected ratio
in each window needed to mark a base. Choices are a value
between 0 and 1. Default is 0.6. This ratio is defined as:

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

PlotValue Controls the plotting of GC content, CpGoe content, CpG islands
greater than the minimum island size, and all potential CpG
islands for the specified criteria. Choices are true or false
(default).

Output Arguments

cpgStruct MATLAB structure containing the starting and ending bases of
the CpG islands greater than the minimum island size.

Description

cpgStruct = cpgisland(SeqDNA) searches SeqDNA, a DNA nucleotide sequence, for
CpG islands with a GC content greater than 50% and a CpGobserved/CpGexpected ratio
greater than 60%. It marks bases meeting this criteria within a moving window of 100
DNA bases and then returns the results in cpgStruct, a MATLAB structure containing
the starting and ending bases of the CpG islands greater than the minimum island size
of 200 bases.

cpgStruct = cpgisland(SeqDNA, ...'PropertyName', PropertyValue, ...)

calls cpgisland with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

cpgStruct = cpgisland(SeqDNA, ...'Window', WindowValue, ...) specifies
the window size for calculating GC content and CpGobserved/CpGexpected ratios.
Default is 100 bases. A smaller window size increases the noise in a plot.

cpgStruct = cpgisland(SeqDNA, ...'MinIsland', MinIslandValue, ...)

specifies the minimum number of consecutive marked bases to report as a CpG island.
Default is 200 bases.

1 Alphabetical List

1-486

cpgStruct = cpgisland(SeqDNA, ...'GCmin', GCminValue, ...) specifies the
minimum GC percent in a window needed to mark a base. Choices are a value between 0
and 1. Default is 0.5.

cpgStruct = cpgisland(SeqDNA, ...'CpGoe', CpGoeValue, ...) specifies
the minimum CpGobserved/CpGexpected ratio in each window needed to mark a base.
Choices are a value between 0 and 1. Default is 0.6. This ratio is defined as:

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

cpgStruct = cpgisland(SeqDNA, ...'Plot', PlotValue, ...) controls the
plotting of GC content, CpGoe content, CpG islands greater than the minimum island
size, and all potential CpG islands for the specified criteria. Choices are true or false
(default).

Examples

1 Import a nucleotide sequence from the GenBank database. For example, retrieve a
sequence from Homo sapiens chromosome 12.

S = getgenbank('AC156455');

2 Calculate the CpG islands in the sequence and plot the results.

cpgisland(S.Sequence,'PLOT',true)

ans =

 Starts: [4510 29359]

 Stops: [5468 29604]

The CpG islands greater than 200 bases in length are listed and a plot displays.

 cpgisland

1-487

See Also
basecount | ntdensity | seqshoworfs

1 Alphabetical List

1-488

crossvalind

Generate cross-validation indices

Syntax

Indices = crossvalind('Kfold', N, K)

[Train, Test] = crossvalind('HoldOut', N, P)

[Train, Test] = crossvalind('LeaveMOut', N, M)

[Train, Test] = crossvalind('Resubstitution', N, [P,Q])

[...] = crossvalind(Method, Group, ...)

[...] = crossvalind(Method, Group, ..., 'Classes', C)

[...] = crossvalind(Method, Group, ..., 'Min', MinValue)

Description

Indices = crossvalind('Kfold', N, K) returns randomly generated indices for
a K-fold cross-validation of N observations. Indices contains equal (or approximately
equal) proportions of the integers 1 through K that define a partition of the N
observations into K disjoint subsets. Repeated calls return different randomly generated
partitions. K defaults to 5 when omitted. In K-fold cross-validation, K-1 folds are used for
training and the last fold is used for evaluation. This process is repeated K times, leaving
one different fold for evaluation each time.

[Train, Test] = crossvalind('HoldOut', N, P) returns logical index vectors
for cross-validation of N observations by randomly selecting P*N (approximately)
observations to hold out for the evaluation set. P must be a scalar between 0 and 1. P
defaults to 0.5 when omitted, corresponding to holding 50% out. Using holdout cross-
validation within a loop is similar to K-fold cross-validation one time outside the loop,
except that non-disjointed subsets are assigned to each evaluation.

[Train, Test] = crossvalind('LeaveMOut', N, M), where M is an integer,
returns logical index vectors for cross-validation of N observations by randomly selecting
M of the observations to hold out for the evaluation set. M defaults to 1 when omitted.
Using 'LeaveMOut' cross-validation within a loop does not guarantee disjointed
evaluation sets. To guarantee disjointed evaluation sets, use 'Kfold' instead.

 crossvalind

1-489

[Train, Test] = crossvalind('Resubstitution', N, [P,Q]) returns logical
index vectors of indices for cross-validation of N observations by randomly selecting P*N
observations for the evaluation set and Q*N observations for training. Sets are selected
in order to minimize the number of observations that are used in both sets. P and Q are
scalars between 0 and 1. Q=1-P corresponds to holding out (100*P)%, while P=Q=1
corresponds to full resubstitution. [P,Q] defaults to [1,1] when omitted.

[...] = crossvalind(Method, Group, ...) takes the group structure of the data
into account. Group is a grouping vector that defines the class for each observation.
Group can be a numeric vector, a string array, or a cell array of strings. The partition
of the groups depends on the type of cross-validation: For K-fold, each group is divided
into K subsets, approximately equal in size. For all others, approximately equal numbers
of observations from each group are selected for the evaluation set. In both cases the
training set contains at least one observation from each group.

[...] = crossvalind(Method, Group, ..., 'Classes', C) restricts the
observations to only those values specified in C. C can be a numeric vector, a string array,
or a cell array of strings, but it is of the same form as Group. If one output argument is
specified, it contains the value 0 for observations belonging to excluded classes. If two
output arguments are specified, both will contain the logical value false for observations
belonging to excluded classes.

[...] = crossvalind(Method, Group, ..., 'Min', MinValue) sets the
minimum number of observations that each group has in the training set. Min defaults to
1. Setting a large value for Min can help to balance the training groups, but adds partial
resubstitution when there are not enough observations. You cannot set Min when using
K-fold cross-validation.

Examples

Note: The crossvalind function creates random partitions, which depend on the state
of the default random stream. Therefore, your results from the following examples will
vary from those shown.

Create a 10-fold cross-validation to compute classification error.

load fisheriris

indices = crossvalind('Kfold',species,10);

1 Alphabetical List

1-490

cp = classperf(species);

for i = 1:10

 test = (indices == i); train = ~test;

 class = classify(meas(test,:),meas(train,:),species(train,:));

 classperf(cp,class,test)

end

cp.ErrorRate

ans =

 0.0200

Approximate a leave-one-out prediction error estimate.

load carbig

x = Displacement; y = Acceleration;

N = length(x);

sse = 0;

for i = 1:100

 [train,test] = crossvalind('LeaveMOut',N,1);

 yhat = polyval(polyfit(x(train),y(train),2),x(test));

 sse = sse + sum((yhat - y(test)).^2);

end

CVerr = sse / 100

CVerr =

 4.9750

Divide cancer data 60/40 without using the 'Benign' observations. Assume groups are
the true labels of the observations.

labels = {'Cancer','Benign','Control'};

groups = labels(ceil(rand(100,1)*3));

[train,test] = crossvalind('holdout',groups,0.6,'classes',...

 {'Control','Cancer'});

sum(test) % Total groups allocated for testing

ans =

 35

sum(train) % Total groups allocated for training

ans =

 crossvalind

1-491

 26

More About
• “knnclassify”

See Also
classperf | classify | grp2idx | svmclassify

1 Alphabetical List

1-492

cytobandread
Read cytogenetic banding information

Syntax
CytoStruct = cytobandread(File)

Input Arguments

File String specifying a file containing cytogenetic G-banding data, such
as an NCBI ideogram text file or a UCSC Genome Browser cytoband
text file.

Output Arguments

CytoStruct Structure containing cytogenetic G-banding data in the following
fields:

• ChromLabels

• BandStartBPs

• BandEndBPs

• BandLabels

• GieStains

Description
CytoStruct = cytobandread(File) reads File, which is a string specifying a file
containing cytogenetic G-banding data, and returns CytoStruct, which is a structure
containing the following fields.

Field Description

ChromLabels Cell array containing the chromosome label (number or letter)
on which each band is located.

 cytobandread

1-493

Field Description

BandStartBPs Column vector containing the number of the base pair at the
start of each band.

BandEndBPs Column vector containing the number of the base pair at the
end of each band.

BandLabels Cell array containing the FISH label of each band, for
example, p32.3.

GieStains Cell array containing the Giemsa staining result for each
band. Possible stain results depend on the species. For
example, for Homo sapiens, the possibilities are:

• gneg

• gpos25

• gpos50

• gpos75

• gpos100

• acen

• stalk

• gvar

Tip You can download files containing cytogenetic G-banding data from the NCBI or
UCSC Genome Browser ftp site. For example, you can download the cytogenetic banding
data for Homo sapiens from:

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz

or
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

Examples

Read the cytogenetic banding information for Homo sapiens into a structure.

hs_cytobands = cytobandread('hs_cytoBand.txt')

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

1 Alphabetical List

1-494

hs_cytobands =

 ChromLabels: {862x1 cell}

 BandStartBPs: [862x1 int32]

 BandEndBPs: [862x1 int32]

 BandLabels: {862x1 cell}

 GieStains: {862x1 cell}

See Also
chromosomeplot

 DataMatrix object

1-495

DataMatrix object
Data structure encapsulating data and metadata from microarray experiment so that it
can be indexed by gene or probe identifiers and by sample identifiers

Description
A DataMatrix object is a data structure encapsulating measurement data and feature
metadata from a microarray experiment so that it can be indexed by gene or probe
identifiers and by sample identifiers. A DataMatrix object stores experimental data
in a matrix, with rows typically corresponding to gene names or probe identifiers, and
columns typically corresponding to sample identifiers. A DataMatrix object also stores
metadata, such as the gene names or probe identifiers and sample identifiers, in row
names and column names.

You create a DataMatrix object using the object constructor function DataMatrix.

Property Summary
Properties of a DataMatrix Object

Property Description

Name String that describes the DataMatrix object. Default is ''.
RowNames Empty array or cell array of strings that specifies the names

for the rows, typically gene names or probe identifiers. The
number of elements in the cell array must equal the number
of rows in the matrix. Default is an empty array.

ColNames Empty array or cell array of strings that specifies the names
for the columns, typically sample identifiers. The number of
elements in the cell array must equal the number of columns
in the matrix.

NRows Read-only. Positive number that specifies the number of rows
in the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

1 Alphabetical List

1-496

Property Description

NCols Read-only. Positive number that specifies the number of
columns in the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

NDims Read-only. Positive number that specifies the number of
dimensions in the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

ElementClass Read-only. String that specifies the class type of the elements
in the DataMatrix object, such as single or double.

Note: You cannot modify this property directly. You can
access it using the get method.

Method Summary

General Methods of a DataMatrix Object

Method Description

colnames Retrieve or set column names of DataMatrix object.
disp Display DataMatrix object.
display Display DataMatrix object, printing DataMatrix object

name. To invoke this method, enter the name of a
DataMatrix object at the command prompt.

dmwrite Write DataMatrix object to text file.
double Convert DataMatrix object to double-precision array.
get Retrieve information about DataMatrix object.
isempty Determine if DataMatrix object is empty.
isfinite Determine if DataMatrix object elements are finite.

 DataMatrix object

1-497

Method Description

isinf Determine if DataMatrix object elements are infinite.
isnan Determine if DataMatrix object elements are NaN.
isscalar Determine if DataMatrix object is scalar.
isequal Test DataMatrix objects for equality.
isequaln Test DataMatrix objects for equality, treating NaNs as

equal.
isvector Determine if DataMatrix object is vector.
length Return length of DataMatrix object.
ndims Return number of dimensions in DataMatrix object.
numel Return number of elements in DataMatrix object.
plot Draw 2-D line plot of DataMatrix object.
rownames Retrieve or set row names of DataMatrix object.
set Set property of DataMatrix object.
single Convert DataMatrix object to single-precision array.
size Return size of DataMatrix object.

Methods for Manipulating the Data in a DataMatrix Object

Method Description

cat Concatenate DataMatrix objects. The horzcat and vertcat
methods implement special cases.

horzcat Concatenate DataMatrix objects horizontally.
sortcols Sort columns of DataMatrix object in ascending or descending

order.
sortrows Sort rows of DataMatrix object in ascending or descending

order.
subsasgn Subscripted assignment for DataMatrix object. To invoke

this method, use parentheses or dot indexing described in
“Accessing Data in DataMatrix Objects”.

1 Alphabetical List

1-498

Method Description

subsref Subscripted reference for DataMatrix object. To invoke
this method, use parentheses or dot indexing described in
“Accessing Data in DataMatrix Objects”.

transpose Transpose DataMatrix object.
vertcat Concatenate DataMatrix objects vertically.

Descriptive Statistics and Statistical Learning Methods

Method Description

kmeans K-means clustering.
max Return maximum values in DataMatrix object.
mean Return average or mean values in DataMatrix object.
median Return median values in DataMatrix object.
min Return minimum values in DataMatrix object.
nanmax Return maximum values in DataMatrix object ignoring NaN

values.
nanmean Return average or mean values in DataMatrix object ignoring

NaN values.
nanmedian Return median values in DataMatrix object ignoring NaN

values.
nanmin Return minimum values in DataMatrix object ignoring NaN

values.
nanstd Return standard deviation values in DataMatrix object

ignoring NaN values.
nansum Return sum of elements in DataMatrix object ignoring NaN

values.
nanvar Return variance values in DataMatrix object ignoring NaN

values.
pca Principal component analysis on data.
pdist Pairwise distance.
std Return standard deviation values in DataMatrix object.
sum Return sum of elements in DataMatrix object.

 DataMatrix object

1-499

Method Description

var Return variance values in DataMatrix object.

Unary Methods — Exponential

Method Description

exp Exponential.
log Natural logarithm.
log10 Common (base 10) logarithm.
log2 Base 2 logarithm and dissect floating-point numbers into

exponent and mantissa.
pow2 Base 2 power and scale floating-point numbers.
sqrt Square root.

Unary Methods — Integer

Method Description

ceil Round DataMatrix object toward infinity.
fix Round DataMatrix object toward zero.
floor Round DataMatrix object toward minus infinity.
round Round DataMatrix object to nearest integer.

Unary Methods — Custom

Method Description

dmarrayfun Apply function to each element in DataMatrix object.

Binary Methods — Arithmetic Operator

Operator Method Description

+ plus Add DataMatrix objects
- minus Subtract DataMatrix objects.
.* times Multiply DataMatrix objects.
./ rdivide Right array divide DataMatrix objects.
.\ ldivide Left array divide DataMatrix objects.

1 Alphabetical List

1-500

Operator Method Description

.^ power Array power DataMatrix objects.

Binary Methods — Relational Operator

Operator Method Description

< lt Test DataMatrix objects for less than.
<= le Test DataMatrix objects for less than or equal to.
> gt Test DataMatrix objects for greater than.
>= ge Test DataMatrix objects for greater than or equal to.
== eq Test DataMatrix objects for equality.
~= ne Test DataMatrix objects for inequality.

Binary Methods — Custom

Method Description

dmbsxfun Apply element-by-element binary operation to two DataMatrix
objects with singleton expansion enabled.

Examples

Determining Properties and Property Values of a DataMatrix Object

You can display all properties and their current values of a DataMatrix object, DMobj, by
using the following syntax:

get(DMobj)

You can return all properties and their current values of DMobj, a DataMatrix object,
to DMstruct, a scalar structure in which each field name is a property of a DataMatrix
object, and each field contains the value of that property, by using the following syntax:

DMstruct = get(DMobj)

You can return the value of a specific property of a DataMatrix object, DMobj, by using
either of the following syntaxes:

PropertyValue = get(DMObj, 'PropertyName')

 DataMatrix object

1-501

PropertyValue = DMObj.PropertyName

You can return the value of specific properties of a DataMatrix object, DMobj, by using
the following syntax:

[Property1Value, Property2Value, ...] = get(DMobj, ...

'Property1Name', 'Property2Name', ...)

Determining Possible Values of DataMatrix Object Properties

You can display possible values for all properties that have a fixed set of property values
in a DataMatrix object, DMobj, by using the following syntax:

set(DMobj)

You can display possible values for a specific property that has a fixed set of property
values in a DataMatrix object, DMobj, by using the following syntax:

set(DMObj, 'PropertyName')

Specifying Properties of a DataMatrix Object

You can set a specific property of a DataMatrix object, DMObj, by using either of the
following syntaxes:

DMObj = set(DMObj, 'PropertyName', PropertyValue)

DMObj.PropertyName = PropertyValue

You can set multiple properties of a DataMatrix object, DMobj, by using the following
syntax:

set(DMobj, 'PropertyName1', PropertyValue1, ...

 'PropertyName2', PropertyValue2, ...)

Note: For more examples of creating and using DataMatrix objects, see “Representing
Expression Data Values in DataMatrix Objects”.

See Also
DataMatrix | disp | dmbsxfun | double | ge | get | horzcat | isequaln | le |
lt | mean | min | ndims | ne | plot | plus | rdivide | set | sortcols | std |
sum | var | colnames | dmarrayfun | dmwrite | eq | gt | isequal | ldivide |

1 Alphabetical List

1-502

max | median | minus | numel | power | rownames | single | sortrows | times |
vertcat

 DataMatrix

1-503

DataMatrix

Create DataMatrix object

Syntax

DMobj = DataMatrix(Matrix)

DMobj = DataMatrix(Matrix, RowNames, ColumnNames)

DMobj = DataMatrix('File', FileName)

DMobj = DataMatrix(..., 'RowNames', RowNamesValue, ...)

DMobj = DataMatrix(..., 'ColNames', ColNamesValue, ...)

DMobj = DataMatrix(..., 'Name', NameValue, ...)

DMobj = DataMatrix('File', FileName, ...'Delimiter',

DelimiterValue, ...)

DMobj = DataMatrix('File', FileName, ...'HLine', HLineValue, ...)

DMobj = DataMatrix('File', FileName, ...'Rows', RowsValue, ...)

DMobj = DataMatrix('File', FileName, ...'Columns',

ColumnsValue, ...)

Arguments

Matrix Two-dimensional numeric or logical array.
RowNames Row names for the DataMatrix object, specified by a numeric

vector, character array, or cell array of strings, whose elements
are equal in number to the number of rows in Matrix.
RowNames are typically gene names or probe identifiers from a
microarray experiment.

Note: The row names do not need to be unique.
ColumnNames Column names for the DataMatrix object, specified by a

numeric vector, character array, or cell array of strings, whose
elements are equal in number to the number of columns in
Matrix. ColumnNames are typically sample identifiers from a
microarray experiment.

1 Alphabetical List

1-504

Note: The column names do not need to be unique.
FileName String specifying a file name or a path and file name of a tab-

delimited TXT or XLS file that contains table-oriented data
and metadata.

Note: Typically, the first row of the table contains column
names, the first column contains row names, and the numeric
data starts at the 2,2 position. The DataMatrix function will
detect if the first column does not contain row names, and read
data from the first column. However, if the first row does not
contain header text (column names), set the HLine property to
0.

RowNamesValue,
ColNamesValue

Row names or column names for the DataMatrix object.
Choices are:

• Numeric vector, character array, or a cell array of strings,
whose elements are equal in number to the number of rows
or number of columns of numeric data in the input matrix.

• A single string, which is used as a prefix for row or column
names. Numbers will be appended to the prefix.

• true — Unique row or column names will be assigned
using the formats row1, row2, row3, etc., or col1, col2,
col3, etc.

• false — Default. No row or column names are assigned.

Note: The row or column names do not need to be unique.
NameValue String specifying a name for the DataMatrix object. Default is

''.

 DataMatrix

1-505

DelimiterValue String specifying a delimiter symbol to use for the input file.
Typical choices are:

• ' '

• '\t' (default)
• ','

• ';'

• '|'

HLineValue Positive integer that specifies which row of the input file
contains the column header text (column names). Default is 1.

When creating the DataMatrix object DMobj, the DataMatrix
function loads data from (HLineValue + 1) to the end of the
file.

Tip If the input file does not contain column header text
(column names), set HLineValue to 0.

RowsValue,
ColumnsValue

A subset of rows or columns in File, for the DataMatrix
function to use to create the DataMatrix object. Choices are:

• Cell array of strings
• Character array
• Numeric or logical vector

Description

A DataMatrix object encapsulates measurement data and feature metadata from a
microarray experiment so that it can be indexed by gene names or probe identifiers
and by sample identifiers. For examples of creating and using DataMatrix objects, see
“Representing Expression Data Values in DataMatrix Objects”.

Note: The DataMatrix constructor function is part of the microarray object package. To
make it available, type the following in the MATLAB command line:

import bioma.data.*

1 Alphabetical List

1-506

Otherwise, use bioma.data.DataMatrix instead of DataMatrix, in the following
syntaxes.

DMobj = DataMatrix(Matrix) creates a DataMatrix object, DMobj, from Matrix, a
two-dimensional numeric or logical array. Matrix can also be a DataMatrix object.

DMobj = DataMatrix(Matrix, RowNames, ColumnNames) creates a DataMatrix
object, DMobj, from Matrix, a two-dimensional numeric or logical array, with row
names and column names specified by RowNames and ColumnNames. RowNames
and ColumnNames can be a numeric vector, character array, or cell array of strings,
whose elements are equal in number to the number of rows and number of columns,
respectively, in Matrix. RowNames are typically gene names or probe identifiers, while
ColumnNames are typically sample identifiers.

Note: The row or column names do not need to be unique.

DMobj = DataMatrix('File', FileName) creates a DataMatrix object, DMobj, from
FileName, a string specifying a file name or a path and file name of a tab-delimited TXT
or XLS file that contains table-oriented data and metadata.

Note: Typically, the first row of the table contains column names, the first column
contains row names, and the numeric data starts at the 2,2 position. The DataMatrix
function will detect if the first column does not contain row names, and read data from
the first column. However, if the first row does not contain header text (column names),
set the HLine property to 0.

DMobj = DataMatrix(..., 'PropertyName', PropertyValue, ...) calls
DataMatrix with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

DMobj = DataMatrix(..., 'RowNames', RowNamesValue, ...) specifies row
names for DMobj. RowNamesValue can be any of the following:

• Numeric vector, character array, or a cell array of strings, whose elements are equal
in number to the number of rows of numeric data in the input matrix.

 DataMatrix

1-507

• A single string, which is used as a prefix for row names. Row numbers will be
appended to the prefix.

• true — Unique row names will be assigned using the format row1, row2, row3, etc.
• false — Default. No row names are assigned.

Note: The row names do not need to be unique.

DMobj = DataMatrix(..., 'ColNames', ColNamesValue, ...) specifies column
names for DMobj. ColNamesValue can be any of the following:

• Numeric vector, character array, or a cell array of strings, whose elements are equal
in number to the number of columns of numeric data in the input matrix.

• A single string, which is used as a prefix for column names. Column numbers will be
appended to the prefix.

• true — Unique column names will be assigned using the format col1, col2, col3,
etc.

• false — Default. No column names are assigned.

Note: The column names do not need to be unique.

DMobj = DataMatrix(..., 'Name', NameValue, ...) specifies a name for DMobj.
Default is ''.

DMobj = DataMatrix('File', FileName, ...'Delimiter',

DelimiterValue, ...) specifies a delimiter symbol to use for the input file. Typical
choices are:

• ' '

• '\t' (default)
• ','

• ';'

• '|'

DMobj = DataMatrix('File', FileName, ...'HLine', HLineValue, ...)

specifies which row of the input file contains the column header text (column names).

1 Alphabetical List

1-508

HLineValue is a positive integer. Default is 1. When creating the DataMatrix object
DMobj, the DataMatrix function loads data from (HLineValue + 1) to the end of the
file.

Tip If the input file does not contain column header text (column names), set
HLineValue to 0.

DMobj = DataMatrix('File', FileName, ...'Rows', RowsValue, ...)

specifies a subset of row names in File for the DataMatrix function to use to create
DMobj. RowsValue can be a cell array of strings, a character array, or a numeric or
logical vector.

DMobj = DataMatrix('File', FileName, ...'Columns',

ColumnsValue, ...) specifies a subset of column names in File for the DataMatrix
function to use to create DMobj. ColumnsValue can be a cell array of strings, a character
array, or a numeric or logical vector.

Examples

For examples of creating and using DataMatrix objects, see “Representing Expression
Data Values in DataMatrix Objects”.

More About
• “DataMatrix object”

See Also
disp | dmbsxfun | double | ge | get | horzcat | isequaln | le | lt | mean |
min | ndims | ne | plot | plus | rdivide | set | sortcols | std | sum | var |
colnames | dmarrayfun | dmwrite | eq | gt | isequal | ldivide | max | median
| minus | numel | power | rownames | single | sortrows | times | vertcat

 dayhoff

1-509

dayhoff
Return Dayhoff scoring matrix

Syntax

ScoringMatrix = dayhoff

Description

ScoringMatrix = dayhoff returns a PAM250 type scoring matrix. The order of amino
acids in the matrix is A R N D C Q E G H I L K M F P S T W Y V B Z X *.

See Also
blosum | gonnet | localalign | nuc44 | nwalign | pam | swalign

1 Alphabetical List

1-510

dimercount
Count dimers in nucleotide sequence

Syntax

Dimers = dimercount(SeqNT)

[Dimers, Percent] = dimercount(SeqNT)

... = dimercount(SeqNT, 'Ambiguous', AmbiguousValue)

... = dimercount(SeqNT, 'Chart', ChartValue)

Input Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers.

• Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes.

• MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned
by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank.

Examples: 'ACGT' or [1 2 3 4]
AmbiguousValue String specifying how to treat dimers containing ambiguous

nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N). Choices
are:

• 'ignore' (default) — Skips dimers containing ambiguous
characters

• 'bundle' — Counts dimers containing ambiguous
characters and reports the total count in the Ambiguous
field of the Dimers output structure.

 dimercount

1-511

• 'prorate' — Counts dimers containing ambiguous
characters and distributes them proportionately in the
appropriate dimer fields containing standard nucleotide
characters. For example, the counts for the dimer AR are
distributed evenly between the AA and AG fields.

• 'warn' — Skips dimers containing ambiguous characters
and displays a warning.

ChartValue String specifying a chart type. Choices are 'pie' or 'bar'.

Output Arguments

Dimers MATLAB structure containing the fields AA, AC, AG, AT, CA, CC, CG, CT,
GA, GC, GG, GT, TA, TC, TG, and TT, which contain the dimer counts in
SeqNT.

Percent A 4-by-4 matrix with the relative proportions of the dimers in SeqNT.
The rows correspond to A, C, G, and T in the first element of the dimer,
and the columns correspond to A, C, G, and T in the second element of
the dimer.

Description

Dimers = dimercount(SeqNT) counts the nucleotide dimers in SeqNT, a nucleotide
sequence, and returns the dimer counts in Dimers, a MATLAB structure containing the
fields AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT.

• For sequences that have dimers with the character U, these dimers are added to the
corresponding dimers containing a T.

• If the sequence contains gaps indicated by a hyphen (-), the gaps are ignored, and the
two characters on either side of the gap are counted as a dimer.

• If the sequence contains unrecognized characters, then dimers containing these
characters are ignored, and the following warning message appears:

Warning: Unknown symbols appear in the sequence. These will be ignored.

[Dimers, Percent] = dimercount(SeqNT) returns Percent, a 4-by-4 matrix with
the relative proportions of the dimers in SeqNT. The rows correspond to A, C, G, and T in

1 Alphabetical List

1-512

the first element of the dimer, and the columns correspond to A, C, G, and T in the second
element of the dimer.

... = dimercount(SeqNT, 'Ambiguous', AmbiguousValue) specifies how to treat
dimers containing ambiguous nucleotide characters. Choices are:

• 'ignore' (default)
• 'bundle'

• 'prorate'

• 'warn'

... = dimercount(SeqNT, 'Chart', ChartValue) creates a chart showing the
relative proportions of the dimers. ChartValue can be 'pie' or 'bar'.

Examples

Count the dimers in a nucleotide sequence and display a matrix of the percentage of each
dimer.

[Dimers, Percent] = dimercount('TAGCTGGCCAAGCGAGCTTG')

Dimers =

 AA: 1

 AC: 0

 AG: 3

 AT: 0

 CA: 1

 CC: 1

 CG: 1

 CT: 2

 GA: 1

 GC: 4

 GG: 1

 GT: 0

 TA: 1

 TC: 0

 TG: 2

 TT: 1

 dimercount

1-513

Percent =

 0.0526 0 0.1579 0

 0.0526 0.0526 0.0526 0.1053

 0.0526 0.2105 0.0526 0

 0.0526 0 0.1053 0.0526

See Also
aacount | basecount | baselookup | codoncount | nmercount | ntdensity

1 Alphabetical List

1-514

disp (DataMatrix)
Display DataMatrix object

Syntax

disp(DMObj)

Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Description

disp(DMObj) displays the DataMatrix object DMObj, including row names and column
names, without printing the DataMatrix object name.

More About
• “DataMatrix object”

See Also
DataMatrix

 dmarrayfun (DataMatrix)

1-515

dmarrayfun (DataMatrix)

Apply function to each element in DataMatrix object

Syntax

DMObjNew1 = dmarrayfun(Func, DMObj1)

DMObjNew1 = dmarrayfun(Func, DMObj1, DMObj2, ...)

[DMObjNew1, DMObjNew2, ...] = dmarrayfun(Func, DMObj1, ...)

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'UniformOutput',

UniformOutputValue, ...)

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'DataMatrixOutput',

DataMatrixOutputValue, ...)

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'Rows',

RowsValue, ...)

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'Columns',

ColumnsValue, ...)

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'ErrorHandler',

ErrorHandlerValue, ...)

Input Arguments

Func Function handle for a function that returns one or
more scalars, and returns values of the same class
each time it is called.

DMObj1 DataMatrix object, such as created by DataMatrix
(object constructor).

DMObj2 Either of the following:

• DataMatrix object, such as created by
DataMatrix (object constructor)

• MATLAB numeric array

1 Alphabetical List

1-516

Note: DMObj2 and subsequent input objects or arrays
must be the same size (number of rows and columns)
as DMObj1.

UniformOutputValue Specifies whether Func must return output values
without encapsulation in a cell array. Choices are
true (default) or false. If true, dmarrayfun must
return scalar values that can be concatenated into an
array. These values can also be a cell array. If false,
dmarrayfun returns a cell array (or multiple cell
arrays), where the I,Jth cell contains the value equal
to Func(DMObj1(I,J),...).

DataMatrixOutputValue Specifies whether return values must be DataMatrix
objects. Choices are true (default) or false. If you
set the 'UniformOutput' property to false, this
property is ignored.

RowsValue, ColumnsValue Specifies the rows or columns to which to apply the
function. Choices are:

• Positive integer
• Vector of positive integers
• String specifying a row or column name
• Cell array of strings
• Logical vector

ErrorHandlerValue Specifies a function handle to a function that
dmarrayfun calls if the call to Func fails.

Output Arguments

DMObjNew1,
DMObjNew2

DataMatrix objects created from applying the function to each
element in one or more DataMatrix objects. The size (number of
rows and columns), row names, and column names will be the
same as DMObj1.

 dmarrayfun (DataMatrix)

1-517

Description
DMObjNew1 = dmarrayfun(Func, DMObj1) applies the function specified by Func to
each element in DMObj1, a DataMatrix object, and returns the results in DMObjNew1, a
new DataMatrix object. DMObjNew1 has the same size (number of rows and columns),
row names, and column names as DMObj1. The I,Jth element of DMObjNew1 is equal
to Func(DMObj1(I,J)), where Func is a function handle for a function that takes one
input argument, returns one scalar value, and returns values of the same class each time
it is called.

DMObjNew1 = dmarrayfun(Func, DMObj1, DMObj2, ...) evaluates the function
specified by Func using elements in DMObj1, DMObj2, etc. as input arguments. The I,Jth
element of DMObjNew1 is equal to Func(DMObj1(I,J), DMObj2(I,J), ...), where
Func is a function handle for a function that takes multiple input arguments, returns
one scalar, and returns values of the same class each time it is called.

[DMObjNew1, DMObjNew2, ...] = dmarrayfun(Func, DMObj1, ...) evaluates
the function specified by Func using elements in DMObj1, and possibly other input
arguments. Func is a function handle for a function that takes one or more input
arguments, returns multiple scalars, and returns values of the same class each time
it is called. It returns DataMatrix objects DMObjNew1, DMObjNew2, etc. with each one
corresponding to one of the outputs of Func. The outputs of Func may be of different
classes, however, but each output must be the same each time it is called.

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'PropertyName',

PropertyValue, ...) calls dmarrayfun with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'UniformOutput',

UniformOutputValue, ...) specifies whether Func must return output values
without encapsulation in a cell array. Choices are true (default) or false. If true,
dmarrayfun must return scalar values that can be concatenated into an array. These
values can also be a cell array. If false, dmarrayfun returns a cell array (or multiple
cell arrays), where the I,Jth cell contains the value equal to Func(DMObj1(I,J),...).

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'DataMatrixOutput',

DataMatrixOutputValue, ...) specifies whether return values must be DataMatrix
objects. Choices are true (default) or false. If you set the 'UniformOutput' property
to false, this property is ignored.

1 Alphabetical List

1-518

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'Rows',

RowsValue, ...) applies the function only to the rows in the DataMatrix object
specified by RowsValue, which can be a positive integer, vector of positive integers,
string specifying a row name, cell array of strings, or a logical vector.

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'Columns',

ColumnsValue, ...) applies the function only to the columns in the DataMatrix object
specified by ColsValue, which can be a positive integer, vector of positive integers,
string specifying a column name, cell array of strings, or a logical vector.

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'ErrorHandler',

ErrorHandlerValue, ...) specifies a function handle to a function that dmarrayfun
calls if the call to Func fails. The error handling function will be called with these input
arguments:

• Structure with the following fields:

• identifier — Identifier of the error
• message — Error message text
• index — Linear index into the input array(s) at which the error occurred

• Set of input arguments at which the call to the function failed

If you do not specify ErrorHandlerValue, dmarrayfun rethrows the error from the call
to Func.

More About
• “DataMatrix object”

See Also
DataMatrix | dmbsxfun | arrayfun

 dmbsxfun (DataMatrix)

1-519

dmbsxfun (DataMatrix)
Apply element-by-element binary operation to two DataMatrix objects with singleton
expansion enabled

Syntax

DMObjNew = dmbsxfun(Func, DMObj1, DMObj2)

Input Arguments

Func Function handle for a function or a built-in function. For more
information on built-in functions, see bsxfun.

DMObj1, DMObj2 Either of the following:

• DataMatrix object, such as created by DataMatrix (object
constructor)

• MATLAB numeric array

At least one of these input arguments must be a DataMatrix
object.

Output Arguments

DMObjNew DataMatrix object or MATLAB numeric array created from
element-by-element binary operation of two DataMatrix objects
with singleton expansion enabled.

Description

DMObjNew = dmbsxfun(Func, DMObj1, DMObj2) applies an element-by-element
binary operation to the DataMatrix objects DMObj1 and DMObj2, with singleton
expansion enabled. Func is a function handle, and can be for a function or a built-in
function. For more information on built-in functions, see bsxfun.

1 Alphabetical List

1-520

DMObj1 and DMObj2 can be DataMatrix objects or MATLAB numeric arrays; however,
at least one of these input arguments must be a DataMatrix object. DMObj1 and DMObj2
must have the same number of rows or the same number or columns. If they don't have
the same number of rows, then one must be a row vector and its rows are expanded down
to be equal to the larger matrix. If they don't have the same number of columns, then one
must be a column vector and its columns are expanded across to be equal to the larger
matrix.

DMObjNew is a DataMatrix object, unless the larger input argument is a MATLAB
numeric array; then DMObjNew is also a numeric array. The size (number of rows and
columns) of DMObjNew is equal to the larger of the two input arguments. The row names
and column names of DMObjNew come from the larger input argument, or, if both inputs
are the same size, from the first input argument.

Examples

1 Use the DataMatrix constructor function to create a DataMatrix object.

A = bioma.data.DataMatrix(magic(3), 'RowNames', true, ...

 'ColNames',true)

2 Use the built-in function @minus to subtract the column means from this
DataMatrix object.

A = dmbsxfun(@minus, A, mean(A))

More About
• “DataMatrix object”

See Also
DataMatrix | bsxfun

 dmNames

1-521

dmNames
Class: bioma.data.ExptData
Package: bioma.data

Retrieve or set Name properties of DataMatrix objects in ExptData object

Syntax
DMNames = dmNames(EDObj)

DMNames = dmNames(EDObj, Subset)

NewEDObj = dmNames(EDObj, Subset, NewDMNames)

Description
DMNames = dmNames(EDObj) returns a cell array of strings specifying the Name
properties of all the DataMatrix objects in an ExptData object.

DMNames = dmNames(EDObj, Subset) returns a cell array of strings specifying the
Name properties of a subset of the DataMatrix objects in an ExptData object.

NewEDObj = dmNames(EDObj, Subset, NewDMNames) replaces the Name properties
of DataMatrix objects specified by Subset in EDObj, an ExptData object, with
NewDMNames, and returns NewEDObj, a new ExptData object.

Input Arguments
EDObj

Object of the bioma.data.ExptData class.

Default:

Subset

One of the following to specify the names of a subset of the DataMatrix objects in an
ExptData object:

• String specifying a name

1 Alphabetical List

1-522

• Cell array of strings specifying names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewDMNames

New names for specific DataMatrix objects within an ExptData object, specified by one of
the following:

• Numeric vector
• String or cell array of strings
• String, which dmNames uses as a prefix for the DataMatrix object names, with

numbers appended to the prefix
• Logical true or false (default). If true, dmNames assigns unique names using the

format DM1, DM2, etc.

The number of elements in NewDMNames must equal the number of DataMatrix objects
specified by Subset.

Default:

Output Arguments

DMNames

Cell array of strings specifying the names of all or some of the DataMatrix objects in an
ExptData object.

NewEDObj

Object of the bioma.data.ExptData class, returned after replacing names of specific
DataMatrix objects.

Examples
Construct an ExptData object, and then retrieve the names of DataMatrix objects from it:

 dmNames

1-523

% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Retrieve DataMatrix object names

DMNames = dmNames(EDObj);

See Also
bioma.data.ExptData | DataMatrix | elementNames | featureNames |
sampleNames

How To
• “Representing Expression Data Values in ExptData Objects”

1 Alphabetical List

1-524

dmwrite (DataMatrix)
Write DataMatrix object to text file

Syntax
dmwrite(DMObj, File)

dmwrite(..., 'Delimiter', DelimiterValue, ...)

dmwrite(..., 'Precision', PrecisionValue, ...)

dmwrite(..., 'Header', HeaderValue, ...)

dmwrite(..., 'Annotated', AnnotatedValue, ...)

dmwrite(..., 'Append', AppendValue, ...)

Arguments
DMObj DataMatrix object, such as created by DataMatrix (object

constructor).
File String specifying either a file name or a path and file name for

saving the text file.
DelimiterValue String specifying a delimiter symbol to use as a matrix column

separator. Typical choices are:

• ' '

• '\t' (default)
• ','

• ';'

• '|'

PrecisionValue Precision for writing the data to the text file, specified by either:

• Positive integer specifying the number of significant digits
• C-style format string starting with %, such as '%6.5f'

Default is 5.
HeaderValue String specifying the first line of the text file. Default is the Name

property for the DataMatrix object.

 dmwrite (DataMatrix)

1-525

AnnotatedValue Controls the writing of row and column names to the text file.
Choices are true (default) or false.

AppendValue Controls the appending of DMObj to File when it is an existing
file. Choices are true or false (default). If false, dmwrite
overwrites File.

Description

dmwrite(DMObj, File) writes a DataMatrix object to a text file using the delimiter \t
to separate DataMatrix columns. dmwrite writes the data starting at the first column of
the first row in the destination file.

dmwrite(..., 'PropertyName', PropertyValue, ...) calls dmwrite with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:

dmwrite(..., 'Delimiter', DelimiterValue, ...) specifies a delimiter symbol
to use as a column separator for separating matrix columns. Default is '\t'.

dmwrite(..., 'Precision', PrecisionValue, ...) specifies the precision for
writing the data to the text file. Default is 5.

dmwrite(..., 'Header', HeaderValue, ...) specifies the first line of the text file.
Default is the Name property for the DataMatrix object.

dmwrite(..., 'Annotated', AnnotatedValue, ...) controls the writing of row
and column names to the text file. Choices are true (default) or false.

dmwrite(..., 'Append', AppendValue, ...) controls the appending of DMObj to
File when it is an existing file. Choices are true or false (default). If false, dmwrite
overwrites File.

Examples

Create a DataMatrix object and write the contents to a text file:

1 Alphabetical List

1-526

% Create a DataMatrix object

dmobj = bioma.data.DataMatrix(rand(2,3), {'Row1', 'Row2'}, ...

 {'Col1', 'Col2', 'Col3'})

% Write the DataMatrix object to a text file

dmwrite(dmobj,'testdm.txt')

More About
• “DataMatrix object”

See Also
DataMatrix

 dna2rna

1-527

dna2rna
Convert DNA sequence to RNA sequence

Syntax

SeqRNA = dna2rna(SeqDNA)

Arguments

SeqDNA DNA sequence specified by any of the following:

• Character string with the characters A, C, G, T, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N,

• Row vector of integers from the table Mapping Nucleotide
Integers to Letter Codes.

• MATLAB structure containing a Sequence field that contains
a DNA sequence, such as returned by fastaread, fastqread,
emblread, getembl, genbankread, or getgenbank.

Description

SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA sequence by
converting any thymine nucleotides (T) in the DNA sequence to uracil nucleotides (U).
The RNA sequence is returned in the same format as the DNA sequence. For example, if
SeqDNA is a vector of integers, then so is SeqRNA.

Examples

Convert a DNA sequence to an RNA sequence.

rna = dna2rna('ACGATGAGTCATGCTT')

rna =

1 Alphabetical List

1-528

ACGAUGAGUCAUGCUU

See Also
rna2dna | regexp | strrep

 dnds

1-529

dnds
Estimate synonymous and nonsynonymous substitution rates

Syntax

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2)

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'GeneticCode',

GeneticCodeValue, ...)

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Method',

MethodValue, ...)

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Window',

WindowValue, ...)

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'AdjustStops',

AdjustStopsValue, ...)

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Verbose',

VerboseValue, ...)

Input Arguments

SeqNT1, SeqNT2 Nucleotide sequences. Enter either a string or a
structure with the field Sequence.

GeneticCodeValue Property to specify a genetic code. Enter a Code Number
or a string with a Code Name from the table Genetic
Code. If you use a Code Name, you can truncate it to the
first two characters. Default is 1 or Standard.

MethodValue String specifying the method for calculating substitution
rates. Choices are:

• NG (default) — Nei-Gojobori method (1986) uses
the number of synonymous and nonsynonymous
substitutions and the number of potentially
synonymous and nonsynonymous sites. Based on the
Jukes-Cantor model.

• LWL — Li-Wu-Luo method (1985) uses the number
of transitional and transversional substitutions at

1 Alphabetical List

1-530

three different levels of degeneracy of the genetic
code. Based on Kimura's two-parameter model.

• PBL — Pamilo-Bianchi-Li method (1993) is similar to
the Li-Wu-Luo method, but with bias correction. Use
this method when the number of transitions is much
larger than the number of transversions.

WindowValue Integer specifying the sliding window size, in codons, for
calculating substitution rates and variances.

AdjustStopsValue Controls whether stop codons are excluded from
calculations. Choices are true (default) or false.

VerboseValue Property to control the display of the codons considered
in the computations and their amino acid translations.
Choices are true or false (default).

Tip Specify true to use this display to manually verify
the codon alignment of the two input sequences. The
presence of stop codons (*) in the amino acid translation
can indicate that SeqNT1 and SeqNT2 are not codon-
aligned.

Output Arguments

Dn Nonsynonymous substitution rate(s).
Ds Synonymous substitution rate(s).
Vardn Variance for the nonsynonymous substitution rate(s).
Vards Variance for the synonymous substitutions rate(s).

Description

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2) estimates the synonymous
and nonsynonymous substitution rates per site between the two homologous nucleotide
sequences, SeqNT1 and SeqNT2, by comparing codons using the Nei-Gojobori method.

dnds returns:

 dnds

1-531

• Dn — Nonsynonymous substitution rate(s).
• Ds — Synonymous substitution rate(s).
• Vardn — Variance for the nonsynonymous substitution rate(s).
• Vards — Variance for the synonymous substitutions rate(s).

This analysis:

• Assumes that the nucleotide sequences, SeqNT1 and SeqNT2, are codon-aligned, that
is, do not have frame shifts

Tip If your sequences are not codon-aligned, use the nt2aa function to convert them
to amino acid sequences, use the nwalign function to globally align them, then use
the seqinsertgaps function to recover the corresponding codon-aligned nucleotide
sequences. For an example, see “Estimate synonymous and nonsynonymous
substitution rates between two nucleotide sequences” on page 1-533.

• Excludes codons that include ambiguous nucleotide characters or gaps
• Considers the number of codons in the shorter of the two nucleotide sequences

Caution If SeqNT1 and SeqNT2 are too short or too divergent, saturation can be reached,
and dnds returns NaNs and a warning message.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'PropertyName',

PropertyValue, ...) calls dnds with optional properties that use property name/
property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'GeneticCode',

GeneticCodeValue, ...) calculates synonymous and nonsynonymous substitution
rates using the specified genetic code. Enter a Code Number or a string with a Code
Name from the table Genetic Code. If you use a Code Name, you can truncate it to the
first two characters. Default is 1 or Standard.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Method',

MethodValue, ...) allows you to calculate synonymous and nonsynonymous
substitution rates using the following algorithms:

1 Alphabetical List

1-532

• NG (default) — Nei-Gojobori method (1986) uses the number of synonymous and
nonsynonymous substitutions and the number of potentially synonymous and
nonsynonymous sites. Based on the Jukes-Cantor model.

• LWL — Li-Wu-Luo method (1985) uses the number of transitional and transversional
substitutions at three different levels of degeneracy of the genetic code. Based on
Kimura's two-parameter model.

• PBL — Pamilo-Bianchi-Li method (1993) is similar to the Li-Wu-Luo method, but with
bias correction. Use this method when the number of transitions is much larger than
the number of transversions.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Window',

WindowValue, ...) performs the calculations over a sliding window, specified in
codons. Each output is an array containing a rate or variance for each window.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'AdjustStops',

AdjustStopsValue, ...) controls whether stop codons are excluded from
calculations. Choices are true (default) or false.

Tip When the 'AdjustStops' property is set to true, the following are true:

• Stop codons are excluded from frequency tables.

• Paths containing stop codons are not counted in the Nei-Gojobori method.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Verbose',

VerboseValue, ...) controls the display of the codons considered in the computations
and their amino acid translations. Choices are true or false (default).

Tip Specify true to use this display to manually verify the codon alignment of the two
input sequences, SeqNT1 and SeqNT2. The presence of stop codons (*) in the amino acid
translation can indicate that SeqNT1 and SeqNT2 are not codon-aligned.

 dnds

1-533

Examples

Estimate synonymous and nonsynonymous substitution rates between two nucleotide sequences

This example shows how to estimate synonymous and nonsynonymous substitution rates
between two nucleotide sequences that are not codon-aligned.

This example uses two nucleotide sequences representing the human HEXA gene
(accession number: NM_000520) and mouse HEXA gene (accession number: AK080777).

If you have live internet connection, you can use getgenbank function to retrieve the
sequence information from the NCBI data repository and load the data into MATLAB®.

humanHEXA = getgenbank('NM_000520');

mouseHEXA = getgenbank('AK080777');

For your convenience, MATLAB provides these two sequences in the following mat file.
Note that data in public databases are frequently updated and curated, and the results in
this example may slightly differ if you use the latest data.

load hexosaminidase.mat

Extract the coding regions from the two nucleotide sequences.

humanHEXA_cds = featuresparse(humanHEXA,'feature','CDS','Sequence',true);

mouseHEXA_cds = featuresparse(mouseHEXA,'feature','CDS','Sequence',true);

Align the amino acid sequences converted from the nucleotide sequences.

[sc,al] = nwalign(nt2aa(humanHEXA_cds),nt2aa(mouseHEXA_cds),'extendgap',1);

Use the seqinsertgaps function to copy the gaps from the aligned amino acid
sequences to their corresponding nucleotide sequences, thus codon-aligning them.

humanHEXA_aligned = seqinsertgaps(humanHEXA_cds,al(1,:))

mouseHEXA_aligned = seqinsertgaps(mouseHEXA_cds,al(3,:))

humanHEXA_aligned =

atgacaagctccaggctttggttttcgctgctgctggcggcagcgttcgcaggacgggcgacggccctctggccctggcctcagaacttccaaacctccgaccagcgctacgtcctttacccgaacaactttcaattccagtacgatgtcagctcggccgcgcagcccggctgctcagtcctcgacgaggccttccagcgctatcgtgacctgcttttcggttccgggtcttggccccgtccttacctcacagggaaacggcatacactggagaagaatgtgttggttgtctctgtagtcacacctggatgtaaccagcttcctactttggagtcagtggagaattataccctgaccataaatgatgaccagtgtttactcctctctgagactgtctggggagctctccgaggtctggagacttttagccagcttgtttggaaatctgctgagggcacattctttatcaacaagactgagattgaggactttccccgctttcctcaccggggcttgctgttggatacatctcgccattacctgccactctctagcatcctggacactctggatgtcatggcgtacaataaattgaacgtgttccactggcatctggtagatgatccttccttcccatatgagagcttcacttttccagagctcatgagaaaggggtcctacaaccctgtcacccacatctacacagcacaggatgtgaaggaggtcattgaatacgcacggctccggggtatccgtgtgcttgcagagtttgacactcctggccacactttgtcctggggaccaggtatccctggattactgactccttgctactctgggtctgagccctctggcacctttggaccagtgaatcccagtctcaataatacctatgagttcatgagcacattcttcttagaagtcagctctgtcttcccagatttttatcttcatcttggaggagatgaggttgatttcacctgctggaagtccaacccagagatccaggactttatgaggaagaaaggcttcggtgaggacttcaagcagctggagtccttctacatccagacgctgctggacatcgtctcttcttatggcaagggctatgtggtgtggcaggaggtgtttgataataaagtaaagattcagccagacacaatcatacaggtgtggcgagaggatattccagtgaactatatgaaggagctggaactggtcaccaaggccggcttccgggcccttctctctgccccctggtacctgaaccgtatatcctatggccctgactggaaggatttctacatagtggaacccctggcatttgaaggtacccctgagcagaaggctctggtgattggtggagaggcttgtatgtggggagaatatgtggacaacacaaacctggtccccaggctctggcccagagcaggggctgttgccgaaaggctgtggagcaacaagttgacatctgacctgacatttgcctatgaacgtttgtcacacttccgctgtgaattgctgaggcgaggtgtccaggcccaacccctcaatgtaggcttctgtgagcaggagtttgaacagacctga

mouseHEXA_aligned =

1 Alphabetical List

1-534

atggccggctgcaggctctgggtttcgctgctgctggcggcggcgttggcttgcttggccacggcactgtggccgtggccccagtacatccaaacctaccaccggcgctacaccctgtaccccaacaacttccagttccggtaccatgtcagttcggccgcgcaggcgggctgcgtcgtcctcgacgaggcctttcgacgctaccgtaacctgctcttcggttccggctcttggccccgacccagcttctcaaataaacagcaaacgttggggaagaacattctggtggtctccgtcgtcacagctgaatgtaatgaatttcctaatttggagtcggtagaaaattacaccctaaccattaatgatgaccagtgtttactcgcctctgagactgtctggggcgctctccgaggtctggagactttcagtcagcttgtttggaaatcagctgagggcacgttctttatcaacaagacaaagattaaagactttcctcgattccctcaccggggcgtactgctggatacatctcgccattacctgccattgtctagcatcctggatacactggatgtcatggcatacaataaattcaacgtgttccactggcacttggtggacgactcttccttcccatatgagagcttcactttcccagagctcaccagaaaggggtccttcaaccctgtcactcacatctacacagcacaggatgtgaaggaggtcattgaatacgcaaggcttcggggtatccgtgtgctggcagaatttgacactcctggccacactttgtcctgggggccaggtgcccctgggttattaacaccttgctactctgggtctcatctctctggcacatttggaccggtgaaccccagtctcaacagcacctatgacttcatgagcacactcttcctggagatcagctcagtcttcccggacttttatctccacctgggaggggatgaagtcgacttcacctgctggaagtccaaccccaacatccaggccttcatgaagaaaaagggcttt---actgacttcaagcagctggagtccttctacatccagacgctgctggacatcgtctctgattatgacaagggctatgtggtgtggcaggaggtatttgataataaagtgaaggttcggccagatacaatcatacaggtgtggcgggaagaaatgccagtagagtacatgttggagatgcaagatatcaccagggctggcttccgggccctgctgtctgctccctggtacctgaaccgtgtaaagtatggccctgactggaaggacatgtacaaagtggagcccctggcgtttcatggtacgcctgaacagaaggctctggtcattggaggggaggcctgtatgtggggagagtatgtggacagcaccaacctggtccccagactctggcccagagcgggtgccgtcgctgagagactgtggagcagtaacctgacaactaatatagactttgcctttaaacgtttgtcgcatttccgttgtgagctggtgaggagaggaatccaggcccagcccatcagtgtaggctgctgtgagcaggagtttgagcagacttga

Estimate the synonymous and nonsynonymous substitutions rates of the codon-aligned
nucleotide sequences and also display the codons considered in the computations and
their amino acid translations.

[nonsynSubRate,synSubRate] = dnds(humanHEXA_aligned,mouseHEXA_aligned,'verbose',true)

DNDS:

Codons considered in the computations:

ATGACAAGCTCCAGGCTTTGGTTTTCGCTGCTGCTGGCGGCAGCGTTCGCAGGACGGGCGACGGCCCTCTGGCCCTGGCCTCAGAACTTCCAAACCTCCGACCAGCGCTACGTCCTTTACCCGAACAACTTTCAATTCCAGTACGATGTCAGCTCGGCCGCGCAGCCCGGCTGCTCAGTCCTCGACGAGGCCTTCCAGCGCTATCGTGACCTGCTTTTCGGTTCCGGGTCTTGGCCCCGTCCTTACCTCACAGGGAAACGGCATACACTGGAGAAGAATGTGTTGGTTGTCTCTGTAGTCACACCTGGATGTAACCAGCTTCCTACTTTGGAGTCAGTGGAGAATTATACCCTGACCATAAATGATGACCAGTGTTTACTCCTCTCTGAGACTGTCTGGGGAGCTCTCCGAGGTCTGGAGACTTTTAGCCAGCTTGTTTGGAAATCTGCTGAGGGCACATTCTTTATCAACAAGACTGAGATTGAGGACTTTCCCCGCTTTCCTCACCGGGGCTTGCTGTTGGATACATCTCGCCATTACCTGCCACTCTCTAGCATCCTGGACACTCTGGATGTCATGGCGTACAATAAATTGAACGTGTTCCACTGGCATCTGGTAGATGATCCTTCCTTCCCATATGAGAGCTTCACTTTTCCAGAGCTCATGAGAAAGGGGTCCTACAACCCTGTCACCCACATCTACACAGCACAGGATGTGAAGGAGGTCATTGAATACGCACGGCTCCGGGGTATCCGTGTGCTTGCAGAGTTTGACACTCCTGGCCACACTTTGTCCTGGGGACCAGGTATCCCTGGATTACTGACTCCTTGCTACTCTGGGTCTGAGCCCTCTGGCACCTTTGGACCAGTGAATCCCAGTCTCAATAATACCTATGAGTTCATGAGCACATTCTTCTTAGAAGTCAGCTCTGTCTTCCCAGATTTTTATCTTCATCTTGGAGGAGATGAGGTTGATTTCACCTGCTGGAAGTCCAACCCAGAGATCCAGGACTTTATGAGGAAGAAAGGCTTCGAGGACTTCAAGCAGCTGGAGTCCTTCTACATCCAGACGCTGCTGGACATCGTCTCTTCTTATGGCAAGGGCTATGTGGTGTGGCAGGAGGTGTTTGATAATAAAGTAAAGATTCAGCCAGACACAATCATACAGGTGTGGCGAGAGGATATTCCAGTGAACTATATGAAGGAGCTGGAACTGGTCACCAAGGCCGGCTTCCGGGCCCTTCTCTCTGCCCCCTGGTACCTGAACCGTATATCCTATGGCCCTGACTGGAAGGATTTCTACATAGTGGAACCCCTGGCATTTGAAGGTACCCCTGAGCAGAAGGCTCTGGTGATTGGTGGAGAGGCTTGTATGTGGGGAGAATATGTGGACAACACAAACCTGGTCCCCAGGCTCTGGCCCAGAGCAGGGGCTGTTGCCGAAAGGCTGTGGAGCAACAAGTTGACATCTGACCTGACATTTGCCTATGAACGTTTGTCACACTTCCGCTGTGAATTGCTGAGGCGAGGTGTCCAGGCCCAACCCCTCAATGTAGGCTTCTGTGAGCAGGAGTTTGAACAGACC

ATGGCCGGCTGCAGGCTCTGGGTTTCGCTGCTGCTGGCGGCGGCGTTGGCTTGCTTGGCCACGGCACTGTGGCCGTGGCCCCAGTACATCCAAACCTACCACCGGCGCTACACCCTGTACCCCAACAACTTCCAGTTCCGGTACCATGTCAGTTCGGCCGCGCAGGCGGGCTGCGTCGTCCTCGACGAGGCCTTTCGACGCTACCGTAACCTGCTCTTCGGTTCCGGCTCTTGGCCCCGACCCAGCTTCTCAAATAAACAGCAAACGTTGGGGAAGAACATTCTGGTGGTCTCCGTCGTCACAGCTGAATGTAATGAATTTCCTAATTTGGAGTCGGTAGAAAATTACACCCTAACCATTAATGATGACCAGTGTTTACTCGCCTCTGAGACTGTCTGGGGCGCTCTCCGAGGTCTGGAGACTTTCAGTCAGCTTGTTTGGAAATCAGCTGAGGGCACGTTCTTTATCAACAAGACAAAGATTAAAGACTTTCCTCGATTCCCTCACCGGGGCGTACTGCTGGATACATCTCGCCATTACCTGCCATTGTCTAGCATCCTGGATACACTGGATGTCATGGCATACAATAAATTCAACGTGTTCCACTGGCACTTGGTGGACGACTCTTCCTTCCCATATGAGAGCTTCACTTTCCCAGAGCTCACCAGAAAGGGGTCCTTCAACCCTGTCACTCACATCTACACAGCACAGGATGTGAAGGAGGTCATTGAATACGCAAGGCTTCGGGGTATCCGTGTGCTGGCAGAATTTGACACTCCTGGCCACACTTTGTCCTGGGGGCCAGGTGCCCCTGGGTTATTAACACCTTGCTACTCTGGGTCTCATCTCTCTGGCACATTTGGACCGGTGAACCCCAGTCTCAACAGCACCTATGACTTCATGAGCACACTCTTCCTGGAGATCAGCTCAGTCTTCCCGGACTTTTATCTCCACCTGGGAGGGGATGAAGTCGACTTCACCTGCTGGAAGTCCAACCCCAACATCCAGGCCTTCATGAAGAAAAAGGGCTTTACTGACTTCAAGCAGCTGGAGTCCTTCTACATCCAGACGCTGCTGGACATCGTCTCTGATTATGACAAGGGCTATGTGGTGTGGCAGGAGGTATTTGATAATAAAGTGAAGGTTCGGCCAGATACAATCATACAGGTGTGGCGGGAAGAAATGCCAGTAGAGTACATGTTGGAGATGCAAGATATCACCAGGGCTGGCTTCCGGGCCCTGCTGTCTGCTCCCTGGTACCTGAACCGTGTAAAGTATGGCCCTGACTGGAAGGACATGTACAAAGTGGAGCCCCTGGCGTTTCATGGTACGCCTGAACAGAAGGCTCTGGTCATTGGAGGGGAGGCCTGTATGTGGGGAGAGTATGTGGACAGCACCAACCTGGTCCCCAGACTCTGGCCCAGAGCGGGTGCCGTCGCTGAGAGACTGTGGAGCAGTAACCTGACAACTAATATAGACTTTGCCTTTAAACGTTTGTCGCATTTCCGTTGTGAGCTGGTGAGGAGAGGAATCCAGGCCCAGCCCATCAGTGTAGGCTGCTGTGAGCAGGAGTTTGAGCAGACT

Translations:

M T S S R L W F S L L L A A A F A G R A T A L W P W P Q N F Q T S D Q R Y V L Y P N N F Q F Q Y D V S S A A Q P G C S V L D E A F Q R Y R D L L F G S G S W P R P Y L T G K R H T L E K N V L V V S V V T P G C N Q L P T L E S V E N Y T L T I N D D Q C L L L S E T V W G A L R G L E T F S Q L V W K S A E G T F F I N K T E I E D F P R F P H R G L L L D T S R H Y L P L S S I L D T L D V M A Y N K L N V F H W H L V D D P S F P Y E S F T F P E L M R K G S Y N P V T H I Y T A Q D V K E V I E Y A R L R G I R V L A E F D T P G H T L S W G P G I P G L L T P C Y S G S E P S G T F G P V N P S L N N T Y E F M S T F F L E V S S V F P D F Y L H L G G D E V D F T C W K S N P E I Q D F M R K K G F E D F K Q L E S F Y I Q T L L D I V S S Y G K G Y V V W Q E V F D N K V K I Q P D T I I Q V W R E D I P V N Y M K E L E L V T K A G F R A L L S A P W Y L N R I S Y G P D W K D F Y I V E P L A F E G T P E Q K A L V I G G E A C M W G E Y V D N T N L V P R L W P R A G A V A E R L W S N K L T S D L T F A Y E R L S H F R C E L L R R G V Q A Q P L N V G F C E Q E F E Q T

M A G C R L W V S L L L A A A L A C L A T A L W P W P Q Y I Q T Y H R R Y T L Y P N N F Q F R Y H V S S A A Q A G C V V L D E A F R R Y R N L L F G S G S W P R P S F S N K Q Q T L G K N I L V V S V V T A E C N E F P N L E S V E N Y T L T I N D D Q C L L A S E T V W G A L R G L E T F S Q L V W K S A E G T F F I N K T K I K D F P R F P H R G V L L D T S R H Y L P L S S I L D T L D V M A Y N K F N V F H W H L V D D S S F P Y E S F T F P E L T R K G S F N P V T H I Y T A Q D V K E V I E Y A R L R G I R V L A E F D T P G H T L S W G P G A P G L L T P C Y S G S H L S G T F G P V N P S L N S T Y D F M S T L F L E I S S V F P D F Y L H L G G D E V D F T C W K S N P N I Q A F M K K K G F T D F K Q L E S F Y I Q T L L D I V S D Y D K G Y V V W Q E V F D N K V K V R P D T I I Q V W R E E M P V E Y M L E M Q D I T R A G F R A L L S A P W Y L N R V K Y G P D W K D M Y K V E P L A F H G T P E Q K A L V I G G E A C M W G E Y V D S T N L V P R L W P R A G A V A E R L W S S N L T T N I D F A F K R L S H F R C E L V R R G I Q A Q P I S V G C C E Q E F E Q T

nonsynSubRate =

 0.0933

synSubRate =

 0.5181

More About
• “dndsml”
• “geneticcode”
• “nt2aa”
• “seqpdist”

References

[1] Li, W., Wu, C., and Luo, C. (1985). A new method for estimating synonymous
and nonsynonymous rates of nucleotide substitution considering the relative

 dnds

1-535

likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2(2),
150–174.

[2] Nei, M., and Gojobori, T. (1986). Simple methods for estimating the numbers of
synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and
Evolution 3(5), 418–426.

[3] Nei, M., and Jin, L. (1989). Variances of the average numbers of nucleotide
substitutions within and between populations. Molecular Biology and Evolution
6(3), 290–300.

[4] Nei, M., and Kumar, S. (2000). Synonymous and nonsynonymous nucleotide
substitutions” in Molecular Evolution and Phylogenetics (Oxford University
Press).

[5] Pamilo, P., and Bianchi, N. (1993). Evolution of the Zfx And Zfy genes: rates and
interdependence between the genes. Molecular Biology and Evolution 10(2), 271–
281.

See Also
featuresparse | nwalign | seqinsertgaps

1 Alphabetical List

1-536

dndsml
Estimate synonymous and nonsynonymous substitution rates using maximum likelihood
method

Syntax
[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2)

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'GeneticCode',

GeneticCodeValue, ...)

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'Verbose',

VerboseValue, ...)

Input Arguments

SeqNT1, SeqNT2 Nucleotide sequences. Enter either a string or a structure
with the field Sequence.

GeneticCodeValue Property to specify a genetic code. Enter a Code Number or
a string with a Code Name from the table Genetic Code. If
you use a Code Name, you can truncate it to the first two
characters. Default is 1 or Standard.

VerboseValue Property to control the display of the codons considered in the
computations and their amino acid translations. Choices are
true or false (default).

Tip Specify true to use this display to manually verify the
codon alignment of the two input sequences. The presence of
stop codons (*) in the amino acid translation can indicate that
SeqNT1 and SeqNT2 are not codon-aligned.

Output Arguments
Dn Nonsynonymous substitution rate(s).
Ds Synonymous substitution rate(s).

 dndsml

1-537

Like Likelihood of estimate of substitution rates.

Description

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2) estimates the synonymous and
nonsynonymous substitution rates between the two homologous sequences, SeqNT1
and SeqNT2, using the Goldman-Yang method (1994). This maximum likelihood
method estimates an explicit model for codon substitution that accounts for transition/
transversion rate bias and base/codon frequency bias. Then it uses the model to correct
synonymous and nonsynonymous counts to account for multiple substitutions at the
same site. The maximum likelihood method is best suited when the sample size is
significant (larger than 100 bases) and when the sequences being compared can have
transition/transversion rate biases and base/codon frequency biases.

dndsml returns:

• Dn — Nonsynonymous substitution rate(s).
• Ds — Synonymous substitution rate(s).
• Like — Likelihood of this estimate.

This analysis:

• Assumes that the nucleotide sequences, SeqNT1 and SeqNT2, are codon-aligned, that
is, do not have frame shifts.

Tip If your sequences are not codon-aligned, use the nt2aa function to convert them
to amino acid sequences, use the nwalign function to globally align them, then use
the seqinsertgaps function to recover the corresponding codon-aligned nucleotide
sequences. For an example, see “Estimate synonymous and nonsynonymous
substitution rates between two nucleotide sequences using maximum likelihood
method” on page 1-538.

• Excludes any ambiguous nucleotide characters or codons that include gaps.
• Considers the number of codons in the shorter of the two nucleotide sequences.

Caution If SeqNT1 and SeqNT2 are too short or too divergent, saturation can be reached,
and dndsml returns NaNs and a warning message.

1 Alphabetical List

1-538

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'PropertyName',

PropertyValue, ...) calls dnds with optional properties that use property name/
property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'GeneticCode',

GeneticCodeValue, ...) calculates synonymous and nonsynonymous substitution
rates using the specified genetic code. Enter a Code Number or a string with a Code
Name from the table Genetic Code. If you use a Code Name, you can truncate it to the
first two characters. Default is 1 or Standard.

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'Verbose',

VerboseValue, ...) controls the display of the codons considered in the computations
and their amino acid translations. Choices are true or false (default).

Tip Specify true to use this display to manually verify the codon alignment of the two
input sequences, SeqNT1 and SeqNT2. The presence of stop codons (*) in the amino acid
translation can indicate that SeqNT1 and SeqNT2 are not codon-aligned.

Examples

Estimate synonymous and nonsynonymous substitution rates between two nucleotide sequences
using maximum likelihood method

This example shows how to estimate synonymous and nonsynonymous substitution rates
between two nucleotide sequences that are not codon-aligned using maximum likelihood
method.

This example uses two nucleotide sequences representing the human HEXA gene
(accession number: NM_000520) and mouse HEXA gene (accession number: AK080777).

If you have live internet connection, you can use getgenbank function to retrieve the
sequence information from the NCBI data repository and load the data into MATLAB®.

humanHEXA = getgenbank('NM_000520');

mouseHEXA = getgenbank('AK080777');

 dndsml

1-539

For your convenience, MATLAB provides these two sequences in the following mat file.
Note that data in public databases are frequently updated and curated, and the results in
this example may slightly differ if you use the latest data.

load hexosaminidase.mat

Extract the coding regions from the two nucleotide sequences.

humanHEXA_cds = featuresparse(humanHEXA,'feature','CDS','Sequence',true);

mouseHEXA_cds = featuresparse(mouseHEXA,'feature','CDS','Sequence',true);

Align the amino acid sequences converted from the nucleotide sequences.

[sc,al] = nwalign(nt2aa(humanHEXA_cds),nt2aa(mouseHEXA_cds),'extendgap',1);

Use the seqinsertgaps function to copy the gaps from the aligned amino acid
sequences to their corresponding nucleotide sequences, thus codon-aligning them.

humanHEXA_aligned = seqinsertgaps(humanHEXA_cds,al(1,:))

mouseHEXA_aligned = seqinsertgaps(mouseHEXA_cds,al(3,:))

humanHEXA_aligned =

atgacaagctccaggctttggttttcgctgctgctggcggcagcgttcgcaggacgggcgacggccctctggccctggcctcagaacttccaaacctccgaccagcgctacgtcctttacccgaacaactttcaattccagtacgatgtcagctcggccgcgcagcccggctgctcagtcctcgacgaggccttccagcgctatcgtgacctgcttttcggttccgggtcttggccccgtccttacctcacagggaaacggcatacactggagaagaatgtgttggttgtctctgtagtcacacctggatgtaaccagcttcctactttggagtcagtggagaattataccctgaccataaatgatgaccagtgtttactcctctctgagactgtctggggagctctccgaggtctggagacttttagccagcttgtttggaaatctgctgagggcacattctttatcaacaagactgagattgaggactttccccgctttcctcaccggggcttgctgttggatacatctcgccattacctgccactctctagcatcctggacactctggatgtcatggcgtacaataaattgaacgtgttccactggcatctggtagatgatccttccttcccatatgagagcttcacttttccagagctcatgagaaaggggtcctacaaccctgtcacccacatctacacagcacaggatgtgaaggaggtcattgaatacgcacggctccggggtatccgtgtgcttgcagagtttgacactcctggccacactttgtcctggggaccaggtatccctggattactgactccttgctactctgggtctgagccctctggcacctttggaccagtgaatcccagtctcaataatacctatgagttcatgagcacattcttcttagaagtcagctctgtcttcccagatttttatcttcatcttggaggagatgaggttgatttcacctgctggaagtccaacccagagatccaggactttatgaggaagaaaggcttcggtgaggacttcaagcagctggagtccttctacatccagacgctgctggacatcgtctcttcttatggcaagggctatgtggtgtggcaggaggtgtttgataataaagtaaagattcagccagacacaatcatacaggtgtggcgagaggatattccagtgaactatatgaaggagctggaactggtcaccaaggccggcttccgggcccttctctctgccccctggtacctgaaccgtatatcctatggccctgactggaaggatttctacatagtggaacccctggcatttgaaggtacccctgagcagaaggctctggtgattggtggagaggcttgtatgtggggagaatatgtggacaacacaaacctggtccccaggctctggcccagagcaggggctgttgccgaaaggctgtggagcaacaagttgacatctgacctgacatttgcctatgaacgtttgtcacacttccgctgtgaattgctgaggcgaggtgtccaggcccaacccctcaatgtaggcttctgtgagcaggagtttgaacagacctga

mouseHEXA_aligned =

atggccggctgcaggctctgggtttcgctgctgctggcggcggcgttggcttgcttggccacggcactgtggccgtggccccagtacatccaaacctaccaccggcgctacaccctgtaccccaacaacttccagttccggtaccatgtcagttcggccgcgcaggcgggctgcgtcgtcctcgacgaggcctttcgacgctaccgtaacctgctcttcggttccggctcttggccccgacccagcttctcaaataaacagcaaacgttggggaagaacattctggtggtctccgtcgtcacagctgaatgtaatgaatttcctaatttggagtcggtagaaaattacaccctaaccattaatgatgaccagtgtttactcgcctctgagactgtctggggcgctctccgaggtctggagactttcagtcagcttgtttggaaatcagctgagggcacgttctttatcaacaagacaaagattaaagactttcctcgattccctcaccggggcgtactgctggatacatctcgccattacctgccattgtctagcatcctggatacactggatgtcatggcatacaataaattcaacgtgttccactggcacttggtggacgactcttccttcccatatgagagcttcactttcccagagctcaccagaaaggggtccttcaaccctgtcactcacatctacacagcacaggatgtgaaggaggtcattgaatacgcaaggcttcggggtatccgtgtgctggcagaatttgacactcctggccacactttgtcctgggggccaggtgcccctgggttattaacaccttgctactctgggtctcatctctctggcacatttggaccggtgaaccccagtctcaacagcacctatgacttcatgagcacactcttcctggagatcagctcagtcttcccggacttttatctccacctgggaggggatgaagtcgacttcacctgctggaagtccaaccccaacatccaggccttcatgaagaaaaagggcttt---actgacttcaagcagctggagtccttctacatccagacgctgctggacatcgtctctgattatgacaagggctatgtggtgtggcaggaggtatttgataataaagtgaaggttcggccagatacaatcatacaggtgtggcgggaagaaatgccagtagagtacatgttggagatgcaagatatcaccagggctggcttccgggccctgctgtctgctccctggtacctgaaccgtgtaaagtatggccctgactggaaggacatgtacaaagtggagcccctggcgtttcatggtacgcctgaacagaaggctctggtcattggaggggaggcctgtatgtggggagagtatgtggacagcaccaacctggtccccagactctggcccagagcgggtgccgtcgctgagagactgtggagcagtaacctgacaactaatatagactttgcctttaaacgtttgtcgcatttccgttgtgagctggtgaggagaggaatccaggcccagcccatcagtgtaggctgctgtgagcaggagtttgagcagacttga

Estimate the synonymous and nonsynonymous substitutions rates of the codon-aligned
nucleotide sequences and also display the codons considered in the computations and
their amino acid translations.

[nonsynSubRate,synSubRate] = dndsml(humanHEXA_aligned,mouseHEXA_aligned,'verbose',true)

DNDSML:

Codons considered in the computations:

ATGACAAGCTCCAGGCTTTGGTTTTCGCTGCTGCTGGCGGCAGCGTTCGCAGGACGGGCGACGGCCCTCTGGCCCTGGCCTCAGAACTTCCAAACCTCCGACCAGCGCTACGTCCTTTACCCGAACAACTTTCAATTCCAGTACGATGTCAGCTCGGCCGCGCAGCCCGGCTGCTCAGTCCTCGACGAGGCCTTCCAGCGCTATCGTGACCTGCTTTTCGGTTCCGGGTCTTGGCCCCGTCCTTACCTCACAGGGAAACGGCATACACTGGAGAAGAATGTGTTGGTTGTCTCTGTAGTCACACCTGGATGTAACCAGCTTCCTACTTTGGAGTCAGTGGAGAATTATACCCTGACCATAAATGATGACCAGTGTTTACTCCTCTCTGAGACTGTCTGGGGAGCTCTCCGAGGTCTGGAGACTTTTAGCCAGCTTGTTTGGAAATCTGCTGAGGGCACATTCTTTATCAACAAGACTGAGATTGAGGACTTTCCCCGCTTTCCTCACCGGGGCTTGCTGTTGGATACATCTCGCCATTACCTGCCACTCTCTAGCATCCTGGACACTCTGGATGTCATGGCGTACAATAAATTGAACGTGTTCCACTGGCATCTGGTAGATGATCCTTCCTTCCCATATGAGAGCTTCACTTTTCCAGAGCTCATGAGAAAGGGGTCCTACAACCCTGTCACCCACATCTACACAGCACAGGATGTGAAGGAGGTCATTGAATACGCACGGCTCCGGGGTATCCGTGTGCTTGCAGAGTTTGACACTCCTGGCCACACTTTGTCCTGGGGACCAGGTATCCCTGGATTACTGACTCCTTGCTACTCTGGGTCTGAGCCCTCTGGCACCTTTGGACCAGTGAATCCCAGTCTCAATAATACCTATGAGTTCATGAGCACATTCTTCTTAGAAGTCAGCTCTGTCTTCCCAGATTTTTATCTTCATCTTGGAGGAGATGAGGTTGATTTCACCTGCTGGAAGTCCAACCCAGAGATCCAGGACTTTATGAGGAAGAAAGGCTTCGAGGACTTCAAGCAGCTGGAGTCCTTCTACATCCAGACGCTGCTGGACATCGTCTCTTCTTATGGCAAGGGCTATGTGGTGTGGCAGGAGGTGTTTGATAATAAAGTAAAGATTCAGCCAGACACAATCATACAGGTGTGGCGAGAGGATATTCCAGTGAACTATATGAAGGAGCTGGAACTGGTCACCAAGGCCGGCTTCCGGGCCCTTCTCTCTGCCCCCTGGTACCTGAACCGTATATCCTATGGCCCTGACTGGAAGGATTTCTACATAGTGGAACCCCTGGCATTTGAAGGTACCCCTGAGCAGAAGGCTCTGGTGATTGGTGGAGAGGCTTGTATGTGGGGAGAATATGTGGACAACACAAACCTGGTCCCCAGGCTCTGGCCCAGAGCAGGGGCTGTTGCCGAAAGGCTGTGGAGCAACAAGTTGACATCTGACCTGACATTTGCCTATGAACGTTTGTCACACTTCCGCTGTGAATTGCTGAGGCGAGGTGTCCAGGCCCAACCCCTCAATGTAGGCTTCTGTGAGCAGGAGTTTGAACAGACC

ATGGCCGGCTGCAGGCTCTGGGTTTCGCTGCTGCTGGCGGCGGCGTTGGCTTGCTTGGCCACGGCACTGTGGCCGTGGCCCCAGTACATCCAAACCTACCACCGGCGCTACACCCTGTACCCCAACAACTTCCAGTTCCGGTACCATGTCAGTTCGGCCGCGCAGGCGGGCTGCGTCGTCCTCGACGAGGCCTTTCGACGCTACCGTAACCTGCTCTTCGGTTCCGGCTCTTGGCCCCGACCCAGCTTCTCAAATAAACAGCAAACGTTGGGGAAGAACATTCTGGTGGTCTCCGTCGTCACAGCTGAATGTAATGAATTTCCTAATTTGGAGTCGGTAGAAAATTACACCCTAACCATTAATGATGACCAGTGTTTACTCGCCTCTGAGACTGTCTGGGGCGCTCTCCGAGGTCTGGAGACTTTCAGTCAGCTTGTTTGGAAATCAGCTGAGGGCACGTTCTTTATCAACAAGACAAAGATTAAAGACTTTCCTCGATTCCCTCACCGGGGCGTACTGCTGGATACATCTCGCCATTACCTGCCATTGTCTAGCATCCTGGATACACTGGATGTCATGGCATACAATAAATTCAACGTGTTCCACTGGCACTTGGTGGACGACTCTTCCTTCCCATATGAGAGCTTCACTTTCCCAGAGCTCACCAGAAAGGGGTCCTTCAACCCTGTCACTCACATCTACACAGCACAGGATGTGAAGGAGGTCATTGAATACGCAAGGCTTCGGGGTATCCGTGTGCTGGCAGAATTTGACACTCCTGGCCACACTTTGTCCTGGGGGCCAGGTGCCCCTGGGTTATTAACACCTTGCTACTCTGGGTCTCATCTCTCTGGCACATTTGGACCGGTGAACCCCAGTCTCAACAGCACCTATGACTTCATGAGCACACTCTTCCTGGAGATCAGCTCAGTCTTCCCGGACTTTTATCTCCACCTGGGAGGGGATGAAGTCGACTTCACCTGCTGGAAGTCCAACCCCAACATCCAGGCCTTCATGAAGAAAAAGGGCTTTACTGACTTCAAGCAGCTGGAGTCCTTCTACATCCAGACGCTGCTGGACATCGTCTCTGATTATGACAAGGGCTATGTGGTGTGGCAGGAGGTATTTGATAATAAAGTGAAGGTTCGGCCAGATACAATCATACAGGTGTGGCGGGAAGAAATGCCAGTAGAGTACATGTTGGAGATGCAAGATATCACCAGGGCTGGCTTCCGGGCCCTGCTGTCTGCTCCCTGGTACCTGAACCGTGTAAAGTATGGCCCTGACTGGAAGGACATGTACAAAGTGGAGCCCCTGGCGTTTCATGGTACGCCTGAACAGAAGGCTCTGGTCATTGGAGGGGAGGCCTGTATGTGGGGAGAGTATGTGGACAGCACCAACCTGGTCCCCAGACTCTGGCCCAGAGCGGGTGCCGTCGCTGAGAGACTGTGGAGCAGTAACCTGACAACTAATATAGACTTTGCCTTTAAACGTTTGTCGCATTTCCGTTGTGAGCTGGTGAGGAGAGGAATCCAGGCCCAGCCCATCAGTGTAGGCTGCTGTGAGCAGGAGTTTGAGCAGACT

Translations:

M T S S R L W F S L L L A A A F A G R A T A L W P W P Q N F Q T S D Q R Y V L Y P N N F Q F Q Y D V S S A A Q P G C S V L D E A F Q R Y R D L L F G S G S W P R P Y L T G K R H T L E K N V L V V S V V T P G C N Q L P T L E S V E N Y T L T I N D D Q C L L L S E T V W G A L R G L E T F S Q L V W K S A E G T F F I N K T E I E D F P R F P H R G L L L D T S R H Y L P L S S I L D T L D V M A Y N K L N V F H W H L V D D P S F P Y E S F T F P E L M R K G S Y N P V T H I Y T A Q D V K E V I E Y A R L R G I R V L A E F D T P G H T L S W G P G I P G L L T P C Y S G S E P S G T F G P V N P S L N N T Y E F M S T F F L E V S S V F P D F Y L H L G G D E V D F T C W K S N P E I Q D F M R K K G F E D F K Q L E S F Y I Q T L L D I V S S Y G K G Y V V W Q E V F D N K V K I Q P D T I I Q V W R E D I P V N Y M K E L E L V T K A G F R A L L S A P W Y L N R I S Y G P D W K D F Y I V E P L A F E G T P E Q K A L V I G G E A C M W G E Y V D N T N L V P R L W P R A G A V A E R L W S N K L T S D L T F A Y E R L S H F R C E L L R R G V Q A Q P L N V G F C E Q E F E Q T

M A G C R L W V S L L L A A A L A C L A T A L W P W P Q Y I Q T Y H R R Y T L Y P N N F Q F R Y H V S S A A Q A G C V V L D E A F R R Y R N L L F G S G S W P R P S F S N K Q Q T L G K N I L V V S V V T A E C N E F P N L E S V E N Y T L T I N D D Q C L L A S E T V W G A L R G L E T F S Q L V W K S A E G T F F I N K T K I K D F P R F P H R G V L L D T S R H Y L P L S S I L D T L D V M A Y N K F N V F H W H L V D D S S F P Y E S F T F P E L T R K G S F N P V T H I Y T A Q D V K E V I E Y A R L R G I R V L A E F D T P G H T L S W G P G A P G L L T P C Y S G S H L S G T F G P V N P S L N S T Y D F M S T L F L E I S S V F P D F Y L H L G G D E V D F T C W K S N P N I Q A F M K K K G F T D F K Q L E S F Y I Q T L L D I V S D Y D K G Y V V W Q E V F D N K V K V R P D T I I Q V W R E E M P V E Y M L E M Q D I T R A G F R A L L S A P W Y L N R V K Y G P D W K D M Y K V E P L A F H G T P E Q K A L V I G G E A C M W G E Y V D S T N L V P R L W P R A G A V A E R L W S S N L T T N I D F A F K R L S H F R C E L V R R G I Q A Q P I S V G C C E Q E F E Q T

1 Alphabetical List

1-540

Initial estimates: Kappa=3.301203, dn=0.093274, ds=0.518095, t=0.353716

ML estimates: Kappa=2.498253, omega(dn/ds)=0.185577, t=0.602465

nonsynSubRate =

 0.0943

synSubRate =

 0.5080

More About
• “dnds”
• “geneticcode”
• “nt2aa”
• “seqpdist”

References

[1] Tamura, K., and Mei, M. (1993). Estimation of the number of nucleotide substitutions
in the control region of mitochondrial DNA in humans and chimpanzees.
Molecular Biology and Evolution 10, 512–526.

[2] Yang, Z., and Nielsen, R. (2000). Estimating synonymous and nonsynonymous
substitution rates under realistic evolutionary models. Molecular Biology and
Evolution 17, 32–43.

[3] Goldman, N., and Yang, Z. (1994). A Codon-based Model of Nucleotide Substitution
for Protein-coding DNA Sequences. Mol. Biol. Evol. 11(5), 725–736.

See Also
featuresparse | nwalign | seqinsertgaps

 dolayout (biograph)

1-541

dolayout (biograph)

Calculate node positions and edge trajectories

Syntax

dolayout(BGobj)

dolayout(BGobj, 'Paths', PathsOnlyValue)

Arguments

BGobj Biograph object created by the biograph function (object
constructor).

PathsOnlyValue Controls the calculation of only the edge paths, leaving the nodes
at their current positions. Choices are true or false (default).

Description

dolayout(BGobj) calls the layout engine to calculate the optimal position for each node
so that its 2-D rendering is clean and uncluttered, and then calculates the best curves
to represent the edges. The layout engine uses the following properties of the biograph
object:

• LayoutType — Specifies the layout engine as 'hierarchical', 'equilibrium', or
'radial'.

• LayoutScale — Rescales the sizes of the node before calling the layout engine. This
gives more space to the layout and reduces the overlapping of nodes.

• NodeAutoSize — Controls precalculating the node size before calling the layout
engine. When NodeAutoSize is set to 'on', the layout engine uses the node
properties FontSize and Shape, and the biograph object property LayoutScale to
precalculate the actual size of each node. When NodeAutoSize is set to 'off', the
layout engine uses the node property Size.

1 Alphabetical List

1-542

For more information on the above properties, see Properties of a Biograph Object. For
an example of accessing and specifying the above properties of a biograph object, see
“Create a Biograph object and specify its properties” on page 1-230.

dolayout(BGobj, 'Paths', PathsOnlyValue) controls the calculation of only the
edge paths, leaving the nodes at their current positions. Choices are true or false
(default).

Examples

Create a Biograph Object and Calculate Node Positions and Edge Trajectories

This example shows how to create a biograph object and calculate node positions and
edge trajectories.

Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg = biograph(cm)

Biograph object with 5 nodes and 9 edges.

Nodes do not have positions yet.

bg.nodes(1).Position

ans =

 []

Call the layout engine and render the graph.

dolayout(bg);

bg.nodes(1).Position

ans =

 98 206

 dolayout (biograph)

1-543

view(bg)

Manually modify a node position and recalculate the paths only.

bg.nodes(1).Position = [150 150];

dolayout(bg, 'Pathsonly', true);

view(bg)

1 Alphabetical List

1-544

More About
• “biograph object”

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

 double (DataMatrix)

1-545

double (DataMatrix)
Convert DataMatrix object to double-precision array

Syntax

B = double(DMObj)

B = double(DMObj, Rows)

B = double(DMObj, Rows, Cols)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Rows, Cols Row(s) or column(s) in DMObj, specified by one of the following:

• Scalar
• Vector of positive integers
• String specifying a row or column name
• Cell array of row or column names
• Logical vector

Output Arguments

B MATLAB numeric array.

Description

B = double(DMObj) converts DMObj, a DataMatrix object, to a double-precision array,
which it returns in B.

B = double(DMObj, Rows) converts a subset of DMObj, a DataMatrix object, specified
by Rows, to a double-precision array, which it returns inB. Rows can be a positive integer,

1 Alphabetical List

1-546

vector of positive integers, string specifying a row name, cell array of row names, or a
logical vector.

B = double(DMObj, Rows, Cols) converts a subset of DMObj, a DataMatrix object,
specified by Rows and Cols, to a double-precision array, which it returns inB. Cols can
be a positive integer, vector of positive integers, string specifying a column name, cell
array of column names, or a logical vector.

More About
• “DataMatrix object”

See Also
DataMatrix | single

 elementData

1-547

elementData
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set data element (DataMatrix object) in ExpressionSet object

Syntax

DMObj = elementData(ESObj, Element)

NewESObj = elementData(ESObj, Element, NewDMObj)

Description

DMObj = elementData(ESObj, Element) returns the DataMatrix object from an
ExpressionSet object, specified by Element, a positive integer or a string specifying an
element name.

NewESObj = elementData(ESObj, Element, NewDMObj) replaces the DataMatrix
object specified by Element in ESObj, an ExpressionSet object, with NewDMObj, a new
DataMatrix object, and returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

Element

Element (DataMatrix object) in an ExpressionSet object, specified by either of the
following:

• Positive integer
• String specifying the element name

1 Alphabetical List

1-548

Default:

NewDMObj

Object of the DataMatrix class. The sample names and feature names in NewDMObj
must match the sample names and feature names in the DataMatrix object specified by
Element.

Default:

Output Arguments

DMObj

Object of the DataMatrix class, returned from the ExptData object of an ExpressionSet
object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing a specified data
element (DataMatrix object).

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Extract a
DataMatrix object from it:
% Extract first DataMatrix object

ExtractedDMObj = elementData(ESObj, 1);

See Also
bioma.ExpressionSet | bioma.data.ExptData | DataMatrix

How To
• “Managing Gene Expression Data in Objects”

 elementData

1-549

elementData
Class: bioma.data.ExptData
Package: bioma.data

Retrieve or set data element (DataMatrix object) in ExptData object

Syntax

DMObj = elementData(EDObj, Element)

NewEDObj = elementData(EDObj, Element, NewDMObj)

Description

DMObj = elementData(EDObj, Element) returns the DataMatrix object from an
ExptData object, specified by Element, a positive integer or string specifying an element
name.

NewEDObj = elementData(EDObj, Element, NewDMObj) replaces the element
(DataMatrix object) specified by Element in EDObj, an ExptData object, with NewDMObj,
a new DataMatrix object, and returns NewEDObj, a new ExptData object.

Input Arguments

EDObj

Object of the bioma.data.ExptData class.

Default:

Element

Element (DataMatrix object) in an ExptData object, specified by either of the following:

• Positive integer
• String specifying the element name

Default:

1 Alphabetical List

1-550

NewDMObj

Object of the DataMatrix class. The sample names and feature names in NewDMObj must
match the sample names and feature names of EDObj.

Default:

Output Arguments

DMObj

Object of the DataMatrix class, returned from an ExptData object.

NewEDObj

Object of the bioma.data.ExptData class, returned after replacing a data element
(DataMatrix object).

Examples

Construct an ExptData object, and then extract a DataMatrix object from it:

% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Extract first DataMatrix object

ExtractedDMObj = elementData(EDObj, 1);

See Also
bioma.data.ExptData | DataMatrix

How To
• “Representing Expression Data Values in ExptData Objects”

 elementNames

1-551

elementNames

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set element names of DataMatrix objects in ExpressionSet object

Syntax

ElmtNames = elementNames(ESObj)

ElmtNames = elementNames(ESObj, Subset)

NewESObj = elementNames(ESObj, Subset, NewElmtNames)

Description

ElmtNames = elementNames(ESObj) returns a cell array of strings specifying the
element names of all the data elements (DataMatrix objects) stored in the ExptData
object in an ExpressionSet object.

ElmtNames = elementNames(ESObj, Subset) returns a cell array of strings
specifying the element names of a subset of the data elements (DataMatrix objects) in the
ExptData object in an ExpressionSet object.

NewESObj = elementNames(ESObj, Subset, NewElmtNames) replaces the element
names of the data elements (DataMatrix objects) specified by Subset in ESObj, an
ExpressionSet object, with NewElmtNames, and returns NewESObj, a new ExpressionSet
object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

1 Alphabetical List

1-552

Subset

One of the following to specify the element names of a subset of the data elements
(DataMatrix objects) in the ExptData object of an ExpressionSet object:

• String specifying an element name
• Cell array of strings specifying element names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewElmtNames

New element names for specific data elements (DataMatrix objects) within an
ExpressionSet object, specified by one of the following:

• Numeric vector
• String or cell array of strings
• String, which elementNames uses as a prefix for the element names, with element

numbers appended to the prefix
• Logical true or false (default). If true, elementNames assigns unique element

names using the format Elmt1, Elmt2, etc.

The number of elements in NewElmtNames must equal the number of elements specified
by Subset.

Default:

Output Arguments

ElmtNames

Cell array of strings specifying the element names of all or some of the data elements
(DataMatrix objects) in the ExptData object of an ExpressionSet object.

 elementNames

1-553

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing element names of
specific data elements (DataMatrix objects).

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
element names of the DataMatrix objects in it:
% Retrieve element names of DataMatrix objects

ENames = elementNames(ESObj);

See Also
bioma.ExpressionSet | bioma.data.ExptData | DataMatrix | exptData

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-554

elementNames
Class: bioma.data.ExptData
Package: bioma.data

Retrieve or set element names of DataMatrix objects in ExptData object

Syntax
ElmtNames = elementNames(EDObj)

ElmtNames = elementNames(EDObj, Subset)

NewEDObj = elementNames(EDObj, Subset, NewElmtNames)

Description
ElmtNames = elementNames(EDObj) returns a cell array of strings specifying the
element names of all the data elements (DataMatrix objects) stored in an ExptData
object.

ElmtNames = elementNames(EDObj, Subset) returns a cell array of strings
specifying the element names of a subset of the data elements (DataMatrix objects)
stored in an ExptData object.

NewEDObj = elementNames(EDObj, Subset, NewElmtNames) replaces the element
names of the data elements (DataMatrix objects) specified by Subset in EDObj, an
ExptData object, with NewElmtNames, and returns NewEDObj, a new ExptData object.

Input Arguments
EDObj

Object of the bioma.data.ExptData class.

Default:

Subset

One of the following to specify the element names of a subset of the data elements
(DataMatrix objects) in an ExptData object:

 elementNames

1-555

• String specifying an element name
• Cell array of strings specifying element names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewElmtNames

New element names for specific data elements (DataMatrix objects) within an ExptData
object, specified by one of the following:

• Numeric vector
• String or cell array of strings
• String, which elementNames uses as a prefix for the element names, with element

numbers appended to the prefix
• Logical true or false (default). If true, elementNames assigns unique element

names using the format Elmt1, Elmt2, etc.

The number of elements in NewElmtNames must equal the number of elements specified
by Subset.

Default:

Output Arguments

ElmtNames

Cell array of strings specifying the element names of all or some of the data elements
(DataMatrix objects) in an ExptData object.

NewEDObj

Object of the bioma.data.ExptData class, returned after replacing element names of
specific data elements (DataMatrix objects).

1 Alphabetical List

1-556

Examples

Construct an ExptData object, and then retrieve the element names of DataMatrix
objects from it:

% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Retrieve element names of DataMatrix objects

ENames = elementNames(EDObj);

See Also
bioma.data.ExptData | dmNames | DataMatrix | featureNames | sampleNames

How To
• “Representing Expression Data Values in ExptData Objects”

 emblread

1-557

emblread
Read data from EMBL file

Syntax

EMBLData = emblread(File)

EMBLSeq = emblread (File, 'SequenceOnly', SequenceOnlyValue)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a
URL pointing to a file. The referenced file is an EMBL-
formatted file. If you specify only a file name, that file
must be on the MATLAB search path or in the MATLAB
Current Folder.

• MATLAB character array that contains the text of an
EMBL-formatted file

Tip You can use the getembl function with the 'ToFile'
property to retrieve data from the European Molecular
Biology Laboratory (EMBL) database and create an EMBL-
formatted file.

SequenceOnlyValue Controls the reading of only the sequence without the
metadata. Choices are true or false (default).

Output Arguments

EMBLData MATLAB structure with fields corresponding to EMBL data.
EMBLSeq MATLAB character string representing the sequence.

1 Alphabetical List

1-558

Description

EMBLData = emblread(File) reads data from File, an EMBL-formatted file, and
creates EMBLData, a MATLAB structure containing fields corresponding to the EMBL
two-character line type code, based on release 107 of the EMBL-Bank flat file format.
Each line type code is stored as a separate element in the structure. For a list of the
EMBL two-character line type codes, see http://www.ebi.ac.uk/embl/Documentation/
User_manual/usrman.html.

Note: Topology information was not included in EMBL flat files before release 87 of the
database. When reading a file created before release 87, EMBLREAD returns an empty
Identification.Topology field.

Note: The entry name is no longer displayed in the ID line of EMBL flat files in release
87. When reading a file created in release 87, EMBLREAD returns the accession number
in the Identification.EntryName field.

EMBLSeq = emblread (File, 'SequenceOnly', SequenceOnlyValue) controls
the reading of only the sequence without the metadata. Choices are true or false
(default).

Examples

Retrieve sequence information from the Web, save to a file, and then read back into the
MATLAB software.

1 Use the getembl function and ToFile property to retrieve sequence information
from the Web and save to an EMBL-formatted file.

getembl('X00558','ToFile','rat_protein.txt');

2 Read data from the EMBL-formatted file and create a MATLAB structure.

EMBLData = emblread('rat_protein.txt')

EMBLData =

 Identification: [1x1 struct]

http://www.ebi.ac.uk/embl/Documentation/User_manual/usrman.html
http://www.ebi.ac.uk/embl/Documentation/User_manual/usrman.html

 emblread

1-559

 Accession: 'X00558'

 SequenceVersion: 'X00558.1'

 DateCreated: '13-JUN-1985 (Rel. 06, Created)'

 DateUpdated: [1x46 char]

 Description: [1x75 char]

 Keyword: [1x75 char]

 OrganismSpecies: [1x75 char]

 OrganismClassification: [3x75 char]

 Organelle: ''

 Reference: {[1x1 struct]}

 DatabaseCrossReference: ''

 Comments: ''

 Assembly: ''

 Feature: [23x75 char]

 BaseCount: [1x1 struct]

 Sequence: [1x877 char]

See Also
fastaread | genbankread | genpeptread | getembl | pdbread | seqviewer

1 Alphabetical List

1-560

eq (DataMatrix)
Test DataMatrix objects for equality

Syntax

T = eq(DMObj1, DMObj2)

T = DMObj1 == DMObj2

T = eq(DMObj1, B)

T = DMObj1 == B

T = eq(B, DMObj1)

T = B == DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

T Logical matrix of the same size as DMObj1 and DMObj2 or
DMObj1 and B. It contains logical 1 (true) where elements in the
first input are equal to the corresponding element in the second
input, and logical 0 (false) when they are not equal.

Description

T = eq(DMObj1, DMObj2) or the equivalent T = DMObj1 == DMObj2 compares
each element in DataMatrix object DMObj1 to the corresponding element in DataMatrix
object DMObj2, and returns T, a logical matrix of the same size as DMObj1 and DMObj2,
containing logical 1 (true) where elements in DMObj1 are equal to the corresponding
element in DMObj2, and logical 0 (false) when they are not equal. DMObj1 and DMObj2

 eq (DataMatrix)

1-561

must have the same size (number of rows and columns), unless one is a scalar (1-by-1
DataMatrix object). DMObj1 and DMObj2 can have different Name properties.

T = eq(DMObj1, B) or the equivalent T = DMObj1 == B compares each element in
DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array,
and returns T, a logical matrix of the same size as DMObj1 and B, containing logical 1
(true) where elements in DMObj1 are equal to the corresponding element in B, and logical
0 (false) when they are not equal. DMObj1 and B must have the same size (number of
rows and columns), unless one is a scalar.

T = eq(B, DMObj1) or the equivalent T = B == DMObj1 compares each element in B,
a numeric or logical array, to the corresponding element in DataMatrix object DMObj1,
and returns T, a logical matrix of the same size as B and DMObj1, containing logical 1
(true) where elements in B are equal to the corresponding element in DMObj1, and logical
0 (false) when they are not equal. B and DMObj1 must have the same size (number of
rows and columns), unless one is a scalar.

MATLAB calls T = eq(X, Y) for the syntax T = X == Y when X or Y is a DataMatrix
object.

More About
• “DataMatrix object”

See Also
DataMatrix | ne

1 Alphabetical List

1-562

evalrasmolscript

Send RasMol script commands to Molecule Viewer window

Syntax

evalrasmolscript(FigureHandle, Command)

Arguments

FigureHandle Figure handle to a molecule viewer returned by the molviewer
function.

Command Any of the following:

• String specifying one or more RasMol script commands. Use a ;
to separate commands.

• Character array or cell array containing strings specifying
RasMol script commands.

Note: For a complete list of RasMol script commands, see

http://www.stolaf.edu/academics/chemapps/jmol/docs/

• String specifying a file name or a path and file name of a text
file containing Jmol script commands. If you specify only a file
name, that file must be on the MATLAB search path or in the
MATLAB Current Folder.

Description

evalrasmolscript(FigureHandle, Command) sends the RasMol script commands
specified by Command to FigureHandle, the figure handle of a Molecule Viewer window
created using the molviewer function.

http://www.stolaf.edu/academics/chemapps/jmol/docs/

 evalrasmolscript

1-563

Examples

1 Use the molviewer function to create a figure handle to a Molecule Viewer window.

FH = molviewer('2DHB')

2 Use the evalrasmolscript function to send script commands to the molecule
viewer that change the background to black and spin the molecule.

evalrasmolscript(FH, 'background white; spin')

See Also
getpdb | molviewer | pdbread | pdbwrite

1 Alphabetical List

1-564

expressions

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set Expressions DataMatrix object from ExpressionSet object

Syntax

ExpressionsDMObj = expressions(ESObj)

NewESObj = expressions(ESObj, NewDMObj)

Description

ExpressionsDMObj = expressions(ESObj) returns the Expressions element
(DataMatrix object), which contains expression values, from an ExpressionSet object.

NewESObj = expressions(ESObj, NewDMObj) replaces the Expressions
element (DataMatrix object) in ESObj, an ExpressionSet object, with NewDMObj, a new
DataMatrix object, and returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewDMObj

Object of the DataMatrix class.

Default:

 expressions

1-565

Output Arguments

ExpressionsDMObj

DataMatrix object containing the expression values from the Expressions DataMatrix
object within an ExpressionSet object.

NewESObj

ExpressionSet object returned after replacing the Expressions DataMatrix object.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Extract the
Expressions DataMatrix object from it:
% Extract expression values from Expressions DataMatrix object

ExpressionsDMObj = expressions(ESObj);

See Also
bioma.ExpressionSet | bioma.data.ExptData | DataMatrix

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-566

exprprofrange
Calculate range of gene expression profiles

Syntax
Range = exprprofrange(Data)

[Range, LogRange] = exprprofrange(Data)

... = exprprofrange(Data, 'ShowHist', ShowHistValue)

Arguments
Data DataMatrix object or numeric matrix of expression values, where

each row corresponds to a gene.
ShowHistValue Controls the display of a histogram with range data. Default is:

• false — When output values are specified.
• true — When output values are not specified.

Description
Range = exprprofrange(Data) calculates the range of each expression profile in
Data, a DataMatrix object or numeric matrix of expression values, where each row
corresponds to a gene.

[Range, LogRange] = exprprofrange(Data) returns the log range, that is,
log(max(prof))- log(min(prof)), of each expression profile. If you do not specify
output arguments, exprprofrange displays a histogram bar plot of the range.

... = exprprofrange(Data, 'ShowHist', ShowHistValue) controls the display
of a histogram with range data. Choices for ShowHistValue are true or false.

Examples
1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains

yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene

 exprprofrange

1-567

expression data, genes, a cell array of GenBank accession numbers for labeling the
rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues

load yeastdata

2 Calculate the range of expression profiles for yeast data as gene expression changes
during the metabolic shift from fermentation to respiration. Display a histogram of
the data.

range = exprprofrange(yeastvalues,'ShowHist',true);

See Also
exprprofvar | generangefilter

1 Alphabetical List

1-568

exprprofvar

Calculate variance of gene expression profiles

Syntax

Variance = exprprofvar(Data)

exprprofvar(..., 'PropertyName', PropertyValue,...)

exprprofvar(..., 'ShowHist', ShowHistValue)

Arguments

Data DataMatrix object or numeric matrix of expression values, where
each row corresponds to a gene.

ShowHistValue Controls the display of a histogram with variance data. Default is:

• false — When output values are specified.
• true — When output values are not specified.

Description

Variance = exprprofvar(Data) calculates the variance of each expression profile
in Data, a DataMatrix object or numeric matrix of expression values, where each row
corresponds to a gene. If you do not specify output arguments, this function displays a
histogram bar plot of the range.

exprprofvar(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

exprprofvar(..., 'ShowHist', ShowHistValue) controls the display of a
histogram with range data. Choices for ShowHistValue are true or false.

 exprprofvar

1-569

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene
expression data, genes, a cell array of GenBank accession numbers for labeling the
rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues

load yeastdata

2 Calculate the variance of expression profiles for yeast data as gene expression
changes during the metabolic shift from fermentation to respiration. Display a
histogram of the data.

datavar = exprprofvar(yeastvalues,'ShowHist',true);

See Also
exprprofrange | generangefilter | genevarfilter

1 Alphabetical List

1-570

exprWrite
Class: bioma.ExpressionSet
Package: bioma

Write expression values in ExpressionSet object to text file

Syntax

exprWrite(ESObj, File)

exprWrite(..., 'Delimiter', DelimiterValue, ...)

exprWrite(..., 'Precision', PrecisionValue, ...)

exprWrite(..., 'Header', HeaderValue, ...)

exprWrite(..., 'Annotated', AnnotatedValue, ...)

exprWrite(..., 'Append', AppendValue, ...)

Description

exprWrite(ESObj, File) writes the expression values in the Expressions element
(DataMatrix object) from an ExpressionSet object to a text file, using the delimiter \t to
separate columns. exprWrite writes the data starting at the first column of the first row
in the destination file.

exprWrite(..., 'PropertyName', PropertyValue, ...) calls exprWrite with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:

exprWrite(..., 'Delimiter', DelimiterValue, ...) specifies a delimiter
symbol to use as a column separator. Default is '\t'.

exprWrite(..., 'Precision', PrecisionValue, ...) specifies the precision for
writing the data to the text file. Default is 5.

exprWrite(..., 'Header', HeaderValue, ...) specifies the first line of the text
file. Default is the Name property for the DataMatrix object.

 exprWrite

1-571

exprWrite(..., 'Annotated', AnnotatedValue, ...) controls the writing of row
and column names to the text file. Choices are true (default) or false.

exprWrite(..., 'Append', AppendValue, ...) controls the appending of
the expression values to File when it is an existing file. Choices are true or false
(default). If false, exprWrite overwrites File.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

File

String specifying either a file name or a path and file name for saving the expression
values. If you specify only a file name, exprWrite saves the file to the MATLAB Current
Folder.

Default:

DelimiterValue

String specifying a delimiter symbol to use as a matrix column separator. Typical choices
are:

• ' '

• '\t' (default)
• ','

• ';'

• '|'

Default:

PrecisionValue

Precision for writing the data to the text file, specified by either:

1 Alphabetical List

1-572

• Positive integer specifying the number of significant digits
• C-style format string starting with %, such as '%6.5f'

Default: 5

HeaderValue

String specifying the first line of the text file. Default is the Name property for the
DataMatrix object.

Default:

AnnotatedValue

Controls the writing of row and column names to the text file. Choices are true (default)
or false.

Default:

AppendValue

Controls the appending of the expression values to File when it is an existing file.
Choices are true or false (default). If false, exprWrite overwrites File.

Default:

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Write the
expression values in the ExpressionSet object to a text file:
% Write expression values to text file

exprWrite(ESObj, 'myexpressiondata.txt')

See Also
bioma.ExpressionSet | bioma.data.ExptData | dmwrite | DataMatrix

How To
• “Managing Gene Expression Data in Objects”

 exptData

1-573

exptData

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set experiment data in ExpressionSet object

Syntax

ExptDataObj = exptData(ESObj)

NewESObj = exptData(ESObj, NewExptDataObj)

Description

ExptDataObj = exptData(ESObj) returns the ExptData object stored in an
ExpressionSet object.

NewESObj = exptData(ESObj, NewExptDataObj) replaces the ExptData object in
ESObj, an ExpressionSet object, with NewExptDataObj, a new ExptData object, and
returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewExptDataObj

Object of the bioma.data.ExptData class.

Default:

1 Alphabetical List

1-574

Output Arguments

ExptDataObj

Object of the bioma.data.ExptData class.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the ExptData
object.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
ExptData object stored in the ExpressionSet object:
% Retrieve the ExptData object

NewEDObj = exptData(ESObj);

See Also
bioma.ExpressionSet | bioma.data.ExptData | DataMatrix | featureData |
sampleData

How To
• “Managing Gene Expression Data in Objects”

 exptInfo

1-575

exptInfo

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set experiment information in ExpressionSet object

Syntax

MIAMEObj = exptInfo(ESObj)

NewESObj = exptInfo(ESObj, NewMIAMEObj)

Description

MIAMEObj = exptInfo(ESObj) returns a MIAME object containing experiment
information from an ExpressionSet object.

NewESObj = exptInfo(ESObj, NewMIAMEObj) replaces the MIAME object in
ESObj, an ExpressionSet object, with NewMIAMEObj, a new MIAME object, and returns
NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewMIAMEObj

Object of the bioma.data.MIAME class.

Default:

1 Alphabetical List

1-576

Output Arguments

MIAMEObj

Object of the bioma.data.MIAME class.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the MIAME object.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
MIAME object stored in the ExpressionSet object:
% Retrieve the MIAME object

NewMIAMEObj = exptInfo(ESObj);

See Also
bioma.ExpressionSet | bioma.data.MIAME

How To
• “Managing Gene Expression Data in Objects”

Related Links
•
• http://www.mged.org/Workgroups/MIAME/miame.html

http://www.mged.org/Workgroups/MIAME/miame.html

 fastainfo

1-577

fastainfo

Return information about FASTA file

Syntax

InfoStruct = fastainfo(File)

Description

InfoStruct = fastainfo(File) returns a MATLAB structure containing summary
information about a FASTA-formatted file.

Input Arguments

File

FASTA-formatted file specified by one of the following:

• String specifying a file name or path and file name of a FASTA-formatted file. If
you specify only a file name, that file must be on the MATLAB search path or in the
current folder.

• URL pointing to a FASTA-formatted file.
• MATLAB character array containing the text of a FASTA-formatted file.

Default:

Output Arguments

InfoStruct

MATLAB structure containing summary information about a FASTA-formatted file. The
structure contains the following fields.

1 Alphabetical List

1-578

Field Description

Filename Name of the file.
FilePath Path to the file
FileModDate Modification date of the file.
FileSize Size of the file in bytes.
NumberOfEntries Number of sequence entries in the file.
Header If File contains only one sequence, then this is a

string containing the header information from the
FASTA-formatted file. Otherwise, this field is empty.

Length If File contains only one sequence, then this is
a scalar specifying the length of the sequence.
Otherwise, this field is empty.

Examples

Return a summary of the contents of a FASTA file:

info = fastainfo('p53nt.txt')

info =

 Filename: 'p53nt.txt'

 FilePath: 'D:\2010_08_24_h11m43s32_job6027_pass\matlab\toolbox\bioinfo\biodemos'

 FileModDate: '31-Mar-2003 11:44:27'

 FileSize: 2764

 NumberOfEntries: 1

 Header: [1x94 char]

 Length: 2629

See Also
BioIndexedFile | fastaread | fastawrite | fastqinfo | fastqread |
fastqwrite | sffinfo | sffread | saminfo | samread

 fastaread

1-579

fastaread
Read data from FASTA file

Syntax

FASTAData = fastaread(File)

[Header, Sequence] = fastaread(File)

... = fastaread(File, ...'IgnoreGaps', IgnoreGapsValue, ...)

... = fastaread(File, ...'Blockread', BlockreadValue, ...)

... = fastaread(File, ...'TrimHeaders', TrimHeadersValue, ...)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a
URL pointing to a file. The referenced file is a FASTA-
formatted file (ASCII text file). If you specify only a file
name, that file must be on the MATLAB search path or in
the MATLAB Current Folder.

• MATLAB character array that contains the text of a
FASTA-formatted file.

IgnoreGapsValue Controls the removal of gap symbols. Choices are true or
false (default).

BlockreadValue Scalar or vector that controls the reading of a single sequence
entry or block of sequence entries from a FASTA-formatted
file containing multiple sequences. Enter a scalar N to read
the Nth entry in the file. Enter a 1-by-2 vector [M1, M2] to
read the block of entries starting at the M1 entry and ending
at the M2 entry. To read all remaining entries in the file
starting at the M1 entry, enter a positive value for M1 and
enter Inf for M2.

TrimHeadersValue Specifies whether to trim the header after the first white
space character. White space characters include a space

1 Alphabetical List

1-580

(char(32)) and a tab (char(9)). Choices are true or false
(default).

Output Arguments

FASTAData MATLAB structure with the fields Header and Sequence.

Description

fastaread reads data from a FASTA-formatted file into a MATLAB structure with the
following fields.

Field Description

Header Header information.
Sequence Single letter-code representation of a nucleotide sequence.

A FASTA-formatted file begins with a right angle bracket (>) and a single line
description. Following this description is the sequence as a series of lines with fewer than
80 characters. Sequences must use the standard IUB/IUPAC amino acid and nucleotide
letter codes.

For a list of codes, see aminolookup and baselookup.

FASTAData = fastaread(File) reads a FASTA-formatted file and returns
the data in a structure. FASTAData.Header is the header information, while
FASTAData.Sequence is the sequence stored as a string of letters.

[Header, Sequence] = fastaread(File) reads data from a file into separate
variables. If the file contains multiple sequences, then Header and Sequence are cell
arrays of header and sequence information.

... = fastaread(File, ...'PropertyName', PropertyValue, ...) calls
fastaread with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. The property name/value pairs can
be in any format supported by the function set (for example, name-value string pairs,
structures, and name-value cell array pairs). These property name/property value pairs
are as follows:

 fastaread

1-581

... = fastaread(File, ...'IgnoreGaps', IgnoreGapsValue, ...), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from the sequences.
Default is false.

... = fastaread(File, ...'Blockread', BlockreadValue, ...) lets you read
in a single sequence entry or block of sequence entries from a file containing multiple
sequences. If BlockreadValue is a scalar N, then fastaread reads the Nth entry in the
file. If BlockreadValue is a 1-by-2 vector [M1, M2], then fastaread reads the block of
entries starting at the M1 entry and ending at the M2 entry. To read all remaining entries
in the file starting at the M1 entry, enter a positive value for M1 and enter Inf for M2.

... = fastaread(File, ...'TrimHeaders', TrimHeadersValue, ...)

specifies whether to trim the header to the first white space.

Examples

Read the sequence for the human p53 tumor gene:

p53nt = fastaread('p53nt.txt')

Read the sequence for the human p53 tumor protein:

p53aa = fastaread('p53aa.txt')

Read a block of entries from a FASTA file:

% Read the contents of reads 5 through 10 into an array of

% structures

pf2_5_10 = fastaread('pf00002.fa', 'blockread', [5 10], ...

 'ignoregaps',true)

pf2_5_10 =

6x1 struct array with fields:

 Header

 Sequence

See Also
aminolookup | baselookup | BioIndexedFile | emblread | fastainfo
| fastawrite | fastqinfo | fastqread | fastqwrite | genbankread |
genpeptread | multialignread | saminfo | samread | seqprofile | seqviewer
| sffinfo | sffread

1 Alphabetical List

1-582

fastawrite
Write to file using FASTA format

Syntax

fastawrite(File, Data)

fastawrite(File, Header, Sequence)

Arguments

File String specifying either a file name or a path and file name for saving
the FASTA-formatted data. If you specify only a file name, fastawrite
saves the file to the MATLAB Current Folder. If you specify an existing
file, fastawrite appends the data to the file, instead of overwriting the
file.

Data Any of the following:

• String containing a sequence
• MATLAB structure containing the fields Header and Sequence
• MATLAB structure containing sequence information from the

GenBank or GenPept database, such as returned by genbankread,
getgenbank, genpeptread, or getgenpept.

Header String or name of variable containing information about the sequence.
This text appears in the header of the FASTA-formatted file, File.

Sequence String or name of variable containing an amino acid or nucleotide
sequence using the standard IUB/IUPAC letter or integer codes. For a
list of valid characters, see Amino Acid Lookup or Nucleotide Lookup.

Description

fastawrite(File, Data) writes the contents of Data to File, a FASTA-formatted
file. If you specify an existing FASTA-formatted file,fastawrite appends the data to the
file, instead of overwriting the file.

 fastawrite

1-583

fastawrite(File, Header, Sequence) writes the specified header and sequence
information to File, a FASTA-formatted file.

Tip To append FASTA-formatted data to an existing file, simply specify that file name.
fastawrite adds the data to the end of the file.

If you are using fastawrite in a script, you can disable the append warning message by
entering the following command lines before the fastawrite command:

warnState = warning %Save the current warning state

warning('off','Bioinfo:fastawrite:AppendToFile');

Then enter the following command line after the fastawrite command:

warning(warnState) %Reset warning state to previous settings

Examples

Writing a Coding Region to a FASTA-Formatted File

1 Retrieve the sequence for the human p53 gene from the GenBank database.

seq = getgenbank('NM_000546');

2 Read the coordinates of the coding region in the CDS line.

start = seq.CDS.indices(1)

start =

 198

stop = seq.CDS.indices(2)

stop =

 1379

3 Extract the coding region.

codingSeq = seq.Sequence(start:stop);

4 Write the coding region to a FASTA-formatted file, specifying Coding region for
p53 for the Header in the file, and p53coding.txt for the file name.

1 Alphabetical List

1-584

fastawrite('p53coding.txt','Coding region for p53',codingSeq);

Saving Multiple Sequences to a FASTA-Formatted File

1 Write two nucleotide sequences to a MATLAB structure containing the fields
Header and Sequence.

data(1).Sequence = 'ACACAGGAAA';

data(1).Header = 'First sequence';

data(2).Sequence = 'ACGTCAGGTC';

data(2).Header = 'Second sequence';

2 Write the sequences to a FASTA-formatted file, specifying my_sequences.txt for
the file name.

fastawrite('my_sequences.txt', data)

3 Display the FASTA-formatted file, my_sequences.txt.

type('my_sequences.txt')

>First sequence

ACACAGGAAA

>Second sequence

ACGTCAGGTC

Appending Sequences to a FASTA-Formatted File

1 If you haven't already done so, create the FASTA-formatted file,
my_sequences.txt, described in Saving Multiple Sequences to a FASTA-
Formatted File.

2 Append a third sequence to the file.

fastawrite('my_sequences.txt','Third sequence','TACTGACTTC')

3 Display the FASTA-formatted file, my_sequences.txt.

type('my_sequences.txt')

>First sequence

ACACAGGAAA

>Second sequence

ACGTCAGGTC

 fastawrite

1-585

>Third sequence

TACTGACTTC

See Also
fastainfo | fastaread | fastqinfo | fastqread | fastqwrite | genbankread
| genpeptread | getgenbank | getgenpept | multialignwrite | saminfo |
samread | seqviewer | sffinfo | sffread

1 Alphabetical List

1-586

fastqinfo
Return information about FASTQ file

Syntax

InfoStruct = fastqinfo(File)

Description

InfoStruct = fastqinfo(File) returns a MATLAB structure containing summary
information about a FASTQ-formatted file.

Input Arguments

File

String specifying a file name or path and file name of a FASTQ-formatted file. If you
specify only a file name, that file must be on the MATLAB search path or in the current
folder.

Default:

Output Arguments

InfoStruct

MATLAB structure containing summary information about a FASTQ-formatted file. The
structure contains the following fields.

Field Description

Filename Name of the file.
FilePath Path to the file
FileModDate Modification date of the file.

 fastqinfo

1-587

Field Description

FileSize Size of the file in bytes.
NumberOfEntries Number of sequence reads in the file.

Examples

Return a summary of the contents of a FASTQ file:

info = fastqinfo('SRR005164_1_50.fastq')

info =

 Filename: 'SRR005164_1_50.fastq'

 FilePath: 'D:\2010_08_24_h11m43s32_job6027_pass\matlab\toolbox\bioinfo\biodemos'

 FileModDate: '03-Mar-2009 14:21:51'

 FileSize: 16702

 NumberOfEntries: 50

More About
• http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

cmd=show&f=main&m=main&s=main

See Also
BioIndexedFile | BioRead | fastqread | fastqwrite | fastainfo | fastaread
| fastawrite | sffinfo | sffread | saminfo | samread

Tutorials
• Working with Illumina/Solexa Next-Generation Sequencing Data

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-588

fastqread

Read data from FASTQ file

Syntax

FASTQStruct = fastqread(File)

[Header, Sequence] = fastqread(File)

[Header, Sequence, Qual] = fastqread(File)

fastqread(..., 'Blockread', BlockreadValue, ...)

fastqread(..., 'HeaderOnly', HeaderOnlyValue, ...)

fastqread(..., 'TrimHeaders', TrimHeadersValue, ...)

Description

FASTQStruct = fastqread(File) reads a FASTQ-formatted file and returns the data
in a MATLAB array of structures.

[Header, Sequence] = fastqread(File) returns only the header and sequence
data in two separate variables.

[Header, Sequence, Qual] = fastqread(File) returns the data in three separate
variables.

fastqread(..., 'PropertyName', PropertyValue, ...) calls fastqread with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:

fastqread(..., 'Blockread', BlockreadValue, ...) reads a single sequence
entry or block of sequence entries from a FASTQ-formatted file containing multiple
sequences.

fastqread(..., 'HeaderOnly', HeaderOnlyValue, ...) specifies whether to
return only the header information.

 fastqread

1-589

fastqread(..., 'TrimHeaders', TrimHeadersValue, ...) specifies whether to
trim the header to the first white space.

Input Arguments

File

Either of the following:

• String specifying a file name or path and file name of a FASTQ-formatted file. If
you specify only a file name, that file must be on the MATLAB search path or in the
MATLAB Current Folder.

• MATLAB character array that contains the text of a FASTQ-formatted file.

Default:

BlockreadValue

Scalar or vector that controls the reading of a single sequence entry or block of sequence
entries from a FASTQ-formatted file containing multiple sequences. Enter a scalar N to
read the Nth entry in the file. Enter a 1-by-2 vector [M1, M2] to read a block of entries
starting at the M1 entry and ending at the M2 entry. To read all remaining entries in the
file starting at the M1 entry, enter a positive value for M1 and enter Inf for M2.

Default:

HeaderOnlyValue

Specifies whether to return only the header information. Choices are true or false
(default).

Default:

TrimHeadersValue

Specifies whether to trim the header after the first white space character. White space
characters include a space (char(32)) and a tab (char(9)). Choices are true or false
(default).

Default:

1 Alphabetical List

1-590

Output Arguments

FASTQStruct

Array of structures containing information from a FASTQ-formatted file. There is
one structure for each sequence read or entry in the file. Each structure contains the
following fields.

Field Description

Header Header information.
Sequence Single letter-code representation of a nucleotide sequence.
Quality ASCII representation of per-base quality scores for a nucleotide

sequence.

Header

Variable containing header information or, if the FASTQ-formatted file contains multiple
sequences, a cell array containing header information.

Sequence

Variable containing sequence information or, if the FASTQ-formatted file contains
multiple sequences, a cell array containing sequence information.

Qual

Variable containing quality information or, if the FASTQ-formatted file contains multiple
sequences, a cell array containing quality information.

Definitions

A FASTQ-formatted file contains nucleotide sequence and quality information on four
lines:

• Line 1 — Header information prefixed with an @ symbol
• Line 2 — Nucleotide sequence
• Line 3 — Header information prefixed with a + symbol
• Line 4 — ASCII representation of per-base quality scores for the nucleotide sequence

using Phred or Solexa encoding

 fastqread

1-591

Examples

Read a FASTQ file into an array of structures:

% Read the contents of a FASTQ-formatted file into

% an array of structures

reads = fastqread('SRR005164_1_50.fastq')

reads =

1x50 struct array with fields:

 Header

 Sequence

 Quality

Read a FASTQ file into three separate variables:

% Read the contents of a FASTQ-formatted file into

% three separate variables

[headers,seqs,quals] = fastqread('SRR005164_1_50.fastq');

Read a block of entries from a FASTQ file:

% Read the contents of reads 5 through 10 into

% an array of structures

reads_5_10 = fastqread('SRR005164_1_50.fastq', 'blockread', [5 10])

1x6 struct array with fields:

 Header

 Sequence

 Quality

More About
• http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

cmd=show&f=main&m=main&s=main

See Also
BioIndexedFile | BioRead | fastqwrite | fastaread | fastawrite | fastainfo
| fastqinfo | bowtieread | soapread | sffinfo | sffread | saminfo | samread
| bamread | baminfo | bamindexread

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-592

Tutorials
• Working with Illumina/Solexa Next-Generation Sequencing Data

 fastqwrite

1-593

fastqwrite
Write to file using FASTQ format

Syntax

fastqwrite(File, FASTQStruct)

fastqwrite(File, Header, Sequence, Qual)

Description

fastqwrite(File, FASTQStruct) writes the contents of a MATLAB structure
or array of structures to a FASTQ-formatted file. If you specify an existing FASTQ-
formatted file, fastqwrite appends the data to the file, instead of overwriting the file.

fastqwrite(File, Header, Sequence, Qual) writes header, sequence, and quality
information to a FASTQ-formatted file.

Tip To append FASTQ-formatted data to an existing file, simply specify that file name.
fastqwrite adds the data to the end of the file.

If you are using fastqwrite in a script, you can disable the append warning message by
entering the following command lines before the fastqwrite command:

warnState = warning %Save the current warning state

warning('off','Bioinfo:fastqwrite:AppendToFile');

Then enter the following command line after the fastqwrite command:

warning(warnState) %Reset warning state to previous settings

Input Arguments

File

String specifying either a file name or a path and file name for saving the FASTQ-
formatted data. If you specify only a file name, fastqwrite saves the file to the

1 Alphabetical List

1-594

MATLAB Current Folder. If you specify an existing file, fastqwrite appends the data
to the file, instead of overwriting the file.

Default:

FASTQStruct

MATLAB structure or array of structures containing the fields Header, Sequence, and
Quality, such as returned by fastqread.

Default:

Header

String or name of a variable containing information about the nucleotide sequence. This
text appears in the header of the FASTQ-formatted file, File.

Default:

Sequence

String or name of a variable containing a nucleotide sequence using the standard IUB/
IUPAC letter or integer codes. For a list of valid characters, see Amino Acid Lookup or
Nucleotide Lookup.

Default:

Qual

String or name of a variable containing ASCII representation of per-base quality scores
for a nucleotide sequence.

Default:

Definitions

A FASTQ-formatted file contains nucleotide sequence and quality information on four
lines:

• Line 1 — Header information prefixed with an @ symbol
• Line 2 — Nucleotide sequence
• Line 3 — Header information prefixed with a + symbol

 fastqwrite

1-595

• Line 4 — ASCII representation of per-base quality scores for the nucleotide sequence
using Phred or Solexa encoding

Examples

Write multiple sequences to a FASTQ file from an array of structures:

% Read the contents of a FASTQ-formatted file into

% an array of structures

reads = fastqread('SRR005164_1_50.fastq');

% Create another array of structures for the first five reads

reads5 = reads(1:5);

% Write the first five reads to a separate FASTQ-formatted file

fastqwrite('fiveReads.fastq', reads5)

Write a single sequence to a FASTQ file from separate variables:

% Create separate variables for the header, sequence, and

% quality information of a nucleotide sequence

h = 'MYSEQ-000_1_1_1_953_493';

s = 'GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA';

q = ']]]]]]]]]]]]]]]]]]]]]]T]]]]RJRZTQLOA';

% Write the information to a FASTQ-formatted file

fastqwrite('oneRead.fastq', h, s, q)

More About
• Amino Acid Lookup
• Nucleotide Lookup
• http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

cmd=show&f=main&m=main&s=main

See Also
fastqread | fastqinfo | fastaread | fastawrite | fastainfo | sffinfo |
sffread | saminfo | samread | BioRead

Tutorials
• Working with Illumina/Solexa Next-Generation Sequencing Data

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-596

featureData
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set feature metadata in ExpressionSet object

Syntax

MetaDataObj = featureData(ESObj)

NewESObj = featureData(ESObj, NewMetaDataObj)

Description

MetaDataObj = featureData(ESObj) returns a MetaData object containing the
feature metadata from an ExpressionSet object.

NewESObj = featureData(ESObj, NewMetaDataObj) replaces the feature metadata
in ESObj, an ExpressionSet object, with NewMetaDataObj, and returns NewESObj, a
new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewMetaDataObj

Object of the bioma.data.MetaData class, containing feature metadata, stored in two
“dataset” arrays. The feature names and variable names in NewMetaDataObj must
match the feature names and variable names in the MetaDataObj being replaced in the
ExpressionSet object, ESObj.

Default:

 featureData

1-597

Output Arguments

MetaDataObj

Object of the bioma.data.MetaData class, containing the feature metadata, stored in
two “dataset” arrays.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the MetaData
object containing the feature metadata.

See Also
bioma.ExpressionSet | bioma.data.MetaData | featureNames | sampleData

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-598

featureNames
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set feature names in ExpressionSet object

Syntax

FeatNames = featureNames(ESObj)

FeatNames = featureNames(ESObj, Subset)

NewESObj = featureNames(ESObj, Subset, NewFeatNames)

Description

FeatNames = featureNames(ESObj) returns a cell array of strings specifying all
feature names in an ExpressionSet object.

FeatNames = featureNames(ESObj, Subset) returns a cell array of strings
specifying a subset the feature names in an ExpressionSet object.

NewESObj = featureNames(ESObj, Subset, NewFeatNames) replaces the feature
names specified by Subset in ESObj, an ExpressionSet object, with NewFeatNames, and
returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

Subset

One of the following to specify a subset of the feature names in an ExpressionSet object:

 featureNames

1-599

• String specifying a feature name
• Cell array of strings specifying feature names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewFeatNames

New feature names for specific feature names within an ExpressionSet object, specified
by one of the following:

• Numeric vector
• String or cell array of strings
• String, which featureNames uses as a prefix for the feature names, with feature

numbers appended to the prefix
• Logical true or false (default). If true, featureNames assigns unique feature

names using the format Feature1, Feature2, etc.

The number of feature names in NewFeatNames must equal the number of features
specified by Subset.

Default:

Output Arguments

FeatNames

Cell array of strings specifying all or some of the feature names in an ExpressionSet
object. The feature names are the row names in the DataMatrix objects in the
ExpressionSet object. The feature names are also the row names of the VarValues
dataset array in the MetaData object in the ExpressionSet object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing specific feature
names.

1 Alphabetical List

1-600

See Also
bioma.ExpressionSet | bioma.data.ExptData | bioma.data.MetaData |
sampleNames | DataMatrix

How To
• “Managing Gene Expression Data in Objects”

 featureNames

1-601

featureNames
Class: bioma.data.ExptData
Package: bioma.data

Retrieve or set feature names in ExptData object

Syntax

FeatNames = featureNames(EDObj)

FeatNames = featureNames(EDObj, Subset)

NewESObj = featureNames(EDObj, Subset, NewFeatNames)

Description

FeatNames = featureNames(EDObj) returns a cell array of strings specifying all
feature names in an ExptData object.

FeatNames = featureNames(EDObj, Subset) returns a cell array of strings
specifying a subset the feature names in an ExptData object.

NewESObj = featureNames(EDObj, Subset, NewFeatNames) replaces the feature
names specified by Subset in EDObj, an ExptData object, with NewFeatNames, and
returns NewEDObj, a new ExptData object.

Input Arguments

EDObj

Object of the bioma.data.ExptData class.

Default:

Subset

One of the following to specify a subset of the feature names in an ExptData object:

• String specifying a feature name

1 Alphabetical List

1-602

• Cell array of strings specifying feature names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewFeatNames

New feature names for specific feature names within an ExptData object, specified by
one of the following:

• Numeric vector
• String or cell array of strings
• String, which featureNames uses as a prefix for the feature names, with feature

numbers appended to the prefix
• Logical true or false (default). If true, featureNames assigns unique feature

names using the format Feature1, Feature2, etc.

The number of feature names in NewFeatNames must equal the number of features
specified by Subset.

Default:

Output Arguments

FeatNames

Cell array of strings specifying all or some of the feature names in an ExptData object.
The feature names are the row names in the DataMatrix objects in the ExptData object.

NewEDObj

Object of the bioma.data.ExptData class, returned after replacing specific feature
names.

Examples
Construct an ExptData object, and then retrieve the feature names from it:

 featureNames

1-603

% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Retrieve feature names

FNames = featureNames(EDObj);

See Also
bioma.data.ExptData | dmNames | DataMatrix | elementNames | sampleNames

How To
• “Representing Expression Data Values in ExptData Objects”

1 Alphabetical List

1-604

featuresmap
Draw linear or circular map of features from GenBank structure

Syntax

featuresmap(GBStructure)

featuresmap(GBStructure, FeatList)

featuresmap(GBStructure, FeatList, Levels)

featuresmap(GBStructure, Levels)

[Handles, OutFeatList] = featuresmap(...)

featuresmap(..., 'FontSize', FontSizeValue, ...)

featuresmap(..., 'ColorMap', ColorMapValue, ...)

featuresmap(..., 'Qualifiers', QualifiersValue, ...)

featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)

Arguments

GBStructure GenBank structure, typically created using the
getgenbank or the genbankread function.

FeatList Cell array of features (from the list of all features in the
GenBank structure) to include in or exclude from the map.

• If FeatList is a cell array of features, these features
are mapped. Any features in FeatList not found in
the GenBank structure are ignored.

• If FeatList includes '-' as the first string in the cell
array, then the remaining strings (features) are not
mapped.

By default, FeatList is the a list of all features in the
GenBank structure.

Levels Vector of N integers, where N is the number of features.
Each integer represents the level in the map for the
corresponding feature. For example, if Levels = [1, 1,
2, 3, 3], the first two features would appear on level

 featuresmap

1-605

1, the third feature on level 2, and the fourth and fifth
features on level 3. By default, Levels = [1:N].

FontSizeValue Scalar that sets the font size (points) for the annotations of
the features. Default is 9.

ColorMapValue Three-column matrix, to specify a list of colors to use for
each feature. This matrix replaces the default matrix,
which specifies the following colors and order: blue,
green, red, cyan, magenta, yellow, brown, light green,
orange, purple, gold, and silver. In the matrix, each row
corresponds to a color, and each column specifies red,
green, and blue intensity respectively. Valid values for the
RGB intensities are 0.0 to 1.0.

QualifiersValue Cell array of strings to specify an ordered list of qualifiers
to search for in the structure and use as annotations.
For each feature, the first matching qualifier found from
the list is used for its annotation. If a feature does not
include any of the qualifiers, no annotation displays for
that feature. By default, QualifiersValue = {'gene',
'product', 'locus_tag', 'note', 'db_xref',

'protein_id'}. Provide your own QualifiersValue to
limit or expand the list of qualifiers or change the search
order.

Tip Set QualifiersValue = {} to create a map with no
annotations.

Tip To determine all qualifiers available for a given
feature, do either of the following:

• Create the map, and then click a feature or its
annotation to list all qualifiers for that feature.

• Use the featuresparse command to parse all
the features into a new structure, and then use the
fieldnames command to list the qualifiers for a
specific feature. See Determining Qualifiers for a
Specific Feature.

1 Alphabetical List

1-606

ShowPositionsValue Property to add the sequence position to the annotation
label for each feature. Enter true to add the sequence
position. Default is false.

Description

featuresmap(GBStructure) creates a linear or circular map of all features from
a GenBank structure, typically created using the getgenbank or the genbankread
function.

featuresmap(GBStructure, FeatList) creates a linear or circular map of a subset
of features from a GenBank structure. FeatList lets you specify features (from the list
of all features in the GenBank structure) to include in or exclude from the map.

• If FeatList is a cell array of features, these features are mapped. Any features in
FeatList not found in the GenBank structure are ignored.

• If FeatList includes '-' as the first string in the cell array, then the remaining
strings (features) are not mapped.

By default, FeatList is a list of all features in the GenBank structure.

featuresmap(GBStructure, FeatList, Levels) or featuresmap(GBStructure,
Levels) indicates which level on the map each feature is drawn. Level 1 is the left-most
(linear map) or inner-most (circular map) level, and level N is the right-most (linear map)
or outer-most (circular map) level, where N is the number of features.

Levels is a vector of N integers, where N is the number of features. Each integer
represents the level in the map for the corresponding feature. For example, if Levels =
[1, 1, 2, 3, 3], the first two features would appear on level 1, the third feature on
level 2, and the fourth and fifth features on level 3. By default, Levels = [1:N].

[Handles, OutFeatList] = featuresmap(...) returns a list of handles for each
feature in OutFeatList. It also returns OutFeatList, which is a cell array of the
mapped features.

Tip Use Handles and OutFeatList with the legend command to create a legend of
features.

 featuresmap

1-607

featuresmap(..., 'PropertyName', PropertyValue, ...) defines optional
properties that use property name/value pairs in any order. These property name/value
pairs are as follows:

featuresmap(..., 'FontSize', FontSizeValue, ...) sets the font size (points)
for the annotations of the features. Default FontSizeValue is 9.

featuresmap(..., 'ColorMap', ColorMapValue, ...) specifies a list of colors
to use for each feature. This matrix replaces the default matrix, which specifies the
following colors and order: blue, green, red, cyan, magenta, yellow, brown, light green,
orange, purple, gold, and silver. ColorMapValue is a three-column matrix, where each
row corresponds to a color, and each column specifies red, green, and blue intensity
respectively. Valid values for the RGB intensities are 0.0 to 1.0.

featuresmap(..., 'Qualifiers', QualifiersValue, ...) lets you specify an
ordered list of qualifiers to search for and use as annotations. For each feature, the first
matching qualifier found from the list is used for its annotation. If a feature does not
include any of the qualifiers, no annotation displays for that feature. QualifiersValue
is a cell array of strings. By default, QualifiersValue = {'gene', 'product',
'locus_tag', 'note', 'db_xref', 'protein_id'}. Provide your own
QualifiersValue to limit or expand the list of qualifiers or change the search order.

Tip Set QualifiersValue = {} to create a map with no annotations.

Tip To determine all qualifiers available for a given feature, do either of the following:

• Create the map, and then click a feature or its annotation to list all qualifiers for that
feature.

• Use the featuresparse command to parse all the features into a new structure, and
then use the fieldnames command to list the qualifiers for a specific feature. See
Determining Qualifiers for a Specific Feature.

featuresmap(..., 'ShowPositions', ShowPositionsValue, ...) lets you
add the sequence position to the annotation label. If ShowPositionsValue is true,
sequence positions are added to the annotation labels. Default is false.

1 Alphabetical List

1-608

 featuresmap

1-609

1 Alphabetical List

1-610

After creating a map:

• Click a feature or annotation to display a list of all qualifiers for that feature.
• Zoom the plot by clicking the following buttons:

 or

Examples

Creating a Circular Map with a Legend

The following example creates a circular map of five different features mapped on three
levels. It also uses outputs from the featuresmap function as inputs to the legend
function to add a legend to the map.

GBStructure = getgenbank('J01415');

[Handles, OutFeatList] = featuresmap(GBStructure, ...

 {'CDS','D_loop','mRNA','tRNA','rRNA'}, [1 2 2 2 3])

legend(Handles, OutFeatList, 'interpreter', 'none', ...

 'location','bestoutside')

title('Human Mitochondrion, Complete Genome')

Creating a Linear Map with Sequence Position Labels and Changed Font Size

The following example creates a linear map showing only the gene feature. It changes the
font of the labels to seven points and includes the sequence position in the labels.

herpes = getgenbank('NC_001348');

featuresmap(herpes,{'gene'},'fontsize',7,'showpositions',true)

title('Genes in Human herpesvirus 3 (strain Dumas)')

Determining Qualifiers for a Specific Feature

The following example uses the getgenbank function to create a GenBank structure,
GBStructure. It then uses the featuresparse function to parse the features in the
GenBank structure into a new structure, features. It then uses the fieldnames
function to return all qualifiers for one of the features, D_loop.

GenBankStructure = getgenbank('J01415');

features = featuresparse (GenBankStructure)

features =

 featuresmap

1-611

 source: [1x1 struct]

 D_loop: [1x2 struct]

 rep_origin: [1x3 struct]

 repeat_unit: [1x4 struct]

 misc_signal: [1x1 struct]

 misc_RNA: [1x1 struct]

 variation: [1x17 struct]

 tRNA: [1x22 struct]

 rRNA: [1x2 struct]

 mRNA: [1x10 struct]

 CDS: [1x13 struct]

 conflict: [1x1 struct]

fieldnames(features.D_loop)

ans =

 'Location'

 'Indices'

 'note'

 'citation'

See Also
featuresparse | genbankread | getgenbank | seqviewer

1 Alphabetical List

1-612

featuresparse

Parse features from GenBank, GenPept, or EMBL data

Syntax

FeatStruct = featuresparse(Features)

FeatStruct = featuresparse(Features, ...'Feature',

FeatureValue, ...)

FeatStruct = featuresparse(Features, ...'Sequence',

SequenceValue, ...)

Input Arguments

Features Any of the following:

• String containing GenBank, GenPept, or EMBL features
• MATLAB character array including text describing GenBank,

GenPept, or EMBL features
• MATLAB structure with fields corresponding to GenBank,

GenPept, or EMBL data, such as those returned by
genbankread, genpeptread, emblread, getgenbank,
getgenpept, or getembl

FeatureValue Name of a feature contained in Features. When specified,
featuresparse returns only the substructure that corresponds
to this feature. If there are multiple features with the same
FeatureValue, then FeatStruct is an array of structures.

SequenceValue Property to control the extraction, when possible, of the sequences
respective to each feature, joining and complementing pieces
of the source sequence and storing them in the Sequence field
of the returned structure, FeatStruct. When extracting the
sequence from an incomplete CDS feature, featuresparse uses
the codon_start qualifier to adjust the frame of the sequence.
Choices are true or false (default).

 featuresparse

1-613

Output Arguments

FeatStruct Output structure containing a field for every database feature.
Each field name in FeatStruct matches the corresponding
feature name in the GenBank, GenPept, or EMBL database, with
the exceptions listed in the table below. Fields in FeatStruct
contain substructures with feature qualifiers as fields. In the
GenBank, GenPept, and EMBL databases, for each feature, the
only mandatory qualifier is its location, which featuresparse
translates to the field Location. When possible, featuresparse
also translates this location to numeric indices, creating an
Indices field.

Note: If you use the Indices field to extract sequence
information, you may need to complement the sequences.

Description

FeatStruct = featuresparse(Features) parses the features from Features,
which contains GenBank, GenPept, or EMBL features. Features can be a:

• String containing GenBank, GenPept, or EMBL features
• MATLAB character array including text describing GenBank, GenPept, or EMBL

features
• MATLAB structure with fields corresponding to GenBank, GenPept, or EMBL data,

such as those returned by genbankread, genpeptread, emblread, getgenbank,
getgenpept, or getembl

FeatStruct is the output structure containing a field for every database feature. Each
field name in FeatStruct matches the corresponding feature name in the GenBank,
GenPept, or EMBL database, with the following exceptions.

Feature Name in GenBank, GenPept, or
EMBL Database

Field Name in MATLAB Structure

-10_signal minus_10_signal

1 Alphabetical List

1-614

Feature Name in GenBank, GenPept, or
EMBL Database

Field Name in MATLAB Structure

-35_signal minus_35_signal

3'UTR three_prime_UTR

3'clip three_prime_clip

5'UTR five_prime_UTR

5'clip five_prime_clip

D-loop D_loop

Fields in FeatStruct contain substructures with feature qualifiers as fields. In the
GenBank, GenPept, and EMBL databases, for each feature, the only mandatory qualifier
is its location, which featuresparse translates to the field Location. When possible,
featuresparse also translates this location to numeric indices, creating an Indices
field.

Note: If you use the Indices field to extract sequence information, you may need to
complement the sequences.

FeatStruct = featuresparse (Features, ...'PropertyName',

PropertyValue, ...) calls featuresparse with optional properties that use
property name/property value pairs. You can specify one or more properties in any order.
Each PropertyName must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

FeatStruct = featuresparse(Features, ...'Feature',

FeatureValue, ...) returns only the substructure that corresponds to
FeatureValue, the name of a feature contained in Features. If there are multiple
features with the same FeatureValue, then FeatStruct is an array of structures.

FeatStruct = featuresparse(Features, ...'Sequence',

SequenceValue, ...) controls the extraction, when possible, of the sequences
respective to each feature, joining and complementing pieces of the source sequence and
storing them in the field Sequence. When extracting the sequence from an incomplete
CDS feature, featuresparse uses the codon_start qualifier to adjust the frame of the
sequence. Choices are true or false (default).

 featuresparse

1-615

Examples

Obtaining All Features from a GenBank File

The following example obtains all the features stored in the GenBank file
nm175642.txt:

gbkStruct = genbankread('nm175642.txt');

features = featuresparse(gbkStruct)

features =

 source: [1x1 struct]

 gene: [1x1 struct]

 CDS: [1x1 struct]

Obtaining a Subset of Features from a GenBank Record

The following example obtains only the coding sequences (CDS) feature of the
Caenorhabditis elegans cosmid record (accession number Z92777) from the GenBank
database:

worm = getgenbank('Z92777');

CDS = featuresparse(worm,'feature','cds')

CDS =

1x12 struct array with fields:

 Location

 Indices

 locus_tag

 standard_name

 note

 codon_start

 product

 protein_id

 db_xref

 translation

Extracting Sequences for Each Feature

1 Retrieve two nucleotide sequences from the GenBank database for the
neuraminidase (NA) protein of two strains of the Influenza A virus (H5N1).

1 Alphabetical List

1-616

 hk01 = getgenbank('AF509094');

 vt04 = getgenbank('DQ094287');

2 Extract the sequence of the coding region for the neuraminidase (NA) protein from
the two nucleotide sequences. The sequences of the coding regions are stored in the
Sequence fields of the returned structures, hk01_cds and vt04_cds.

hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);

vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);

3 Once you have extracted the nucleotide sequences, you can use the nt2aa and
nwalign functions to align the amino acids sequences converted from the nucleotide
sequences.

 [sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Then you can use the seqinsertgaps function to copy the gaps from the aligned
amino acid sequences to their corresponding nucleotide sequences, thus codon-
aligning them.

 hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))

 vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

5 Once you have code aligned the two sequences, you can use them as input to other
functions such as dnds, which calculates the synonymous and nonsynonymous
substitutions rates of the codon-aligned nucleotide sequences. By setting Verbose
to true, you can also display the codons considered in the computations and their
amino acid translations.

[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)

See Also
emblread | genbankread | genpeptread | getgenbank | getgenpept

 featureVarDesc

1-617

featureVarDesc
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set feature variable descriptions in ExpressionSet object

Syntax

DSVarDescriptions = featureVarDesc(ESObj)

NewESObj = featureVarDesc(ESObj, NewDSVarDescriptions)

Description

DSVarDescriptions = featureVarDesc(ESObj) returns a dataset array
containing the feature variable names and descriptions from the MetaData object in an
ExpressionSet object.

NewESObj = featureVarDesc(ESObj, NewDSVarDescriptions) replaces
the feature variable descriptions in ESObj, an ExpressionSet object, with
NewDSVarDescriptions, and returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewDSVarDescriptions

Descriptions of the feature variable names, specified by either of the following:

• A new “dataset” array containing the feature variable names and descriptions. In
this dataset array, each row corresponds to a variable. The first column contains
the variable name, and the second column (VariableDescription) contains a

1 Alphabetical List

1-618

description of the variable. The row names (variable names) must match the row
names (variable names) in DSVarDescriptions, the dataset array being replaced in
the MetaData object in the ExpressionSet object, ESObj.

• Cell array of strings containing descriptions of the feature variables. The number
of elements in VarDesc must equal the number of row names (variable names) in
DSVarDescriptions, the dataset array being replaced in the MetaData object in the
ExpressionSet object, ESObj.

Default:

Output Arguments

DSVarDescriptions

A “dataset” array containing the feature variable names and descriptions from the
MetaData object of an ExpressionSet object. In this dataset array, each row corresponds
to a variable. The first column contains the variable name, and the second column
(VariableDescription) contains a description of the variable.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the dataset array
containing the feature variable descriptions.

See Also
bioma.ExpressionSet | bioma.data.MetaData | variableDesc

How To
• “Managing Gene Expression Data in Objects”

 featureVarNames

1-619

featureVarNames
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set feature variable names in ExpressionSet object

Syntax
FeatVarNames = featureVarNames(ESObj)

FeatVarNames = featureVarNames(ESObj, Subset)

NewESObj = featureVarNames(ESObj, Subset, NewFeatVarNames)

Description
FeatVarNames = featureVarNames(ESObj) returns a cell array of strings specifying
all feature variable names in an ExpressionSet object.

FeatVarNames = featureVarNames(ESObj, Subset) returns a cell array of strings
specifying a subset the feature variable names in an ExpressionSet object.

NewESObj = featureVarNames(ESObj, Subset, NewFeatVarNames) replaces
the feature variable names specified by Subset in ESObj, an ExpressionSet object, with
NewFeatVarNames, and returns NewESObj, a new ExpressionSet object.

Input Arguments
ESObj

Object of the bioma.ExpressionSet class.

Default:

Subset

One of the following to specify a subset of the feature variable names in an ExpressionSet
object:

• String specifying a feature variable name

1 Alphabetical List

1-620

• Cell array of strings specifying feature variable names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewFeatVarNames

New feature variable names for specific feature variable names within an ExpressionSet
object, specified by one of the following:

• Numeric vector
• Cell array of strings
• Character array
• String, which featureVarNames uses as a prefix for the feature variable names, with

feature variable numbers appended to the prefix
• Logical true or false (default). If true, featureVarNames assigns unique feature

variable names using the format Var1, Var2, etc.

The number of feature variable names in NewFeatVarNames must equal the number of
feature variable names specified by Subset.

Default:

Output Arguments

FeatVarNames

Cell array of strings specifying all or some of the feature variable names in an
ExpressionSet object. The feature variable names are the column names of the
VarValues dataset array. The feature variable names are also the row names of the
VarDescriptions dataset array. Both dataset arrays are in the MetaData object in the
ExpressionSet object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing specific feature
names.

 featureVarNames

1-621

See Also
bioma.ExpressionSet | bioma.data.MetaData | sampleNames | featureNames |
sampleVarNames

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-622

featureVarValues
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set feature variable data values in ExpressionSet object

Syntax

DSVarValues = featureVarValues(ESObj)

NewESObj = featureVarValues(ESObj, NewDSVarValues)

Description

DSVarValues = featureVarValues(ESObj) returns a dataset array containing
the measured value of each variable per feature from the MetaData object of an
ExpressionSet object.

NewESObj = featureVarValues(ESObj, NewDSVarValues) replaces the feature
variable values in ESObj, an ExpressionSet object, with NewDSVarValues, and returns
NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewDSVarValues

A “dataset” array containing a value for each variable per feature. In this dataset array,
the columns correspond to variables and rows correspond to feature. The row names
(feature names) must match the row names (feature names) in DSVarValues, the
dataset array being replaced in the MetaData object in the ExpressionSet object, ESObj.

 featureVarValues

1-623

Default:

Output Arguments

DSVarValues

A “dataset” array containing the measured value of each variable per feature from
the MetaData object of an ExpressionSet object. In this dataset array, the columns
correspond to variables and rows correspond to features.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the dataset array
containing the feature variable values.

See Also
bioma.ExpressionSet | bioma.data.MetaData | variableValues

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-624

galread
Read microarray data from GenePix array list file

Syntax

GALData = galread('File')

Arguments

File GenePix® array list formatted file (GAL). Enter a file name,
or enter a path and file name.

Description

galread reads data from a GenePix formatted file into a MATLAB structure.

GALData = galread('File') reads in a GenePix array list formatted file (File) and
creates a structure (GALData) containing the following fields.

Field

Header

BlockData

IDs

Names

The field BlockData is an N-by-3 array. The columns of this array are the block data, the
column data, and the row data respectively. For more information on the GAL format,
see
http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal

For a list of supported file format versions, see
http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html

http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal
http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html

 galread

1-625

See Also
affyread | geoseriesread | geosoftread | gprread | ilmnbsread |
imageneread | sptread

1 Alphabetical List

1-626

gcrma

Perform GC Robust Multi-array Average (GCRMA) background adjustment, quantile
normalization, and median-polish summarization on Affymetrix microarray probe-level
data

Syntax

ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices, AffinPM,

AffinMM)

ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices,

SequenceMatrix)

ExpressionMatrix = gcrma(..., 'ChipIndex', ChipIndexValue, ...)

ExpressionMatrix = gcrma(..., 'OpticalCorr', OpticalCorrValue, ...)

ExpressionMatrix = gcrma(..., 'CorrConst', CorrConstValue, ...)

ExpressionMatrix = gcrma(..., 'Method', MethodValue, ...)

ExpressionMatrix = gcrma(..., 'TuningParam', TuningParamValue, ...)

ExpressionMatrix = gcrma(..., 'GSBCorr', GSBCorrValue, ...)

ExpressionMatrix = gcrma(..., 'Normalize', NormalizeValue, ...)

ExpressionMatrix = gcrma(..., 'Verbose', VerboseValue, ...)

Input Arguments

PMMatrix Matrix of intensity values where each row corresponds to a
perfect match (PM) probe and each column corresponds to
an Affymetrix CEL file. (Each CEL file is generated from a
separate chip. All chips should be of the same type.)

Tip You can use the PMIntensities matrix returned by the
celintensityread function.

MMMatrix Matrix of intensity values where each row corresponds to
a mismatch (MM) probe and each column corresponds to
an Affymetrix CEL file. (Each CEL file is generated from a
separate chip. All chips should be of the same type.)

 gcrma

1-627

Tip You can use the MMIntensities matrix returned by the
celintensityread function.

ProbeIndices Column vector containing probe indices. Probes within a
probe set are numbered 0 through N - 1, where N is the
number of probes in the probe set.

Tip You can use the affyprobeseqread function to
generate this column vector.

AffinPM Column vector of PM probe affinities.

Tip You can use the affyprobeaffinities function to
generate this column vector.

AffinMM Column vector of MM probe affinities.

Tip You can use the affyprobeaffinities function to
generate this column vector.

SequenceMatrix An N-by-25 matrix of sequence information for the perfect
match (PM) probes on the Affymetrix GeneChip array,
where N is the number of probes on the array. Each row
corresponds to a probe, and each column corresponds to one
of the 25 sequence positions. Nucleotides in the sequences are
represented by one of the following integers:

• 0 — None
• 1 — A
• 2 — C
• 3 — G
• 4 — T

Tip You can use the affyprobeseqread function to
generate this matrix. If you have this sequence information
in letter representation, you can convert it to integer
representation using the nt2int function.

1 Alphabetical List

1-628

ChipIndexValue Positive integer specifying a column index in MMMatrix,
which specifies a chip. This chip intensity data is used to
compute probe affinities. Default is 1.

OpticalCorrValue Controls the use of optical background correction on the
PM and MM intensity values in PMMatrix and MMMatrix.
Choices are true (default) or false.

CorrConstValue Value that specifies the correlation constant, rho, for
background intensity for each PM/MM probe pair. Choices
are any value # 0 and # 1. Default is 0.7.

MethodValue String that specifies the method to estimate the signal.
Choices are MLE, a faster, ad hoc Maximum Likelihood
Estimate method, or EB, a slower, more formal, empirical
Bayes method. Default is MLE.

TuningParamValue Value that specifies the tuning parameter used by the
estimate method. This tuning parameter sets the lower
bound of signal values with positive probability. Choices are
a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this
parameter, see Wu et al., 2004.

GSBCorrValue Specifies whether to perform gene-specific binding (GSB)
correction using probe affinity data. Choices are true
(default) or false. If there is no probe affinity information,
this property is ignored.

NormalizeValue Controls whether quantile normalization is performed on
background adjusted data. Choices are true (default) or
false.

VerboseValue Controls the display of a progress report showing the number
of each chip as it is completed. Choices are true (default) or
false.

 gcrma

1-629

Output Arguments

ExpressionMatrix Matrix of log2 expression values where each row corresponds
to a gene (probe set) and each column corresponds to an
Affymetrix CEL file, which represents a single chip.

Description

ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices, AffinPM,

AffinMM) performs GCRMA background adjustment, quantile normalization, and
median-polish summarization on Affymetrix microarray probe-level data using probe
affinity data. ExpressionMatrix is a matrix of log2 expression values where each row
corresponds to a gene (probe set) and each column corresponds to an Affymetrix CEL file,
which represents a single chip.

Note: There is no column in ExpressionMatrix that contains probe set or gene
information.

ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices,

SequenceMatrix) performs GCRMA background adjustment, quantile normalization,
and Robust Multi-array Average (RMA) summarization on Affymetrix microarray probe-
level data using probe sequence data to compute probe affinity data. ExpressionMatrix
is a matrix of log2 expression values where each row corresponds to a gene (probe set)
and each column corresponds to an Affymetrix CEL file, which represents a single chip.

Note: If AffinPM and AffinMM affinity data and SequenceMatrix sequence data are
not available, you can still use the gcrma function by entering an empty matrix for these
inputs in the syntax.

ExpressionMatrix = gcrma(...'PropertyName', PropertyValue, ...) calls
gcrma with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property value pairs are as
follows:

1 Alphabetical List

1-630

ExpressionMatrix = gcrma(..., 'ChipIndex', ChipIndexValue, ...)

computes probe affinities from MM probe intensity data from the chip with the specified
column index in MMMatrix. Default ChipIndexValue is 1. If AffinPM and AffinMM
affinity data are provided, this property is ignored.

ExpressionMatrix = gcrma(..., 'OpticalCorr', OpticalCorrValue, ...)

controls the use of optical background correction on the PM and MM intensity values in
PMMatrix and MMMatrix. Choices are true (default) or false.

ExpressionMatrix = gcrma(..., 'CorrConst', CorrConstValue, ...)

specifies the correlation constant, rho, for background intensity for each PM/MM probe
pair. Choices are any value # 0 and # 1. Default is 0.7.

ExpressionMatrix = gcrma(..., 'Method', MethodValue, ...) specifies the
method to estimate the signal. Choices are MLE, a faster, ad hoc Maximum Likelihood
Estimate method, or EB, a slower, more formal, empirical Bayes method. Default is MLE.

ExpressionMatrix = gcrma(..., 'TuningParam', TuningParamValue, ...)

specifies the tuning parameter used by the estimate method. This tuning parameter sets
the lower bound of signal values with positive probability. Choices are a positive value.
Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see Wu et al., 2004.

ExpressionMatrix = gcrma(..., 'GSBCorr', GSBCorrValue, ...) specifies
whether to perform gene specific binding (GSB) correction using probe affinity data.
Choices are true (default) or false. If there is no probe affinity information, this
property is ignored.

ExpressionMatrix = gcrma(..., 'Normalize', NormalizeValue, ...)

controls whether quantile normalization is performed on background adjusted data.
Choices are true (default) or false.

ExpressionMatrix = gcrma(..., 'Verbose', VerboseValue, ...) controls the
display of a progress report showing the number of each chip as it is completed. Choices
are true (default) or false.

 gcrma

1-631

Examples
1 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains

Affymetrix data from a prostate cancer study. The variables in the MAT-file include
seqMatrix, a matrix containing sequence information for PM probes, pmMatrix
and mmMatrix, matrices containing PM and MM probe intensity values, and
probeIndices, a column vector containing probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their sequences and MM
probe intensities.

[apm, amm] = affyprobeaffinities(seqMatrix, mmMatrix(:,1),...

 'ProbeIndices', probeIndices);

3 Perform GCRMA background adjustment, quantile normalization, and Robust Multi-
array Average (RMA) summarization on the Affymetrix microarray probe-level data
and create a matrix of expression values.

expdata = gcrma(pmMatrix, mmMatrix, probeIndices, seqMatrix);

The prostatecancerrawdata.mat file used in this example contains data from Best et
al., 2005.

References

[1] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of
the American Statistical Association 99(468), 909–917.

[2] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory
for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol.
12(6), 882–93.

[3] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of
Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working
Papers 73.

[4] Speed, T. (2006). Background models and GCRMA. Lecture 10, Statistics 246,
University of California Berkeley. http://www.stat.berkeley.edu/users/terry/
Classes/s246.2006/Week10/Week10L1.pdf.

http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf
http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf

1 Alphabetical List

1-632

[5] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affygcrma | affyprobeseqread | affyread | affyrma | celintensityread |
gcrmabackadj | quantilenorm | rmabackadj | rmasummary

 gcrmabackadj

1-633

gcrmabackadj
Perform GC Robust Multi-array Average (GCRMA) background adjustment on
Affymetrix microarray probe-level data using sequence information

Syntax
PMMatrix_Adj = gcrmabackadj(PMMatrix, MMMatrix, AffinPM, AffinMM)

[PMMatrix_Adj, nsbStruct] = gcrmabackadj(PMMatrix, MMMatrix,

AffinPM, AffinMM)

... = gcrmabackadj(...'OpticalCorr', OpticalCorrValue, ...)

... = gcrmabackadj(...'CorrConst', CorrConstValue, ...)

... = gcrmabackadj(...'Method', MethodValue, ...)

... = gcrmabackadj(...'TuningParam', TuningParamValue, ...)

... = gcrmabackadj(...'AddVariance', AddVarianceValue, ...)

... = gcrmabackadj(...'GSBCorr', GSBCorrValue, ...)

... = gcrmabackadj(...'Showplot', ShowplotValue, ...)

... = gcrmabackadj(...'Verbose', VerboseValue, ...)

Input Arguments

PMMatrix Matrix of intensity values where each row corresponds to a
perfect match (PM) probe and each column corresponds to
an Affymetrix CEL file. (Each CEL file is generated from a
separate chip. All chips should be of the same type.)

Tip You can use the PMIntensities matrix returned by the
celintensityread function.

MMMatrix Matrix of intensity values where each row corresponds to
a mismatch (MM) probe and each column corresponds to
an Affymetrix CEL file. (Each CEL file is generated from a
separate chip. All chips should be of the same type.)

Tip You can use the MMIntensities matrix returned by the
celintensityread function.

1 Alphabetical List

1-634

AffinPM Column vector of PM probe affinities, such as returned by the
affyprobeaffinities function. Each row corresponds to a
probe.

AffinMM Column vector of MM probe affinities, such as returned by
the affyprobeaffinities function. Each row corresponds
to a probe.

OpticalCorrValue Controls the use of optical background correction on the PM
and MM probe intensity values in PMMatrix and MMMatrix.
Choices are true (default) or false.

CorrConstValue Value that specifies the correlation constant, rho, for log
background intensity for each PM/MM probe pair. Choices
are any value # 0 and # 1. Default is 0.7.

MethodValue String that specifies the method to estimate the signal.
Choices are MLE, a faster, ad hoc Maximum Likelihood
Estimate method, or EB, a slower, more formal, empirical
Bayes method. Default is MLE.

TuningParamValue Value that specifies the tuning parameter used by the
estimate method. This tuning parameter sets the lower
bound of signal values with positive probability. Choices are
a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this
parameter, see Wu et al., 2004.

AddVarianceValue Controls whether the signal variance is added to the weight
function for smoothing low signal edge. Choices are true or
false (default).

GSBCorrValue Specifies whether to perform gene-specific binding (GSB)
correction using probe affinity data. Choices are true
(default) or false. If there is no probe affinity information,
this property is ignored.

 gcrmabackadj

1-635

ShowplotValue Controls the display of a plot showing the log2 of probe
intensity values from a specified column (chip) in MMMatrix,
versus probe affinities in AffinMM. Choices are true, false,
or I, an integer specifying a column in MMMatrix. If set to
true, the first column in MMMatrix is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

VerboseValue Controls the display of a progress report showing the number
of each chip as it is completed. Choices are true (default) or
false.

Output Arguments

PMMatrix_Adj Matrix of background adjusted PM (perfect match) intensity
values.

nsbStruct Structure containing nonspecific binding background
parameters, estimated from the intensities and affinities
of probes on an Affymetrix GeneChip array. nsbStruct
includes the following fields:

• sigma

• mu_pm

• mu_mm

Description

PMMatrix_Adj = gcrmabackadj(PMMatrix, MMMatrix, AffinPM, AffinMM)

performs GCRMA background adjustment (including optical background correction and
nonspecific binding correction) on Affymetrix microarray probe-level data, using probe
sequence information and returns PMMatrix_Adj, a matrix of background adjusted PM
(perfect match) intensity values.

1 Alphabetical List

1-636

Note: If AffinPM and AffinMM data are not available, you can still use the
gcrmabackadj function by entering empty column vectors for both of these inputs in the
syntax.

[PMMatrix_Adj, nsbStruct] = gcrmabackadj(PMMatrix, MMMatrix,

AffinPM, AffinMM) returns nsbStruct, a structure containing nonspecific binding
background parameters, estimated from the intensities and affinities of probes on an
Affymetrix GeneChip array. nsbStruct includes the following fields:

• sigma

• mu_pm

• mu_mm

... = gcrmabackadj(...'PropertyName', PropertyValue, ...) calls
gcrmabackadj with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... = gcrmabackadj(...'OpticalCorr', OpticalCorrValue, ...) controls
the use of optical background correction on the PM and MM probe intensity values in
PMMatrix and MMMatrix. Choices are true (default) or false.

... = gcrmabackadj(...'CorrConst', CorrConstValue, ...) specifies the
correlation constant, rho, for log background intensity for each PM/MM probe pair.
Choices are any value # 0 and # 1. Default is 0.7.

... = gcrmabackadj(...'Method', MethodValue, ...) specifies the method
to estimate the signal. Choices are MLE, a faster, ad hoc Maximum Likelihood Estimate
method, or EB, a slower, more formal, empirical Bayes method. Default is MLE.

... = gcrmabackadj(...'TuningParam', TuningParamValue, ...) specifies
the tuning parameter used by the estimate method. This tuning parameter sets the lower
bound of signal values with positive probability. Choices are a positive value. Default is 5
(MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see Wu et al., 2004.

 gcrmabackadj

1-637

... = gcrmabackadj(...'AddVariance', AddVarianceValue, ...) controls
whether the signal variance is added to the weight function for smoothing low signal
edge. Choices are true or false (default).

... = gcrmabackadj(...'GSBCorr', GSBCorrValue, ...) specifies whether
to perform gene specific binding (GSB) correction using probe affinity data. Choices
are true (default) or false. If there is no probe affinity information, this property is
ignored.

... = gcrmabackadj(...'Showplot', ShowplotValue, ...) controls the
display of a plot showing the log2 of probe intensity values from a specified column (chip)
in MMMatrix, versus probe affinities in AffinMM. Choices are true, false, or I, an
integer specifying a column in MMMatrix. If set to true, the first column in MMMatrix is
plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

... = gcrmabackadj(...'Verbose', VerboseValue, ...) controls the display
of a progress report showing the number of each chip as it is completed. Choices are true
(default) or false.

Examples
1 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains

Affymetrix data from a prostate cancer study. The variables in the MAT-file include
seqMatrix, a matrix containing sequence information for PM probes, pmMatrix
and mmMatrix, matrices containing PM and MM probe intensity values, and
probeIndices, a column vector containing probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their sequences and MM
probe intensities.

[apm, amm] = affyprobeaffinities(seqMatrix, mmMatrix(:,1),...

 'ProbeIndices', probeIndices);

3 Perform GCRMA background adjustment on the Affymetrix microarray probe-level
data, creating a matrix of background adjusted PM intensity values. Also, display a
plot showing the log2 of probe intensity values from column 3 (chip 3) in mmMatrix,
versus probe affinities in amm.

1 Alphabetical List

1-638

pms_adj = gcrmabackadj(pmMatrix, mmMatrix, apm, amm, 'showplot', 3);

4 Perform GCRMA background adjustment again, using the slower, more formal,
empirical Bayes method.

pms_adj2 = gcrmabackadj(pmMatrix, mmMatrix, apm, amm, 'method', 'EB');

The prostatecancerrawdata.mat file used in this example contains data from Best et
al., 2005.

 gcrmabackadj

1-639

References

[1] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of
the American Statistical Association 99(468), 909–917.

[2] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory
for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol.
12(6), 882–93.

[3] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of
Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working
Papers 73.

[4] Wu, Z., and Irizarry, R.A. (2003). A Model Based Background Adjustment for
Oligonucleotide Expression Arrays. RSS Workshop on Gene Expression, Wye,
England, http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf.

[5] Abd Rabbo, N.A., and Barakat, H.M. (1979). Estimation Problems in Bivariate
Lognormal Distribution. Indian J. Pure Appl. Math 10(7), 815–825.

[6] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affygcrma | affyprobeseqread | affyread | celintensityread |
probelibraryinfo

http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf

1 Alphabetical List

1-640

ge (DataMatrix)
Test DataMatrix objects for greater than or equal to

Syntax

T = ge(DMObj1, DMObj2)

T = DMObj1 >= DMObj2

T = ge(DMObj1, B)

T = DMObj1 >= B

T = ge(B, DMObj1)

T = B >= DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

T Logical matrix of the same size as DMObj1 and DMObj2 or
DMObj1 and B. It contains logical 1 (true) where elements in
the first input are greater than or equal to the corresponding
element in the second input, and logical 0 (false) otherwise.

Description

T = ge(DMObj1, DMObj2) or the equivalent T = DMObj1 >= DMObj2 compares
each element in DataMatrix object DMObj1 to the corresponding element in DataMatrix
object DMObj2, and returns T, a logical matrix of the same size as DMObj1 and DMObj2,
containing logical 1 (true) where elements in DMObj1 are greater than or equal to the
corresponding element in DMObj2, and logical 0 (false) otherwise. DMObj1 and DMObj2

 ge (DataMatrix)

1-641

must have the same size (number of rows and columns), unless one is a scalar (1-by-1
DataMatrix object). DMObj1 and DMObj2 can have different Name properties.

T = ge(DMObj1, B) or the equivalent T = DMObj1 >= B compares each element in
DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array,
and returns T, a logical matrix of the same size as DMObj1 and B, containing logical 1
(true) where elements in DMObj1 are greater than or equal to the corresponding element
in B, and logical 0 (false) otherwise. DMObj1 and B must have the same size (number of
rows and columns), unless one is a scalar.

T = ge(B, DMObj1) or the equivalent T = B >= DMObj1 compares each element in B,
a numeric or logical array, to the corresponding element in DataMatrix object DMObj1,
and returns T, a logical matrix of the same size as B and DMObj1, containing logical 1
(true) where elements in B are greater than or equal to the corresponding element in
DMObj1, and logical 0 (false) otherwise. B and DMObj1 must have the same size (number
of rows and columns), unless one is a scalar.

MATLAB calls T = ge(X, Y) for the syntax T = X >= Y when X or Y is a DataMatrix
object.

More About
• “DataMatrix object”

See Also
DataMatrix | le

1 Alphabetical List

1-642

genbankread
Read data from GenBank file

Syntax

GenBankData = genbankread(File)

Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a GenBank-formatted
file (ASCII text file). If you specify only a file name, that file
must be on the MATLAB search path or in the MATLAB
Current Folder.

• MATLAB character array that contains the text of a GenBank-
formatted file.

Tip You can use the getgenbank function with the 'ToFile'
property to retrieve sequence information from the GenBank
database and create an GenBank-formatted file.

GenBankData MATLAB structure or array of structures containing fields
corresponding to GenBank keywords.

Description

GenBankData = genbankread(File) reads a GenBank-formatted file, File, and
creates GenBankData, a structure or array of structures, containing fields corresponding
to the GenBank keywords. When File contains multiple entries, each entry is stored
as a separate element in GenBankData. For a list of the GenBank keywords, see http://
www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html.

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

 genbankread

1-643

Examples

1 Retrieve sequence information for the HEXA gene, store the data in a file, and then
read into the MATLAB software.

getgenbank('nm_000520', 'ToFile', 'TaySachs_Gene.txt')

s = genbankread('TaySachs_Gene.txt')

s =

 LocusName: 'NM_000520'

 LocusSequenceLength: '2437'

 LocusNumberofStrands: ''

 LocusTopology: 'linear'

 LocusMoleculeType: 'mRNA'

 LocusGenBankDivision: 'PRI'

 LocusModificationDate: '18-FEB-2009'

 Definition: [1x63 char]

 Accession: 'NM_000520'

 Version: 'NM_000520.4'

 GI: '189181665'

 Project: []

 DBLink: []

 Keywords: []

 Segment: []

 Source: 'Homo sapiens (human)'

 SourceOrganism: [4x65 char]

 Reference: {1x10 cell}

 Comment: [32x67 char]

 Features: [147x74 char]

 CDS: [1x1 struct]

 Sequence: [1x2437 char]

2 Display the source organism for this sequence.

s.SourceOrganism

ans =

Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;

Catarrhini; Hominidae; Homo.

1 Alphabetical List

1-644

See Also
emblread | fastaread | genpeptread | getgenbank | scfread | seqviewer

 geneentropyfilter

1-645

geneentropyfilter
Remove genes with low entropy expression values

Syntax

Mask = geneentropyfilter(Data)

[Mask, FData] = geneentropyfilter(Data)

[Mask, FData, FNames] = geneentropyfilter(Data, Names)

geneentropyfilter(..., 'Percentile', PercentileValue)

Arguments

Data DataMatrix object or numeric matrix where each row
corresponds to the experimental results for one gene. Each
column is the results for all genes from one experiment.

Names Cell array with the name of a gene for each row of experimental
data. Names has same number of rows as Data with each row
containing the name or ID of the gene in the data set.

PercentileValue Property to specify a percentile below which gene data is
removed. Enter a value from 0 to 100.

Description

Mask = geneentropyfilter(Data) identifies gene expression profiles in Data with
entropy values less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The elements of Mask
corresponding to rows with a variance greater than the threshold have a value of 1, and
those with a variance less than the threshold are 0.

[Mask, FData] = geneentropyfilter(Data) returns FData, a filtered data matrix.
You can also create FData using FData = Data(Mask,:).

[Mask, FData, FNames] = geneentropyfilter(Data, Names) returns
FNames, a filtered names array, where Names is a cell array of the names of the genes

1 Alphabetical List

1-646

corresponding to each row of Data. You can also create FNames using FNames =
Names(Mask).

Note: If Data is a DataMatrix object with specified row names, you do not need to
provide the second input Names to return the third output FNames.

geneentropyfilter(..., 'Percentile', PercentileValue) removes from
Data, the experimental data, gene expression profiles with entropy values less than
PercentileValue, the specified percentile.

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene
expression data, genes, a cell array of GenBank accession numbers for labeling the
rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues

load yeastdata

2 Remove genes with low entropy expression values.

[fyeastvalues, fgenes] = geneentropyfilter(yeastvalues,genes);

References

[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics,
Cambridge, MA:MIT Press.

See Also
exprprofrange | exprprofvar | genelowvalfilter | generangefilter |
genevarfilter

 genelowvalfilter

1-647

genelowvalfilter
Remove gene profiles with low absolute values

Syntax

Mask = genelowvalfilter(Data)

[Mask,FData] = genelowvalfilter(Data)

[Mask,FData,FNames] = genelowvalfilter(Data,geneNames)

[___] = genelowvalfilter(___ ,Name,Value)

Description

Mask = genelowvalfilter(Data) returns a logical vector Mask identifying gene
expression profiles in Data that have absolute expression levels in the lowest 10% of the
data set.

Gene expression profile experiments have data where the absolute values are very low.
The quality of this type of data is often bad due to large quantization errors or simply
poor spot hybridization. Use this function to filter data.

[Mask,FData] = genelowvalfilter(Data) also returns FData, a data matrix
containing filtered expression profiles.

[Mask,FData,FNames] = genelowvalfilter(Data,geneNames) also returns
FNames, a cell array of filtered gene names or IDs. You have to specify geneNames to
return FNames unless Data is a DataMatrix object with specified row names.

[___] = genelowvalfilter(___ ,Name,Value) returns any of the previous
output arguments using any input arguments from the previous syntaxes and additional
options, specified as one or more optional name-value pair arguments.

Examples

Filter Out Genes with Low Absolute Expression Levels

Load the sample yeast data.

1 Alphabetical List

1-648

load yeastdata;

Retrieve the genes and corresponding expression data where absolute expression levels
exceed the 10th percentile.

[mask,filteredData,filteredGenes] = genelowvalfilter(yeastvalues,genes);

Compare the number of filtered genes (filteredGenes) with the number of genes in the
original data set (genes).

size (filteredGenes,1)

ans =

 6394

size (genes,1)

ans =

 6400

Filter Out Genes with Low Absolute Expression Levels Using a Logical Vector

Load the sample yeast data.

load yeastdata;

Mark the genes that have low absolute expression levels below the 10th percentile of the
data set.

mask = genelowvalfilter(yeastvalues);

The variable genes contains every gene names in the yeast data set. Use the generated
logical vector mask to retrieve the genes where expression levels exceed the 10th
percentile.

filteredGenes = genes(mask);

Extract corresponding expression profile data for the selected genes from the variable
yeastvalues, which contains expression profiles of every gene in the yeast data set.

filteredData = yeastvalues(mask,:);

Filter Out Genes with Absolute Expression Levels that are Lower Than a User-Defined Threshold

Load the sample yeast data.

 genelowvalfilter

1-649

load yeastdata;

Retrieve the genes and corresponding expression data where absolute expression levels
exceed the 30th percentile of the data set.

[mask,filteredData,filteredGenes] = genelowvalfilter(yeastvalues,genes,'Percentile',30);

Compare the number of filtered genes (filteredGenes) with the number of genes in the
original data set (genes).

size (filteredGenes,1)

ans =

 6384

size (genes,1)

ans =

 6400

Input Arguments

Data — Input data
DataMatrix object | numeric matrix

Input data, specified as a DataMatrix object or numeric matrix. Each row of the matrix
corresponds to the experimental results for one gene. Each column represents the results
for all genes from one experiment.

geneNames — Gene names or IDs
cell array of strings

Gene names or IDs, specified as a cell array of strings. The array has the same number of
rows as Data. Each row contains the name or ID of the gene in the data set.

Note: If Data is a DataMatrix object with specified row names, you do not need to
provide the second input geneNames to return the third output FNames.

1 Alphabetical List

1-650

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'AbsValue',10.5 specifies genelowvalfilter to remove expression
profiles with absolute values less than 10.5.

'Percentile' — Percentile value
10 (default) | scalar value in the range (0,100)

Percentile value, specified as a scalar value in the range (0 to 100). The function
genelowvalfilter removes gene expression profiles with absolute values less than the
percentile value, which is specified using 'Percentile'.

Example: 'Percentile',50

'AbsValue' — Absolute expression profile value
real number

Absolute expression profile value, specified as a real number. The function
genelowvalfilter removes gene expression profiles with absolute values less than the
absolute value, which is specified using 'AbsValue'.

Example: 'AbsValue',10.5

'AnyVal' — Logical indicator to select minimum or maximum absolute value
false (default) | true

Logical indicator to select the minimum or maximum absolute value, specified as true
or false. Set the value to true to select the minimum absolute value. Set it to false to
select the maximum absolute value.
Example: 'AnyVal',true

Output Arguments

Mask — Logical vector
vector of 0s and 1s

 genelowvalfilter

1-651

Logical vector, returned as a vector of 0s and 1s for each row in Data. The elements of
Mask with value 1 correspond to rows with absolute expression levels exceeding the
threshold, and those with value 0 correspond to rows with absolute expression levels less
than or equal to the threshold.

FData — Filtered data matrix
data matrix

Filtered data matrix, returned as a data matrix that contains gene expression profiles
with absolute expression levels exceeding the threshold value. You can also create FData
using FData = Data(Mask,:).

FNames — Array of filtered gene names
cell array of strings

Array of filtered gene names, returned as a cell array of strings. It contains gene names
or IDs corresponding to each row of Data that contains gene expression profiles with
absolute expression levels exceeding the threshold value. You can also create FNames
using FNames = geneNames(Mask).

References

[1] Kohane, I.S., Kho, A.T., Butte, A.J. (2003). Microarrays for an Integrative Genomics,
First Edition (Cambridge, MA: MIT Press).

See Also
exprprofrange | exprprofvar | geneentropyfilter | generangefilter |
genevarfilter

1 Alphabetical List

1-652

geneont class

Data structure containing Gene Ontology (GO) information

Description
A geneont object is a data structure containing Gene Ontology information. You can
explore and traverse Gene Ontology terms using “is_a” and “part_of” relationships.

Construction
.geneont

Create geneont object and term objects

Methods
getancestors

Find terms that are ancestors of specified
Gene Ontology (GO) term

getdescendants
Find terms that are descendants of
specified Gene Ontology (GO) term

getmatrix
Convert geneont object into relationship
matrix

getrelatives
Find terms that are relatives of specified
Gene Ontology (GO) term

Properties
date

Read-only string containing date and time
OBO file was last updated

 geneont class

1-653

default_namespace
Read-only string containing namespace to
which GO terms are assigned

format_version
Read-only string containing version of
encoding of OBO file

terms
Read-only column vector with handles to
term objects of geneont object

Instance Hierarchy

A geneont object contains term objects.

Copy Semantics

Handle. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

You can use parenthesis () indexing with either GO identifiers (numbers) or by GO terms
(term objects) to create a subontology. See “Examples” on page 1-653 below.

Examples

Indexing into a geneont Object Using the GO Identifier

You can create a subontology by indexing into a geneont object by using the GO
identifier.

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

1 Alphabetical List

1-654

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Create a subontology by returning the terms with GO identifiers of GO:000005
through GO:000010.

subontology1 = GeneontObj(5:10)

Gene Ontology object with 6 Terms.

3 Create a subontology by returning the term with a GO identifier of GO:000100.

subontology2 = GeneontObj(100)

Gene Ontology object with 1 Terms.

Indexing into a geneont Object Using the GO Term

You can create a subontology by indexing into a geneont object by using the GO term.

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Create an array of term objects containing the fifth through tenth terms of the
geneont object.

termObject = GeneontObj.terms(5:10)

6x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 geneont class

1-655

 obsolete

Note: The GO term of 5 is the position of the term object in the geneont object, and is
not necessarily the same as the term object with a GO identifier of GO:000005 used
in the first example. This is because there are many terms that are obsolete and are
not included as term objects in the geneont object.

3 Create a subontology by returning the fifth through tenth terms of the geneont
object.

subontology3 = GeneontObj(termObject)

Gene Ontology object with 6 Terms.

See Also
goannotread | num2goid | term

1 Alphabetical List

1-656

geneont
Class: geneont

Create geneont object and term objects

Syntax

GeneontObj = geneont

GeneontObj = geneont('File', FileValue)

GeneontObj = geneont('Live', LiveValue)

GeneontObj = geneont('Live', LiveValue, 'ToFile', ToFileValue)

Description

GeneontObj = geneont creates GeneontObj, a geneont object, from the
gene_ontology.obo file in the MATLAB current directory. It also creates multiple
term objects, one for each term in the geneont object.

GeneontObj = geneont('File', FileValue) creates GeneontObj, a geneont
object, from FileValue, a string specifying the file name of an Open Biomedical
Ontology (OBO)-formatted file that is on the MATLAB search path.

GeneontObj = geneont('Live', LiveValue) controls the creation of GeneontObj,
a geneont object, from the current version of the Gene Ontology database, which is the
file at:

http://www.geneontology.org/ontology/gene_ontology.obo

Choices are true or false (default).

Note: The full Gene Ontology database may take several minutes to download when you
run this function using the 'Live' property.

GeneontObj = geneont('Live', LiveValue, 'ToFile', ToFileValue), when
LiveValue is true, creates GeneontObj, a geneont object, from the most recent version
of the Gene Ontology database, which is the file at:

http://www.geneontology.org/ontology/gene_ontology.obo

 geneont

1-657

http://www.geneontology.org/ontology/gene_ontology.obo

and saves the contents of this file to ToFileValue, a string specifying a file name or a
path and file name.

Input Arguments

FileValue String specifying the file name of an OBO-formatted file that is on
the MATLAB search path.

LiveValue Controls the creation of the most up-to-date geneont object. Enter
true to create GeneontObj, a geneont object, from the most
recent version of the Gene Ontology database. Default is false.

ToFileValue String specifying a file name or path and file name to which to
save the contents of the current version of the Gene Ontology
database.

Output Arguments

GeneontObj MATLAB object containing gene ontology information.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display information about the geneont object.

get(GeneontObj)

default_namespace: 'gene_ontology'

http://www.geneontology.org/ontology/gene_ontology.obo

1 Alphabetical List

1-658

 format_version: '1.0'

 version: '4.509'

 date: '28:11:2008 19:30'

 saved_by: 'gocvs'

 auto_generated_by: 'OBO-Edit 1.101'

 subsetdef: {7x1 cell}

 import: ''

 synonymtypedef: ''

 idspace: ''

 default_relationship_id_prefix: ''

 id_mapping: ''

 remark: [1x31 char]

 typeref: ''

 unrecognized_tag: {1x2 cell}

 Terms: [27769x1 geneont.term]

3 Search for all GO terms in the geneont object that contain the string ribosome in
the field name, and use the geneont.terms property to create a MATLAB structure
array of term objects containing those terms.

comparison = regexpi(get(GeneontObj.terms,'name'),'ribosome');

indices = find(~cellfun('isempty',comparison));

terms_with_ribosmome = GeneontObj.terms(indices)

22x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

Note: Although the terms property is a column vector with handles to term objects,
in the MATLAB Command Window, it displays as a structure array, with one
structure for each GO term in the geneont object.

See Also
goannotread | geneont.terms | num2goid | term

 generangefilter

1-659

generangefilter

Remove gene profiles with small profile ranges

Syntax

Mask = generangefilter(Data)

[Mask, FData] = generangefilter(Data)

[Mask, FData, FNames] = generangefilter(Data, Names)

generangefilter(..., 'Percentile', PercentileValue, ...)

generangefilter(..., 'AbsValue', AbsValueValue, ...)

generangefilter(..., 'LogPercentile', LogPercentileValue, ...)

generangefilter(..., 'LogValue', LogValueValue, ...)

Arguments

Data DataMatrix object or numeric matrix where each row
corresponds to the experimental results for one gene. Each
column is the results for all genes from one experiment.

Names Cell array with the name of a gene for each row of
experimental data. Names has same number of rows as
Data with each row containing the name or ID of the gene
in the data set.

PercentileValue Property to specify a percentile below which gene
expression profiles are removed. Enter a value from 0 to
100.

AbsValueValue Property to specify an absolute value below which gene
expression profiles are removed.

LogPercentileValue Property to specify the logarithm of a percentile.
LogValueValue Property to specify the logarithm of an absolute value.

1 Alphabetical List

1-660

Description

Mask = generangefilter(Data) calculates the range for each gene expression profile
in Data, a DataMatrix object or matrix of the experimental data, and then identifies the
expression profiles with ranges less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The elements of Mask
corresponding to rows with a range greater than the threshold have a value of 1, and
those with a range less than the threshold are 0.

[Mask, FData] = generangefilter(Data) returns FData, a filtered data matrix.
You can also create FData using FData = Data(Mask,:).

[Mask, FData, FNames] = generangefilter(Data, Names) returns FNames,
a filtered names array, where Names is a cell array of the names of the genes
corresponding to each row in Data. You can also create FNames using FNames =
Names(Mask).

Note: If Data is a DataMatrix object with specified row names, you do not need to
provide the second input Names to return the third output FNames.

generangefilter(..., 'PropertyName', PropertyValue, ...) calls
generangefilter with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

generangefilter(..., 'Percentile', PercentileValue, ...) removes from
the experimental data (Data) gene expression profiles with ranges less than a specified
percentile (PercentileValue).

generangefilter(..., 'AbsValue', AbsValueValue, ...) removes from Data
gene expression profiles with ranges less than AbsValueValue.

generangefilter(..., 'LogPercentile', LogPercentileValue, ...) filters
genes with profile ranges in the lowest percent of the log range (LogPercentileValue).

generangefilter(..., 'LogValue', LogValueValue, ...) filters genes with
profile log ranges lower than LogValueValue.

 generangefilter

1-661

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene
expression data, genes, a cell array of GenBank accession numbers for labeling the
rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues

load yeastdata

2 Remove gene profiles with small profile ranges.

[mask, fyeastvalues, fgenes] = generangefilter(yeastvalues,genes);

References

[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics,
Cambridge, MA:MIT Press.

See Also
exprprofrange | exprprofvar | geneentropyfilter | genelowvalfilter |
genevarfilter

1 Alphabetical List

1-662

geneticcode

Return nucleotide codon to amino acid mapping for genetic code

Syntax

Map = geneticcode

Map = geneticcode(GeneticCode)

Input Arguments

GeneticCode Integer or string specifying a genetic code number or code name from
the table Genetic Code. Default is 1 or 'Standard'.

Tip If you use a code name, you can truncate the name to the first two
letters of the name.

Output Arguments

Map Structure containing the mapping of nucleotide codons to amino acids
for the standard genetic code. The Map structure contains a field for
each nucleotide codon.

Description

Map = geneticcode returns a structure containing the mapping of nucleotide codons
to amino acids for the standard genetic code. The Map structure contains a field for each
nucleotide codon.

Map = geneticcode(GeneticCode) returns a structure containing the mapping of
nucleotide codons to amino acids for the specified genetic code. GeneticCode is either:

 geneticcode

1-663

• An integer or string specifying a code number or code name from the table Genetic
Code

• The transl_table (code) number from the NCBI Web page describing genetic codes:

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

1 Alphabetical List

1-664

Examples

Return the mapping of nucleotide codons to amino acids for the Flatworm Mitochondrial
genetic code.

wormmap = geneticcode('Flatworm Mitochondrial');

References

[1] NCBI Web page describing genetic codes:

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

See Also
aa2nt | aminolookup | baselookup | codonbias | dnds | dndsml | nt2aa |
revgeneticcode | seqshoworfs | seqviewer

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

 genevarfilter

1-665

genevarfilter
Filter genes with small profile variance

Syntax

Mask = genevarfilter(Data)

[Mask, FData] = genevarfilter(Data)

[Mask, FData, FNames] = genevarfilter(Data, Names)

genevarfilter(..., 'Percentile', PercentileValue, ...)

genevarfilter(..., 'AbsValue', AbsValueValue, ...)

Arguments

Data DataMatrix object or numeric matrix where each row
corresponds to a gene. If a matrix, the first column is the
names of the genes, and each additional column is the results
from an experiment.

Names Cell array with the name of a gene for each row of
experimental data. Names has same number of rows as Data
with each row containing the name or ID of the gene in the
data set.

PercentileValue Specifies a percentile below which gene expression profiles are
removed. Choices are integers from 0 to 100. Default is 10.

AbsValueValue Property to specify an absolute value below which gene
expression profiles are removed.

Description

Gene profiling experiments typically include genes that exhibit little variation in their
profile and are generally not of interest. These genes are commonly removed from the
data.

Mask = genevarfilter(Data) calculates the variance for each gene expression profile
in Data and returns Mask, which identifies the gene expression profiles with a variance

1 Alphabetical List

1-666

less than the 10th percentile. Mask is a logical vector with one element for each row in
Data. The elements of Mask corresponding to rows with a variance greater than the
threshold have a value of 1, and those with a variance less than the threshold are 0.

[Mask, FData] = genevarfilter(Data) calculates the variance for each gene
expression profile in Data and returns FData, a filtered data matrix, in which the low-
variation gene expression profiles are removed. You can also create FData using FData
= Data(Mask,:).

[Mask, FData, FNames] = genevarfilter(Data, Names) returns FNames, a
filtered names array, in which the names associated with low-variation gene expression
profiles are removed. Names is a cell array of the names of the genes corresponding to
each row in Data. You can also create FNames using FNames = Names(Mask).

Note: If Data is a DataMatrix object with specified row names, you do not need to
provide the second input Names to return the third output FNames.

genevarfilter(..., 'PropertyName', PropertyValue, ...) calls
genevarfilter with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

genevarfilter(..., 'Percentile', PercentileValue, ...) removes from
Data, the experimental data, the gene expression profiles with a variance less than the
percentile specified by PercentileValue. Choices are integers from 0 to 100. Default is
10.

genevarfilter(..., 'AbsValue', AbsValueValue, ...) removes from
Data , the experimental data, the gene expression profiles with a variance less than
AbsValueValue.

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene
expression data, genes, a cell array of GenBank accession numbers for labeling the

 genevarfilter

1-667

rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues

load yeastdata

2 Filter genes with a small profile variance.

[fyeastvalues, fgenes] = genevarfilter(yeastvalues,genes);

More About
• “DataMatrix object”

References

[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics,
Cambridge, MA:MIT Press.

See Also
exprprofrange | exprprofvar | generangefilter | geneentropyfilter |
genelowvalfilter

1 Alphabetical List

1-668

genpeptread

Read data from GenPept file

Syntax

GenPeptData = genpeptread(File)

Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a GenPept-formatted file.
If you specify only a file name, that file must be on the MATLAB
search path or in the MATLAB Current Folder.

• MATLAB character array that contains the text of a GenPept-
formatted file.

Tip You can use the getgenpept function with the 'ToFile'
property to retrieve sequence information from the GenPept
database and create an GenPept-formatted file.

GenPeptData MATLAB structure or array of structures containing fields
corresponding to GenPept keywords.

Description

Note: NCBI has changed the name of their protein search engine from GenPept to
Entrez Protein. However, the function names in the Bioinformatics Toolbox software
(getgenpept and genpeptread) are unchanged representing the still-used GenPept
report format.

 genpeptread

1-669

GenPeptData = genpeptread(File) reads a GenPept-formatted file, File, and
creates GenPeptData, a structure or array of structures, containing fields corresponding
to the GenPept keywords. When File contains multiple entries, each entry is stored
as a separate element in GenPeptData. For a list of the GenPept keywords, see http://
www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html.

Examples

Retrieve sequence information for the protein coded by the HEXA gene, store the data in
a file, and then read into the MATLAB software.

getgenpept('p06865', 'ToFile', 'TaySachs_Protein.txt')

genpeptread('TaySachs_Protein.txt')

See Also
fastaread | genbankread | getgenpept | pdbread | seqviewer

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

1 Alphabetical List

1-670

geoseriesread
Read Gene Expression Omnibus (GEO) Series (GSE) format data

Syntax

GEOData = geoseriesread(File)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a Gene Expression Omnibus
(GEO) Series (GSE) format file. If you specify only a file name,
that file must be on the MATLAB search path or in the MATLAB
Current Folder.

• MATLAB character array that contains the text of a GEO Series
(GSE) format file.

Tip You can use the getgeodata function with the 'ToFile' property
to retrieve GEO Series (GSE) format data from the GEO database and
create a GEO Series (GSE) format file.

Output Arguments

GEOData MATLAB structure containing the following fields:

• Header — Header text from the GEO Series (GSE) format file,
typically containing a description of the data or experiment
information.

• Data — DataMatrix object containing the data from a GEO Series
(GSE) format file. The columns and rows of the DataMatrix object
correspond to the sample IDs and Ref IDs, respectively, from the
GEO Series (GSE) format file.

 geoseriesread

1-671

Description

GEOData = geoseriesread(File) reads a Gene Expression Omnibus (GEO) Series
(GSE) format file, and then creates a MATLAB structure, GEOData, with the following
fields.

Fields Description

Header Header text from the GEO Series (GSE) format file, typically
containing a description of the data or experiment information.

Data DataMatrix object containing the data from a GEO Series (GSE)
format file. The columns and rows of the DataMatrix object correspond
to the sample IDs and Ref IDs, respectively, from the GEO Series
(GSE) format file.

Examples

1 Retrieve Series (GSE) data from the GEO Web site and save it to a file.

geodata = getgeodata('GSE11287','ToFile','GSE11287.txt');

2 In a subsequent MATLAB session, you can access the Series (GSE) data from your
local file, instead of retrieving it from the GEO Web site.

geodata = geoseriesread('GSE11287.txt')

geodata =

 Header: [1x1 struct]

 Data: [45101x6 bioma.data.DataMatrix]

3 Access the sample IDs using the colnames property of a DataMatrix object.
sampleIDs = geodata.Data.colnames

sampleIDs =

 'GSM284935' 'GSM284936' 'GSM284937' 'GSM284938' 'GSM284939' 'GSM284940'

More About
• “DataMatrix object”

1 Alphabetical List

1-672

See Also
affyread | agferead | galread | geosoftread | getgeodata | gprread |
ilmnbsread | sptread

 geosoftread

1-673

geosoftread

Read Gene Expression Omnibus (GEO) SOFT format data

Syntax

GEOSOFTData = geosoftread(File)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a Gene Expression
Omnibus (GEO) SOFT format Sample file (GSM), Data Set
file (GDS), or Platform (GPL) file. If you specify only a file
name, that file must be on the MATLAB search path or in the
MATLAB Current Folder.

• MATLAB character array that contains the text of a GEO SOFT
format file.

Tip You can use the getgeodata function with the 'ToFile'
property to retrieve GEO SOFT format data from the GEO
database and create a GEO SOFT format file.

Output Arguments

GEOSOFTData MATLAB structure containing information from a GEO SOFT
format file.

1 Alphabetical List

1-674

Description

GEOSOFTData = geosoftread(File) reads a Gene Expression Omnibus (GEO) SOFT
format Sample file (GSM), Data Set file (GDS), or Platform (GPL) file, and then creates a
MATLAB structure, GEOSOFTData, with the following fields.

Fields Description

Scope Type of file read (SAMPLE, DATASET, or PLATFORM)
Accession Accession number for record in GEO database.
Header Microarray experiment information.
ColumnDescriptions Cell array containing descriptions of columns in the data.
ColumnNames Cell array containing names of columns in the data.
Data Array containing microarray data.
Identifier (GDS files
only)

Cell array containing probe IDs.

IDRef (GDS files only) Cell array containing indices to probes.

Note: Currently, the geosoftread function supports Sample (GSM), Data Set (GDS),
and Platform (GPL) records.

Examples

Retrieve GSM data from the GEO Web site and save it to a file.

geodata = getgeodata('GSM3258','ToFile','GSM3258.txt');

Use geosoftread to read a local copy of the GSM file, instead of accessing it from the
GEO Web site.

geodata = geosoftread('GSM3258.txt')

geodata =

 Scope: 'SAMPLE'

 Accession: 'GSM3258'

 Header: [1x1 struct]

 geosoftread

1-675

 ColumnDescriptions: {6x1 cell}

 ColumnNames: {6x1 cell}

 Data: {5355x6 cell}

Read the GDS file for photosynthesis in proteobacteria.

gdsdata = geosoftread('GDS329.soft')

gdsdata =

 Scope: 'DATASET'

 Accession: 'GDS329'

 Header: [1x1 struct]

 ColumnDescriptions: {6x1 cell}

 ColumnNames: {6x1 cell}

 IDRef: {5355x1 cell}

 Identifier: {5355x1 cell}

 Data: [5355x6 double]

See Also
galread | getgeodata | geoseriesread | gprread | ilmnbsread | sptread

1 Alphabetical List

1-676

get (biograph)

Retrieve information about biograph object

Syntax

get(BGobj)

BGStruct = get(BGobj)

PropertyValue = get(BGobj, 'PropertyName')

[Property1Value, Property2Value, ...] = get(BGobj, 'Property1Name',

'Property2Name', ...)

Input Arguments

BGobj Biograph object created with the function biograph.
PropertyName Property name for a biograph object.

Output Arguments

BGStruct Scalar structure, in which each field name is a property of a
biograph object, and each field contains the value of that property.

PropertyValue Value of the property specified by PropertyName.

Description

get(BGobj) displays all properties and their current values of BGobj, a biograph object.

BGStruct = get(BGobj) returns all properties of BGobj, a biograph object, to
BGStruct, a scalar structure, in which each field name is a property of a biograph object,
and each field contains the value of that property.

 get (biograph)

1-677

PropertyValue = get(BGobj, 'PropertyName') returns the value of the specified
property of BGobj, a biograph object.

[Property1Value, Property2Value, ...] = get(BGobj, 'Property1Name',

'Property2Name', ...) returns the values of the specified properties of BGobj, a
biograph object.

Properties of a Biograph Object

Property Description

ID String to identify the biograph object. Default is ''.
Label String to label the biograph object. Default is ''.
Description String that describes the biograph object. Default is ''.
LayoutType String that specifies the algorithm for the layout engine.

Choices are:

• 'hierarchical' (default) — Uses a topological order of
the graph to assign levels, and then arranges the nodes
from top to bottom, while minimizing crossing edges.

• 'radial' — Uses a topological order of the graph to
assign levels, and then arranges the nodes from inside to
outside of the circle, while minimizing crossing edges.

• 'equilibrium' — Calculates layout by minimizing the
energy in a dynamic spring system.

EdgeType String that specifies how edges display. Choices are:

• 'straight'

• 'curved' (default)
• 'segmented'

Note: Curved or segmented edges occur only when necessary
to avoid obstruction by nodes. Biograph objects with
LayoutType equal to 'equilibrium' or 'radial' cannot
produce curved or segmented edges.

Scale Positive number that post-scales the node coordinates.
Default is 1.

1 Alphabetical List

1-678

Property Description

LayoutScale Positive number that scales the size of the nodes before
calling the layout engine. Default is 1.

EdgeTextColor Three-element numeric vector of RGB values. Default is [0,
0, 0], which defines black.

EdgeFontSize Positive number that sets the size of the edge font in points.
Default is 8.

ShowArrows Controls the display of arrows with the edges. Choices are
'on' (default) or 'off'.

ArrowSize Positive number that sets the size of the arrows in points.
Default is 8.

ShowWeights Controls the display of text indicating the weight of the
edges. Choices are 'on' (default) or 'off'.

ShowTextInNodes String that specifies the node property used to label nodes
when you display a biograph object using the view method.
Choices are:

• 'Label' — Uses the Label property of the node object
(default).

• 'ID' — Uses the ID property of the node object.
• 'None'

NodeAutoSize Controls precalculating the node size before calling the layout
engine. Choices are 'on' (default) or 'off'.

NodeCallback User-defined callback for all nodes. Enter the name of a
function, a function handle, or a cell array with multiple
function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click a node to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(node) inspect(node), which displays the
Property Inspector dialog box.

EdgeCallback User-defined callback for all edges. Enter the name of a
function, a function handle, or a cell array with multiple
function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-

 get (biograph)

1-679

Property Description

click an edge to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(edge) inspect(edge), which displays the
Property Inspector dialog box.

CustomNodeDrawFcn Function handle to a customized function to draw nodes.
Default is [].

Nodes Read-only column vector with handles to node objects of
a biograph object. The size of the vector is the number of
nodes. For properties of node objects, see Properties of a Node
Object.

Edges Read-only column vector with handles to edge objects of a
biograph object. The size of the vector is the number of edges.
For properties of edge objects, see Properties of an Edge
Object.

Examples

1 Create a biograph object and assign the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

ids = {'M30931','L07625','K03454','M27323','M15390'};

bg = biograph(cm,ids);

2 Use the get function to display the node IDs.

get(bg.nodes,'ID')

ans =

 'M30931'

 'L07625'

 'K03454'

 'M27323'

 'M15390'

More About
• “biograph object”

1 Alphabetical List

1-680

See Also
biograph | set

 get

1-681

get
Class: BioRead

Retrieve property of object

Syntax

Struct = get(BioObj)

PropValues = get(BioObj, PropertyName)

Description

Struct = get(BioObj) returns a MATLAB structure containing a field for each
property of an object. Each field contains the current value of that property.

PropValues = get(BioObj, PropertyName) returns the value(s) of the property
or properties specified by PropertyName, a string or cell array of strings specifying
property names of BioObj. PropValues is a single property value or a cell array of
property values.

Tips

• Use the get method to determine all the object properties and their current values.
• Specific get methods are also available for each property such as

BioRead.getHeader, BioRead.getSequence, and BioRead.getQuality. Some of
these specific get methods let you access all or a subset of a property.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

1 Alphabetical List

1-682

Default:

PropertyName

Either of the following:

• String specifying the name of a property of the class
• Cell array of strings specifying the names of properties of the class

Default:

Output Arguments

Struct

MATLAB structure with a field for each property of an object. Each field contains the
current value of that property.

PropValues

Single property value or a cell array of property values.

Examples

Retrieve properties from a BioRead object:

% Create variables containing sequences, quality scores, and headers

seqs = {randseq(10); randseq(15); randseq(20)};

quals = {repmat('!', 1, 10); repmat('%', 1, 15); repmat('&', 1, 20)};

headers = {'H1'; 'H2'; 'H3'};

% Construct a BioRead object from these three variables

BRObj = BioRead(seqs, quals, headers);

% Retrieve the values of the 'Header' property

get(BRObj, 'Header')

ans =

 'H1'

 'H2'

 'H3'

 get

1-683

% Retrieve the values of the 'Sequence' and 'Quality' properties

get(BRObj, {'Sequence', 'Quality'});

Transform a BioRead object into a MATLAB structure:

% Return a MATLAB structure containing a field for each property of

% a BioRead object

BRStruct = get(BRObj)

BRStruct =

 Quality: {3x1 cell}

 Sequence: {3x1 cell}

 Header: {3x1 cell}

 NSeqs: 3

 Name: ''

See Also
getHeader | getQuality | BioRead | BioMap | getSequence | set

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-684

get (clustergram)

Retrieve information about clustergram object

Syntax

get(CGobj)

CGStruct = get(CGobj)

PropertyValue = get(CGobj, 'PropertyName')

[Property1Value, Property2Value, ...] = get(CGobj, 'Property1Name',

'Property2Name', ...)

Arguments

CGobj Clustergram object created with the function clustergram.
PropertyName Property name for a clustergram object.

Description

get(CGobj) displays all properties and their current values of CGobj, a clustergram
object.

CGStruct = get(CGobj) returns all properties of CGobj, a clustergram object, to
CGStruct, a scalar structure, in which each field name is a property of a clustergram
object, and each field contains the value of that property.

PropertyValue = get(CGobj, 'PropertyName') returns the value of the specified
property of CGobj, a clustergram object.

[Property1Value, Property2Value, ...] = get(CGobj, 'Property1Name',

'Property2Name', ...) returns the values of the specified properties of CGobj, a
clustergram object.

Properties of a Clustergram Object

 get (clustergram)

1-685

Property Description

RowLabels Vector of numbers or cell array of text strings to label the
rows in the dendrogram and heat map. Default is a vector
of values 1 through M, where M is the number of rows in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

ColumnLabels Vector of numbers or cell array of text strings to label the
columns in the dendrogram and heat map. Default is a vector
of values 1 through N, where N is the number of columns in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

RowGroupNames A cell array of text strings containing the names of the row
groups exported to a clustergram object created using the
Export Group to Workspace command in the Clustergram
window.

RowNodeNames A cell array of text strings containing the names of the row
nodes exported to a clustergram object created using the
Export Group to Workspace command in the Clustergram
window.

ColumnGroupNames A cell array of text strings containing the names of the
column groups exported to a clustergram object created
using the Export Group to Workspace command in the
Clustergram window.

ColumnNodeNames A cell array of text strings containing the names of the
column nodes exported to a clustergram object created
using the Export Group to Workspace command in the
Clustergram window.

ExprValues An M-by-N matrix of data, where M and N are the number
of row nodes and column nodes respectively, exported to
a clustergram object created using the Export Group to
Workspace command in the Clustergram window. If the
matrix contains gene expression data, typically each row
corresponds to a gene and each column corresponds to a
sample.

Standardize Text string that specifies the dimension for standardizing the
values in the data. The standardized values are transformed

1 Alphabetical List

1-686

Property Description

so that the mean is 0 and the standard deviation is 1 in the
specified dimension. Possibilities are:

• 'column' or 1 — Standardize along the columns of data.
• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

Cluster Text string that specifies the dimension for clustering the
values in the data. Possibilities are:

• 'Row (1)' — Clustered rows of data only.
• 'Column (2)' — Clustered columns of data only.
• 'All (3)' — Clustered rows of data, then cluster

columns of row-clustered data.
RowPdist String or cell array that specifies the distance metric and

optional arguments passed to the pdist function (Statistics
Toolbox software) used to calculate the pairwise distances
between rows. For information on possibilities, see the pdist
function.

ColumnPdist String or cell array that specifies the distance metric and
optional arguments passed to the pdist function (Statistics
Toolbox software) used to calculate the pairwise distances
between columns. For information on possibilities, see the
pdist function.

Linkage String or two-element cell array of strings that specifies the
linkage method passed to the linkage function (Statistics
Toolbox software) used to create the hierarchical cluster tree
for rows and columns. If a two-element cell array of strings,
the first element is for linkage between rows, and the second
element is for linkage between columns. For information on
possibilities, see the linkage function.

Dendrogram Scalar or two-element numeric vector or cell array that
specifies the 'colorthreshold' property passed to the
dendrogram function (Statistics Toolbox software) used to
create the dendrogram plot. If a two-element numeric vector
or cell array, the first element is for the rows, and the second

 get (clustergram)

1-687

Property Description

element is for the columns. For more information, see the
dendrogram function.

OptimalLeafOrder Property that enabled or disabled the optimal leaf ordering
calculation, which determines the leaf order that maximizes
the similarity between neighboring leaves. Possibilities are 1
(enabled) or 0 (disabled).

LogTrans Controlled the log2 transform of the data from natural scale.
Possibilities are 1 (true) or 0 (false).

Colormap Either of the following:

• M-by-3 matrix of RGB values
• Name or function handle of a function that returns a

colormap, such as redgreencmap or redbluecmap
DisplayRange Positive scalar that specifies the display range of

standardized values.

For example, if you specify redgreencmap for the
'ColorMap' property, pure red represents values ≥
DisplayRange, and pure green represents values ≤
–DisplayRange.

Symmetric Property to force the color scale of the heat map to be
symmetric around zero. Possibilities are 1 (true) or 0 (false).

Ratio Either of the following:

• Scalar
• Two-element vector

It specifies the ratio of space that the row and column
dendrograms occupy relative to the heat map. If Ratio is a
scalar, it is the ratio for both dendrograms. If Ratio is a two-
element vector, the first element is for the ratio of the row
dendrogram width to the heat map width, and the second
element is for the ratio of the column dendrogram height to
the heat map height. The second element is ignored for one-
dimensional clustergrams.

Impute Any of the following:

1 Alphabetical List

1-688

Property Description

• Name of a function that imputes missing data.
• Handle to a function that imputes missing data.
• Cell array where the first element is the name of or

handle to a function that imputes missing data and the
remaining elements are property name/property value
pairs used as inputs to the function.

RowMarkers Optional structure array for annotating the groups (clusters)
of rows determined by the clustergram function. Each
structure in the array represents a group of rows and
contains the following fields:

• GroupNumber — Number to annotate the row group.
• Annotation — String specifying text to annotate the row

group.
• Color — String or three-element vector of RGB values

specifying a color, which is used to label the row
group. For more information on specifying colors, see
colorspec. If this field is empty, default is 'blue'.

ColumnMarkers Optional structure array for annotating groups (clusters)
of columns determined by the clustergram function.
Each structure in the array represents a group of rows and
contains the following fields:

• GroupNumber — Number to annotate the column group.
• Annotation — String specifying text to annotate the

column group.
• Color — String or three-element vector of RGB values

specifying a color, which is used to label the column
group. For more information on specifying colors, see
colorspec. If this field is empty, default is 'blue'.

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeastvalues, a matrix of gene expression data.

 get (clustergram)

1-689

load filteredyeastdata

2 Create a clustergram object and display the dendrograms and heat map from
the gene expression data in the first 30 rows of the yeastvalues matrix and
standardize along the rows of data.

cgo = clustergram(yeastvalues(1:30,:),'Standardize', 'row')

Clustergram object with 30 rows of nodes and 7 columns of nodes.

3 Use the get method to display the properties of the clustergram object, cgo.

get(cgo)

 Cluster: 'ALL'

 RowPDist: {'Euclidean'}

 ColumnPDist: {'Euclidean'}

 Linkage: {'Average'}

 Dendrogram: {}

1 Alphabetical List

1-690

 OptimalLeafOrder: 1

 LogTrans: 0

 DisplayRatio: [0.2000 0.2000]

 RowGroupMarker: []

 ColumnGroupMarker: []

 ShowDendrogram: 'on'

 Standardize: 'ROW'

 Symmetric: 1

 DisplayRange: 3

 Colormap: [11x3 double]

 ImputeFun: []

 ColumnLabels: {'2' '1' '3' '4' '5' '7' '6'}

 RowLabels: {30x1 cell}

 ColumnLabelsRotate: 90

 RowLabelsRotate: 0

 ColumnLabelsLocation: 'bottom'

 RowLabelsLocation: 'right'

 Annotate: 'off'

 AnnotPrecision: 2

 AnnotColor: 'w'

 ColumnLabelsColor: []

 RowLabelsColor: []

 LabelsWithMarkers: 0

4 Export a clustergram object of a group (Group 19) of rows to the MATLAB
Workspace by right-clicking a node in the row dendrogram, and then selecting
Export Group to Workspace.

 get (clustergram)

1-691

5 In the Export to Workspace dialog box, type cgo2 for the Workspace variable name
for the clustergram object, and then click OK.

6 Use the get method to display the properties of cgo2, the clustergram object of the
exported group.

get(cgo2)

 Cluster: 'ALL'

 RowPDist: {'Euclidean'}

1 Alphabetical List

1-692

 ColumnPDist: {'Euclidean'}

 Linkage: {'Average'}

 Dendrogram: {}

 OptimalLeafOrder: 1

 LogTrans: 0

 DisplayRatio: [0.2000 0.2000]

 RowGroupMarker: []

 ColumnGroupMarker: []

 ShowDendrogram: 'on'

 Standardize: 'ROW'

 Symmetric: 1

 DisplayRange: 3

 Colormap: [11x3 double]

 ImputeFun: []

 ColumnLabels: {'2' '1' '3' '4' '5' '7' '6'}

 RowLabels: {9x1 cell}

 ColumnLabelsRotate: 90

 RowLabelsRotate: 0

 ColumnLabelsLocation: 'bottom'

 RowLabelsLocation: 'right'

 Annotate: 'off'

 AnnotPrecision: 2

 AnnotColor: 'w'

 ColumnLabelsColor: []

 RowLabelsColor: []

 LabelsWithMarkers: 0

More About
• “clustergram object”

See Also
clustergram | set | view | plot

 get (DataMatrix)

1-693

get (DataMatrix)
Retrieve information about DataMatrix object

Syntax

get(DMObj)

DMStruct = get(DMObj)

PropertyValue = get(DMObj, 'PropertyName')

[Property1Value, Property2Value, ...] = get(DMObj, 'Property1Name',

'Property2Name', ...)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

PropertyName Property name of a DataMatrix object.

Output Arguments

DMStruct Scalar structure, in which each field name is a property of a
DataMatrix object, and each field contains the value of that
property.

PropertyValue Value of the property specified by PropertyName.

Description

get(DMObj) displays all properties and their current values of DMObj, a DataMatrix
object.

DMStruct = get(DMObj) returns all properties of DMObj, a DataMatrix object, to
DMStruct, a scalar structure, in which each field name is a property of a DataMatrix
object, and each field contains the value of that property.

1 Alphabetical List

1-694

PropertyValue = get(DMObj, 'PropertyName') returns the value of the specified
property of DMObj, a DataMatrix object.

[Property1Value, Property2Value, ...] = get(DMObj, 'Property1Name',

'Property2Name', ...) returns the values of the specified properties of DMObj, a
DataMatrix object.

Properties of a DataMatrix Object

Property Description

Name String that describes the DataMatrix object. Default is ''.
RowNames Empty array or cell array of strings that specifies the names

for the rows, typically gene names or probe identifiers. The
number of elements in the cell array must equal the number
of rows in the matrix. Default is an empty array.

ColNames Empty array or cell array of strings that specifies the names
for the columns, typically sample identifiers. The number of
elements in the cell array must equal the number of columns
in the matrix.

NRows Positive number that specifies the number of rows in the
matrix.

NCols Positive number that specifies the number of columns in the
matrix.

NDims Positive number that specifies the number of dimensions in
the matrix.

ElementClass String that specifies the class type, such as single or
double.

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene
expression data, genes, a cell array of GenBank accession numbers for labeling the
rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues.

load filteredyeastdata

 get (DataMatrix)

1-695

2 Import the microarray object package so that the DataMatrix constructor function
will be available.

import bioma.data.*

3 Create a DataMatrix object from the gene expression data in the first 30 rows of the
yeastvalues matrix. Use the genes column vector and times row vector to specify
the row names and column names.

dmo = DataMatrix(yeastvalues(1:30,:),genes(1:30,:),times);

4 Use the get method to display the properties of the DataMatrix object, dmo.
get(dmo)

 Name: ''

 RowNames: {30x1 cell}

 ColNames: {' 0' ' 9.5' '11.5' '13.5' '15.5' '18.5' '20.5'}

 NRows: 30

 NCols: 7

 NDims: 2

 ElementClass: 'double'

More About
• “DataMatrix object”

See Also
DataMatrix | set

1 Alphabetical List

1-696

get (phytree)
Retrieve information about phylogenetic tree object

Syntax

[Value1, Value2,...] = get(Tree, 'Property1','Property2',...)

get(Tree)

V = get(Tree)

Arguments

Tree Phytree object created with the function phytree.
Name Property name for a phytree object.

Description

[Value1, Value2,...] = get(Tree, 'Property1','Property2',...) returns
the specified properties from a phytree object (Tree).

Properties for a phytree object are listed in the following table.

Property Description

NumLeaves Number of leaves
NumBranches Number of branches
NumNodes Number of nodes (NumLeaves + NumBranches)
Pointers Branch to leaf/branch connectivity list
Distances Edge length for every leaf/branch
LeafNames Names of the leaves
BranchNames Names of the branches
NodeNames Names of all the nodes

 get (phytree)

1-697

get(Tree) displays all property names and their current values for a phytree object
(Tree).

V = get(Tree) returns a structure where each field name is the name of a property of a
phytree object (Tree) and each field contains the value of that property.

Examples

1 Read in a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

Phylogenetic tree object with 33 leaves (32 branches)

2 Get the names of the leaves.

protein_names = get(tr,'LeafNames')

protein_names =

 'Q9YHC6_RANRI/126-382'

 'VIPR1_RAT/140-397'

 'VIPR_CARAU/100-359'

 ...

More About
• “phytree object”

See Also
phytree | select | phytreeread | getbyname

1 Alphabetical List

1-698

getancestors (biograph)
Find ancestors in biograph object

Syntax

Nodes = getancestors(BiographNode)

Nodes = getancestors(BiographNode, NumGenerations)

Arguments

BiographNode Node in a biograph object.
NumGenerations Number of generations. Enter a positive integer.

Description

Nodes = getancestors(BiographNode) returns a node (BiographNode) and all of
its direct ancestors.

Nodes = getancestors(BiographNode, NumGenerations) finds the node
(BiographNode) and its direct ancestors up to a specified number of generations
(NumGenerations).

Examples

1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg = biograph(cm)

2 Find one generation of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2));

set(ancNodes,'Color',[1 .7 .7]);

bg.view;

 getancestors (biograph)

1-699

3 Find two generations of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2),2);

set(ancNodes,'Color',[.7 1 .7]);

bg.view;

1 Alphabetical List

1-700

More About
• “biograph object”

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

 getancestors

1-701

getancestors

Class: geneont

Find terms that are ancestors of specified Gene Ontology (GO) term

Syntax

AncestorIDs = getancestors(GeneontObj, ID)

[AncestorIDs, Counts] = getancestors(GeneontObj, ID)

... = getancestors(..., 'Height', HeightValue, ...)

... = getancestors(..., 'Relationtype', RelationtypeValue, ...)

... = getancestors(..., 'Exclude', ExcludeValue, ...)

Description

AncestorIDs = getancestors(GeneontObj, ID) searches GeneontObj, a geneont
object, for GO terms that are ancestors of the GO term(s) specified by ID, which is a GO
term identifier or vector of identifiers. It returns AncestorIDs, a vector of GO term
identifiers including ID. ID is a nonnegative integer or a vector containing nonnegative
integers.

[AncestorIDs, Counts] = getancestors(GeneontObj, ID) also returns the
number of times each ancestor is found. Counts is a column vector with the same
number of elements as terms in GeneontObj.

Tip The Counts return value is useful when you tally counts in gene enrichment studies.
For more information, see Gene Ontology Enrichment in Microarray Data.

... = getancestors(..., 'PropertyName', PropertyValue, ...) calls
getancestors with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

1 Alphabetical List

1-702

... = getancestors(..., 'Height', HeightValue, ...) searches up through
a specified number of levels, HeightValue, in the gene ontology. HeightValue is a
positive integer. Default is Inf.

... = getancestors(..., 'Relationtype', RelationtypeValue, ...)

searches for specified relationship types, RelationtypeValue, in the gene ontology.
RelationtypeValue is a string. Choices are 'is_a', 'part_of', or 'both' (default).

... = getancestors(..., 'Exclude', ExcludeValue, ...) controls excluding
ID, the original queried term(s), from the output AncestorIDs, unless the term was
reached while searching the gene ontology. Choices are true or false (default).

Input Arguments

GeneontObj A geneont object, such as created by the geneont constructor
function.

ID GO term identifier or vector of identifiers.
HeightValue Positive integer specifying the number of levels to search upward

in the gene ontology.
RelationtypeValueString specifying the relationship types to search for in the gene

ontology. Choices are:

• 'is_a'

• 'part_of'

• 'both' (default)
ExcludeValue Controls excluding ID, the original queried term(s), from the

output AncestorIDs, unless the term was reached while
searching the gene ontology. Choices are true or false (default).

Output Arguments

AncestorIDs Vector of GO term identifiers including ID.
Counts Column vector with the same number of elements as terms in

GeneontObj, indicating the number of times each ancestor is
found.

 getancestors

1-703

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GO = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of terms in
the database.

Gene Ontology object with 24316 Terms.

2 Retrieve the ancestors of the Gene Ontology term with an identifier of 46680.

ancestors = getancestors(GO,46680)

ancestors =

 8150

 9636

 17085

 42221

 46680

 50896

3 Create a subordinate Gene Ontology.

subontology = GO(ancestors)

Gene Ontology object with 6 Terms.

4 Create and display a report of the subordinate Gene Ontology terms, that includes
the GO identifier and name.

rpt = get(subontology.terms,{'id','name'})

 [8150] 'biological_process'

 [9636] 'response to toxin'

 [17085] [1x23 char]

 [42221] [1x29 char]

 [46680] 'response to DDT'

 [50896] [1x20 char]

5 View relationships of the subordinate Gene Ontology by using the getmatrix
method to create a connection matrix to pass to the biograph function.

cm = getmatrix(subontology);

1 Alphabetical List

1-704

BG = biograph(cm, get(subontology.terms, 'name'));

view(BG)

See Also
goannotread | num2goid | term

 getblast

1-705

getblast
Retrieve BLAST report from NCBI Web site

Syntax

Data = getblast(RID)

Data = getblast(RID, ...'Descriptions', DescriptionsValue, ...)

Data = getblast(RID, ...'Alignments', AlignmentsValue, ...)

Data = getblast(RID, ...'ToFile', ToFileValue, ...)

Data = getblast(RID, ...'FileFormat', FileFormatValue, ...)

Data = getblast(RID, ...'WaitTime', WaitTimeValue, ...)

Input Arguments

RID Request ID for the NCBI BLAST report, such as returned
by the blastncbi function.

DescriptionsValue Integer that specifies the number of descriptions in a
report. Choices are any value ≥ 1 and ≤ 500. Default is 100.

AlignmentsValue Integer that specifies the number of alignments to include
in the report. Choices are any value ≥ 1 and ≤ 500. Default
is 50.

Note: This value must be ≤ the value you specified for the
'Alignments' property when creating RID using the
blastncbi function.

ToFileValue String specifying a file name for saving report data.
FileFormatValue String specifying the format of the file. Choices are 'text'

(default) or 'html'.
WaitTimeValue Positive value that specifies a time (in minutes) for the

MATLAB software to wait for a report from the NCBI Web
site to be available. If the report is still not available after
the wait time, getblast returns an error message. Default
behavior is to not wait for a report.

1 Alphabetical List

1-706

Tip Use the RTOE returned by the blastncbi function as
the WaitTimeValue.

Output Arguments

Data MATLAB structure or array of structures (if multiple
query sequences) containing fields corresponding to
BLAST keywords and data from an NCBI BLAST report.

Description

The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative
analysis of protein and nucleotide sequences against known sequences in online
databases. getblast parses NCBI BLAST reports, including blastn, blastp,
psiblast, blastx, tblastn, tblastx, and megablast reports.

Data = getblast(RID) reads RID, the Request ID for the NCBI BLAST report,
and returns the report data in Data, a MATLAB structure or array of structures. The
Request ID, RID, must be recently generated because NCBI purges reports after 24
hours.

Data = getblast(RID, ...'PropertyName', PropertyValue, ...) calls
getblast with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

Data = getblast(RID, ...'Descriptions', DescriptionsValue, ...)

specifies the number of descriptions in a report. Choices are any integer ≥ 1 and ≤ 500.
Default is 100.

Data = getblast(RID, ...'Alignments', AlignmentsValue, ...) specifies
the number of alignments to include in the report. Choices are any integer ≥ 1 and ≤ 500.
Default is 50.

Note: This value must be ≤ the value you specified for the 'Alignments' property when
creating RID using the blastncbi function.

 getblast

1-707

Data = getblast(RID, ...'ToFile', ToFileValue, ...) saves the NCBI
BLAST report data to a specified file. The default format for the file is 'text', but you
can specify 'html' with the 'FileFormat' property.

Data = getblast(RID, ...'FileFormat', FileFormatValue, ...) specifies
the format for the report. Choices are 'text' (default) or 'html'.

Data = getblast(RID, ...'WaitTime', WaitTimeValue, ...) pauses the
MATLAB software and waits a specified time (in minutes) for a report from the NCBI
Web site to be available. If the report is still unavailable after the wait time, getblast
returns an error message. Choices are any positive value. Default behavior is to not wait
for a report.

Tip Use the RTOE returned by the blastncbi function as the WaitTimeValue.

For more information about reading and interpreting BLAST reports, see:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

Data contains the following fields.

Field Description

RID Request ID for retrieving results for a specific
NCBI BLAST search.

Algorithm NCBI algorithm used to do a BLAST search.
Query Identifier of the query sequence submitted to a

BLAST search.
Database All databases searched.
Hits.Name Name of a database sequence (subject sequence)

that matched the query sequence.
Hits.Length Length of a subject sequence.
Hits.HSPs.Score Pairwise alignment score for a high-scoring

sequence pair between the query sequence and a
subject sequence.

Hits.HSPs.Expect Expectation value for a high-scoring sequence
pair between the query sequence and a subject
sequence.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

1 Alphabetical List

1-708

Field Description

Hits.HSPs.Identities Identities (match, possible, and percent) for a
high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Positives Identical or similar residues (match, possible,
and percent) for a high-scoring sequence pair
between the query sequence and a subject amino
acid sequence.

Note: This field applies only to translated
nucleotide or amino acid query sequences and/or
databases.

Hits.HSPs.Gaps Nonaligned residues (match, possible, and
percent) for a high-scoring sequence pair between
the query sequence and a subject sequence.

Hits.HSPs.Frame Reading frame of the translated nucleotide
sequence for a high-scoring sequence pair between
the query sequence and a subject sequence.

Note: This field applies only when performing
translated searches, that is, when using tblastx,
tblastn, and blastx.

Hits.HSPs.Strand Sense (Plus = 5' to 3' and Minus = 3' to 5') of
the DNA strands for a high-scoring sequence
pair between the query sequence and a subject
sequence.

Note: This field applies only when using a
nucleotide query sequence and database.

Hits.HSPs.Alignment Three-row matrix showing the alignment for a
high-scoring sequence pair between the query
sequence and a subject sequence.

 getblast

1-709

Field Description

Hits.HSPs.QueryIndices Indices of the query sequence residue positions for
a high-scoring sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.SubjectIndices Indices of the subject sequence residue positions
for a high-scoring sequence pair between the query
sequence and a subject sequence.

Statistics Summary of statistical details about the
performed search, such as lambda values, gap
penalties, number of sequences searched, and
number of hits.

Examples

1 Create an NCBI BLAST report request using a GenPept accession number.

RID = blastncbi('AAA59174','blastp','expect',1e-10)

RID =

 '1175088155-31624-126008617054.BLASTQ3'

2 Pass the Request ID for the report to the getblast function to parse the report, and
return the report data in a MATLAB structure, and save the report data to a text
file.

reportStruct = getblast(RID,'ToFile','AAA59174_BLAST.rpt')

reportStruct =

 RID: '1175093633-2786-174709873694.BLASTQ3'

 Algorithm: 'BLASTP 2.2.16 [Mar-11-2007]'

 Query: [1x63 char]

 Database: [1x96 char]

 Hits: [1x50 struct]

 Statistics: [1x1034 char]

Note: You may need to wait for the report to become available on the NCBI Web site
before you can run the preceding command.

1 Alphabetical List

1-710

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

For more information about reading and interpreting NCBI BLAST reports, see:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

See Also
blastformat | blastlocal | blastncbi | blastread | blastreadlocal

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs

 getbyname (phytree)

1-711

getbyname (phytree)

Branches and leaves from phytree object

Syntax

S = getbyname(Tree, Expression)

S = getbyname(Tree, String)

S = getbyname(Tree, String, 'Exact', ExactValue)

Arguments

Tree phytree object created by phytree function (object constructor) or
phytreeread function.

Expression “Regular expression” or cell array of regular expressions to search
for in Tree.

String String or cell array of strings to search for in Tree.
ExactValue Controls whether the full exact node name must match the

string(s), ignoring case. Choices are true or false (default).
When true, S is a numeric column vector indicating which node
names match a query exactly, in full.

Description

S = getbyname(Tree, Expression) searches the nodes names in Tree, a phytree
object, for the regular expression(s) specified by Expression. It returns S, a logical
matrix of size NumNodes-by-M, where M is either 1 or the length of Expression. Each
row in S corresponds to a node, and each column corresponds to a query in Expression.
The logical matrix S indicates the node names that match Expression, ignoring case.

S = getbyname(Tree, String) searches the nodes names in Tree, a phytree object,
for the string(s) specified by String. It returns S, a logical matrix of size NumNodes-by-M,

1 Alphabetical List

1-712

where M is either 1 or the length of String. Each row in S corresponds to a node, and
each column corresponds to a query in String. The logical matrix S indicates the node
names that match String, ignoring case.

S = getbyname(Tree, String, 'Exact', ExactValue) specifies whether the full
exact node name must match the string(s), ignoring case. Choices are true or false
(default). When true, S is a numeric column vector indicating which node names match
a query exactly, in full.

Examples

1 Read a phylogenetic tree file created from a protein family into a phytree object.

tr = phytreeread('pf00002.tree');

2 Determine all the mouse and human proteins by searching for nodes that include the
strings 'mouse' and 'human' in their names.

sel = getbyname(tr,{'mouse','human'});

view(tr,any(sel,2));

 getbyname (phytree)

1-713

More About
• “phytree object”

See Also
phytree | prune | select | phytreeread | get

1 Alphabetical List

1-714

getcanonical (phytree)
Calculate canonical form of phylogenetic tree

Syntax

Pointers = getcanonical(Tree)

[Pointers, Distances, Names] = getcanonical(Tree)

Arguments

Tree phytree object created by phytree function (object
constructor).

Description

Pointers = getcanonical(Tree) returns the pointers for the canonical form of
a phylogenetic tree (Tree). In a canonical tree the leaves are ordered alphabetically
and the branches are ordered first by their width and then alphabetically by their
first element. A canonical tree is isomorphic to all the trees with the same skeleton
independently of the order of their leaves and branches.

[Pointers, Distances, Names] = getcanonical(Tree) returns, in addition
to the pointers described above, the reordered distances (Distances) and node names
(Names).

Examples

1 Create two phylogenetic trees with the same skeleton but slightly different
distances.

b = [1 2; 3 4; 5 6; 7 8;9 10];

tr_1 = phytree(b,[.1 .2 .3 .3 .4]');

tr_2 = phytree(b,[.2 .1 .2 .3 .4]');

2 Plot the trees.

 getcanonical (phytree)

1-715

 plot(tr_1)

 plot(tr_2)

3 Check whether the trees have an isomorphic construction.

isequal(getcanonical(tr_1),getcanonical(tr_2))

ans =

 1

More About
• “phytree object”

See Also
phytree | select | phytreeread | getbyname | subtree

1 Alphabetical List

1-716

getData

Class: GFFAnnotation

Create structure containing subset of data from GFFAnnotation object

Syntax

AnnotStruct = getData(AnnotObj)

AnnotStruct = getData(AnnotObj,StartPos,EndPos)

AnnotStruct = getData(AnnotObj,Subset)

AnnotStruct = getData(___ ,Name,Value)

Description

AnnotStruct = getData(AnnotObj) returns AnnotStruct, an array of structures
containing data from all elements in AnnotObj. The fields in the return structures are
the same as the elements in the FieldNames property of AnnotObj.

AnnotStruct = getData(AnnotObj,StartPos,EndPos) returns AnnotStruct, an
array of structures containing data from a subset of the elements in AnnotObj that falls
within each reference sequence range specified by StartPos and EndPos.

AnnotStruct = getData(AnnotObj,Subset) returns AnnotStruct, an array of
structures containing subset of data from AnnotObj specified by Subset, a vector of
integers.

AnnotStruct = getData(___ ,Name,Value) returns AnnotStruct, an array of
structures, using any of the input arguments in the previous syntaxes and additional
options specified by one or more Name,Value pair arguments.

Tips

Using getData creates a structure, which provides better access to the annotation data
than an object.

 getData

1-717

• You can access all field values in a structure.
• You can extract, assign, and delete field values.
• You can use linear indexing to access field values of specific annotations. For example,

you can access the start value of only the fifth annotation.

Input Arguments

AnnotObj

Object of the GFFAnnotation class.

Default:

StartPos

Nonnegative integer specifying the start of a range in each reference sequence in
AnnotObj. The integer StartPos must be less than or equal to EndPos.

Default:

EndPos

Nonnegative integer specifying the end of a range in each reference sequence in
AnnotObj. The integer EndPos must be greater than or equal to StartPos.

Default:

Subset

Vector of positive integers less than or equal to the number of entries in the object. Use
the vector Subset to retrieve any element or subset of data from the object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-718

'Reference'

String or cell array of strings specifying one or more reference sequences in AnnotObj.
Only annotations whose reference field matches one of the strings are included in
AnnotStruct.

Default:

'Feature'

String or cell array of strings specifying one or more features in AnnotObj. Only
annotations whose feature field matches one of the strings are included in AnnotStruct.

Default:

'Overlap'

Minimum number of base positions that an annotation must overlap in the range, to be
included in AnnotStruct. This value can be any of the following:

• Positive integer
• 'full' — An annotation must be fully contained in the range to be included.
• 'start' — An annotation’s start position must lie within the range to be included.

Default: 1

Output Arguments

AnnotStruct

Array of structures containing data from elements in AnnotObj. The fields in the return
structures are the same as the elements in the FieldNames property of AnnotObj, and
specified by GFF (General Feature Format) specifications document. Specifically, these
fields are:

• Reference

• Start

• Stop

• Feature

http://www.sanger.ac.uk/resources/software/gff/spec.html

 getData

1-719

• Source

• Score

• Strand

• Frame

• Attributes

Examples

Retrieve Subsets of Data from a GFFAnnotation Object

Construct a GFFAnnotation object using a GFF-formatted file that is provided with
Bioinformatics Toolbox.

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

Extract annotations for positions 10,000 through 20,000 from the reference sequence.

AnnotStruct1 = getData(GFFAnnotObj,10000,20000)

AnnotStruct1 =

9x1 struct array with fields:

 Reference

 Start

 Stop

 Feature

 Source

 Score

 Strand

 Frame

 Attributes

Extract the first five annotations from the object.

AnnotStruct2 = getData(GFFAnnotObj,[1:5])

AnnotStruct2 =

5x1 struct array with fields:

 Reference

 Start

1 Alphabetical List

1-720

 Stop

 Feature

 Source

 Score

 Strand

 Frame

 Attributes

See Also
GTFAnnotation.getData

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

 getData

1-721

getData
Class: GTFAnnotation

Create structure containing subset of data from GTFAnnotation object

Syntax
AnnotStruct = getData(AnnotObj)

AnnotStruct = getData(AnnotObj,StartPos,EndPos)

AnnotStruct = getData(AnnotObj,Subset)

AnnotStruct = getData(___ ,Name,Value)

Description
AnnotStruct = getData(AnnotObj) returns AnnotStruct, an array of structures
containing data from all elements in AnnotObj. The fields in the return structures are
the same as the elements in the FieldNames property of AnnotObj.

AnnotStruct = getData(AnnotObj,StartPos,EndPos) returns AnnotStruct, an
array of structures containing data from a subset of the elements in AnnotObj that falls
within each reference sequence range specified by StartPos and EndPos.

AnnotStruct = getData(AnnotObj,Subset) returns AnnotStruct, an array of
structures containing subset of data from AnnotObj specified by Subset, a vector of
integers.

AnnotStruct = getData(___ ,Name,Value) returns AnnotStruct, an array of
structures, using any of the input arguments from the previous syntaxes and additional
options specified by one or more Name,Value pair arguments.

Tips
Using getdata creates a structure, which provides better access to the annotation data
than an object.

• You can access all field values in a structure.
• You can not only extract field values, but also assign and delete values.

1 Alphabetical List

1-722

• You can use linear indexing to access field values of specific annotations. For example,
you can access the start value of only the fifth annotation.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Default:

StartPos

Nonnegative integer specifying the start of a range in each reference sequence in
AnnotObj. The integer StartPos must be less than or equal to EndPos.

Default:

EndPos

Nonnegative integer specifying the end of a range in each reference sequence in
AnnotObj. The integer EndPos must be greater than or equal to StartPos.

Default:

Subset

Vector of positive integers equal or less than the number of entries in the object. Use the
vector Subset to retrieve any element or subset of data from the object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference'

String or cell array of strings specifying one or more reference sequences in AnnotObj.
Only annotations whose reference field matches one of the strings are included in
AnnotStruct.

 getData

1-723

Default:

'Feature'

String or cell array of strings specifying one or more features in AnnotObj. Only
annotations whose feature field matches one of the strings are included in AnnotStruct.

Default:

'Gene'

String or cell array of strings specifying one or more genes in AnnotObj. Only
annotations whose gene field matches one of the strings are included in AnnotStruct.

'Transcript'

String or cell array of strings specifying one or more transcripts in AnnotObj.
Only annotations whose transcript field matches one of the strings are included in
AnnotStruct.

'Overlap'

Minimum number of base positions that an annotation must overlap in the range, to be
included in AnnotStruct. This value can be any of the following:

• Positive integer
• 'full' — An annotation must be fully contained in the range to be included.
• 'start' — An annotation’s start position must lie within the range to be included.

Default: 1

Output Arguments

AnnotStruct

Array of structures containing data from elements in AnnotObj. The fields in the return
structures are the same as the elements in the FieldNames property of AnnotObj, and
specified by GTF2.2: A Gene Annotation Format. Specifically, these fields are:

• Reference

http://mblab.wustl.edu/GTF22.html

1 Alphabetical List

1-724

• Start

• Stop

• Feature

• Gene

• Transcript

• Source

• Score

• Strand

• Frame

• Attributes

Examples

Retrieve Subsets of Data from a GTFAnnotation Object

Construct a GTFAnnotation object using a GTF-formatted file that is provided with
Bioinformatics Toolbox.

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

Extract the annotation data for positions 668,000 through 680,000 from the reference
sequence.

AnnotStruct1 = getData(GTFAnnotObj,668000,680000)

AnnotStruct1 =

18x1 struct array with fields:

 Reference

 Start

 Stop

 Feature

 Gene

 Transcript

 Source

 Score

 Strand

 Frame

 getData

1-725

 Attributes

Extract the first five annotations from the object.

AnnotStruct2 = getData(GTFAnnotObj,[1:5])

AnnotStruct2 =

5x1 struct array with fields:

 Reference

 Start

 Stop

 Feature

 Gene

 Transcript

 Source

 Score

 Strand

 Frame

 Attributes

See Also
GFFAnnotation.getData

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

1 Alphabetical List

1-726

getdescendants (biograph)
Find descendants in biograph object

Syntax

Nodes = getdescendants(BiographNode)

Nodes = getdescendants(BiographNode,NumGenerations)

Arguments

BiographNode Node in a biograph object.
NumGenerations Number of generations. Enter a positive integer.

Description

Nodes = getdescendants(BiographNode) finds a given node (BiographNode) all of
its direct descendants.

Nodes = getdescendants(BiographNode,NumGenerations) finds the node
(BiographNode) and all of its direct descendants up to a specified number of generations
(NumGenerations).

Examples

1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg = biograph(cm)

2 Find one generation of descendants for node 4.

desNodes = getdescendants(bg.nodes(4));

set(desNodes,'Color',[1 .7 .7]);

bg.view;

 getdescendants (biograph)

1-727

3 Find two generations of descendants for node 4.

desNodes = getdescendants(bg.nodes(4),2);

set(desNodes,'Color',[.7 1 .7]);

bg.view;

1 Alphabetical List

1-728

More About
• “biograph object”

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

 getdescendants

1-729

getdescendants

Class: geneont

Find terms that are descendants of specified Gene Ontology (GO) term

Syntax

DescendantIDs = getdescendants(GeneontObj, ID)

[DescendantIDs, Counts] = getdescendants(GeneontObj, ID)

... = getdescendants(..., 'Depth', DepthValue, ...)

... = getdescendants(..., 'Relationtype', RelationtypeValue, ...)

... = getdescendants(..., 'Exclude', ExcludeValue, ...)

Description

DescendantIDs = getdescendants(GeneontObj, ID) searches GeneontObj, a
geneont object, for GO terms that are descendants of the GO term(s) specified by ID,
which is a GO term identifier or vector of identifiers. It returns DescendantIDs, a vector
of GO term identifiers including ID. ID is a nonnegative integer or a vector containing
nonnegative integers.

[DescendantIDs, Counts] = getdescendants(GeneontObj, ID) also returns
the number of times each descendant is found. Counts is a column vector with the same
number of elements as terms in GeneontObj.

Tip The Counts return value is useful when you tally counts in gene enrichment studies.
For more information, see Gene Ontology Enrichment in Microarray Data.

... = getdescendants(..., 'PropertyName', PropertyValue, ...) calls
getdescendants with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

1 Alphabetical List

1-730

... = getdescendants(..., 'Depth', DepthValue, ...) searches down
through a specified number of levels, DepthValue, in the gene ontology. DepthValue is
a positive integer. Default is Inf.

... = getdescendants(..., 'Relationtype', RelationtypeValue, ...)

searches for specified relationship types, RelationtypeValue, in the gene ontology.
RelationtypeValue is a string. Choices are 'is_a', 'part_of', or 'both' (default).

... = getdescendants(..., 'Exclude', ExcludeValue, ...) controls
excluding ID, the original queried term(s), from the output DescendantIDs, unless the
term was found while searching the gene ontology. Choices are true or false (default).

Input Arguments

GeneontObj A geneont object, such as created by the geneont constructor
function.

ID GO term identifier or vector of identifiers.
DepthValue Positive integer specifying the number of levels to search

downward in the gene ontology.
RelationtypeValueString specifying the relationship types to search for in the gene

ontology. Choices are:

• 'is_a'

• 'part_of'

• 'both' (default)
ExcludeValue Controls excluding ID, the original queried term(s), from the

output DescendantIDs, unless the term was reached while
searching the gene ontology. Choices are true or false (default).

Output Arguments

DescendantIDs Vector of GO term identifiers including ID.
Counts Column vector with the same number of elements as terms in

GeneontObj, indicating the number of times each descendant is
found.

 getdescendants

1-731

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GO = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of terms in
the database.

Gene Ontology object with 27827 Terms.

2 Retrieve the descendants of the "aldo-keto reductase activity" GO term with a GO
identifier of 4033.

descendants = getdescendants(GO,4033)

descendants =

 4032

 4033

 8106

 32018

 32866

 32867

 46568

 50112

 50236

3 Create a subordinate Gene Ontology.

subontology = GO(descendants)

Gene Ontology object with 9 Terms.

4 Create and display a report of the subordinate Gene Ontology terms, that includes
the GO identifier and name.
rpt = [num2goid(cell2mat(get(subontology.terms,'id')))...

 get(subontology.terms,'name')]';

disp(sprintf('%s --> %s \n',rpt{:}))

GO:0004032 --> aldehyde reductase activity

GO:0004033 --> aldo-keto reductase activity

GO:0008106 --> alcohol dehydrogenase (NADP+) activity

GO:0032018 --> 2-methylbutanal reductase activity

GO:0032866 --> xylose reductase activity

GO:0032867 --> arabinose reductase activity

1 Alphabetical List

1-732

GO:0046568 --> 3-methylbutanal reductase activity

GO:0050112 --> inositol 2-dehydrogenase activity

GO:0050236 --> pyridoxine 4-dehydrogenase activity

5 View relationships of the subordinate Gene Ontology by using the getmatrix
method to create a connection matrix to pass to the biograph function.

cm = getmatrix(subontology);

BG = biograph(cm,rpt(1,:));

view(BG)

See Also
goannotread | num2goid | term

 getDictionary

1-733

getDictionary
Class: BioIndexedFile

Retrieve reference sequence names from SAM-formatted source file associated with
BioIndexedFile object

Syntax

Dict = getDictionary(BioIFobj)

Description

Dict = getDictionary(BioIFobj) returns Dict, a cell array of unique strings
specifying the names of the reference sequences in the SAM-formatted source file
associated with BioIFobj, a BioIndexedFile object.

Input Arguments

BioIFobj

Object of the BioIndexedFile class.

Default:

Output Arguments

Dict

Cell array of unique strings specifying the reference sequence names in the SAM-
formatted source file associated with BioIFobj, a BioIndexedFile object.

See Also
BioIndexedFile.getSubset | BioIndexedFile | BioMap

1 Alphabetical List

1-734

How To
• “Work with Large Multi-Entry Text Files”
• “Manage Short-Read Sequence Data in Objects”

 getedgesbynodeid (biograph)

1-735

getedgesbynodeid (biograph)
Get handles to edges in biograph object

Syntax

Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs)

Arguments

BGobj Biograph object.
SourceIDs, SinkIDs Enter a cell string, or an empty cell array (gets all edges).

Description

Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs) gets the handles to the
edges that connect the specified source nodes (SourceIDs) to the specified sink nodes
(SinkIDs) in a biograph object.

Examples

1 Create a biograph object for the Hominidae family.

species = {'Homo','Pan','Gorilla','Pongo','Baboon',...

 'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);

bg = biograph(cm, species);

2 Find all the edges that connect to the Homo node.

EdgesIn = getedgesbynodeid(bg,[],'Homo');

EdgesOut = getedgesbynodeid(bg,'Homo',[]);

set(EdgesIn,'LineColor',[0 1 0]);

set(EdgesOut,'LineColor',[1 0 0]);

bg.view;

1 Alphabetical List

1-736

3 Find all edges that connect members of the Cercopithecidae family to members of the
Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};

Hominidae = {'Homo','Pan','Gorilla','Pongo'};

edgesSel = getedgesbynodeid(bg,Cercopithecidae,Hominidae);

set(bg.edges,'LineColor',[.5 .5 .5]);

set(edgesSel,'LineColor',[0 0 1]);

bg.view;

More About
• biograph object

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

 getembl

1-737

getembl
Retrieve sequence information from EMBL database

Syntax

EMBLData = getembl(AccessionNumber)

EMBLData = getembl(..., 'ToFile', ToFileValue, ...)

EMBLSeq = getembl(..., 'SequenceOnly', SequenceOnlyValue, ...)

Input Arguments

AccessionNumber Unique identifier for a sequence record. Enter a unique
combination of letters and numbers.

ToFileValue String specifying a file name or a path and file name to which
to save the data. If you specify only a file name, the file is
stored in the current folder.

SequenceOnlyValue Controls the retrieving of only the sequence without the
metadata. Choices are true or false (default).

Output Arguments

EMBLData MATLAB structure with fields corresponding to EMBL data.
EMBLSeq MATLAB character string representing the sequence.

Description

getembl retrieves information from the European Molecular Biology Laboratory
(EMBL) database for nucleotide sequences. This database is maintained by the European
Bioinformatics Institute (EBI). For more details about the EMBL database, see

http://www.ebi.ac.uk/ena/about/formats

http://www.ebi.ac.uk/ena/about/formats

1 Alphabetical List

1-738

EMBLData = getembl(AccessionNumber) searches for the accession number in
the EMBL database (http://www.ebi.ac.uk/) and returns EMBLData, a MATLAB
structure with fields corresponding to the EMBL two-character line type code. Each line
type code is stored as a separate element in the structure.

EMBLData contains the following fields.

Field

Identification

Accession

SequenceVersion

DateCreated

DateUpdated

Description

Keyword

OrganismSpecies

OrganismClassification

Organelle

Reference

DatabaseCrossReference

Comments

Assembly

Feature

BaseCount

Sequence

EMBLData = getembl(..., 'PropertyName', PropertyValue, ...) calls
getembl with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

EMBLData = getembl(..., 'ToFile', ToFileValue, ...) saves the information
to an EMBL-formatted file. ToFileValue is a string specifying a file name or a path and

http://www.ebi.ac.uk/

 getembl

1-739

file name to which to save the data. If you specify only a file name, the file is stored in the
current folder.

Tip Read an EMBL-formatted file back into the MATLAB software using the emblread
function.

EMBLSeq = getembl(..., 'SequenceOnly', SequenceOnlyValue, ...) controls
the retrieving of only the sequence without the metadata. Choices are true or false
(default).

Examples

Retrieve data for the rat liver apolipoprotein A-I.

emblout = getembl('X00558')

Retrieve data for the rat liver apolipoprotein A-I and save it to the file rat_protein. If
you specify a file name without a path, the file is stored in the current folder.

emblout = getembl('X00558','ToFile','c:\project\rat_protein.txt')

Retrieve only the sequence for the rat liver apolipoprotein A-I.

Seq = getembl('X00558','SequenceOnly',true)

See Also
emblread | getgenbank | getgenpept | getpdb | seqviewer

1 Alphabetical List

1-740

getEntryByIndex

Class: BioIndexedFile

Retrieve entries from source file associated with BioIndexedFile object using numeric
index

Syntax

Entries = getEntryByIndex(BioIFobj, Indices)

Description

Entries = getEntryByIndex(BioIFobj, Indices) extracts entries from
the source file associated with BioIFobj, a BioIndexedFile object. It extracts and
concatenates the entries specified by Indices, a numeric vector of positive integers. It
returns Entries, a single string of concatenated entries. The value of each element in
Indices must be less than or equal to the number of entries in the source file. A one-to-
one relationship exists between the number and order of elements in Indices and the
output Entries, even if Indices has repeated entries.

Tips

Use this method to visualize and explore a subset of the entries in the source file for
validation purposes.

Input Arguments

BioIFobj

Object of the BioIndexedFile class.

Default:

 getEntryByIndex

1-741

Indices

Numeric vector of positive integers. The value of each element must be less than or equal
to the number of entries in the source file associated with BioIFobj, the BioIndexedFile
object.

Default:

Output Arguments

Entries

Single string of concatenated entries extracted from the source file associated with
BioIFobj, the BioIndexedFile object.

Examples

Construct a BioIndexedFile object to access a table containing cross-references between
gene names and gene ontology (GO) terms:

% Create variable containing full absolute path of source file

sourcefile = which('yeastgenes.sgd');

% Create a BioIndexedFile object from the source file. Indicate

% the source file is a tab-delimited file where contiguous rows

% with the same key are considered a single entry. Store the

% index file in the Current Folder. Indicate that keys are

% located in column 3 and that header lines are prefaced with !

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

Return the first, third, and fifth entries from the source file:

% Access 1st, 3rd, and 5th entries

subset_entries = getEntryByIndex(gene2goObj, [1 3 5]);

See Also
BioIndexedFile.getEntryByKey | BioIndexedFile.getSubset |
BioIndexedFile

1 Alphabetical List

1-742

How To
• “Work with Large Multi-Entry Text Files”

 getEntryByKey

1-743

getEntryByKey
Class: BioIndexedFile

Retrieve entries from source file associated with BioIndexedFile object using
alphanumeric key

Syntax

Entries = getEntryByKey(BioIFobj, Key)

Description

Entries = getEntryByKey(BioIFobj, Key) extracts entries from the source
file associated with BioIFobj, a BioIndexedFile object. It extracts and concatenates
the entries specified by Key, a string or cell array of strings specifying one or more
alphanumeric keys. It returns Entries, a single string of concatenated entries. If the
keys in the source file are not unique, it returns all entries that match a specified key, all
at the position of the key in the Key cell array. If the keys in the source file are unique,
there is a one-to-one relationship between the number and order of elements in Key and
the output Entries.

Tips

Use this method to visualize and explore a subset of the entries in the source file for
validation purposes.

Input Arguments

BioIFobj

Object of the BioIndexedFile class.

Default:

1 Alphabetical List

1-744

Key

String or cell array of strings specifying one or more keys in the source file associated
with BioIFobj, the BioIndexedFile object.

Default:

Output Arguments
Entries

Single string of concatenated entries extracted from the source file associated with
BioIFobj, the BioIndexedFile object.

Examples
Construct a BioIndexedFile object to access a table containing cross-references between
gene names and gene ontology (GO) terms:

% Create variable containing full absolute path of source file

sourcefile = which('yeastgenes.sgd');

% Create a BioIndexedFile object from the source file. Indicate

% the source file is a tab-delimited file where contiguous rows

% with the same key are considered a single entry. Store the

% index file in the Current Folder. Indicate that keys are

% located in column 3 and that header lines are prefaced with !

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

Return the entries from the source file that are specified by the keys AAC1 and AAD10:

% Access entries that have the keys AAC1 and AAD10

subset_entries = getEntryByKey(gene2goObj, {'AAC1' 'AAD10'});

See Also
BioIndexedFile.getEntryByIndex | BioIndexedFile.getKeys |
BioIndexedFile | BioIndexedFile.getSubset

How To
• “Work with Large Multi-Entry Text Files”

 getExons

1-745

getExons
Class: GTFAnnotation

Return table of exons from GTFAnnotation object

Syntax

exons = getExons(AnnotObj)

[exons,junctions]= getExons(AnnotObj)

exonsTable= getExons(AnnotObj,Name,Value)

Description

exons = getExons(AnnotObj) returns exons, a table of existing exons in AnnotObj.

[exons,junctions]= getExons(AnnotObj) also returns junctions, a table of spliced
junctions for each reference listed in AnnotObj.

exonsTable= getExons(AnnotObj,Name,Value) uses an additional option specified
by a Name,Value pair argument.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference' — Names of reference sequences
string | cell array of strings | categorical array

1 Alphabetical List

1-746

Names of reference sequences, specified as a comma-separated pair consisting of
'Reference' and a string, cell array of strings, or categorical array.

The names must come from the Reference field of AnnotObj. If a name does not exist,
the function provides a warning and ignores it.

'Gene' — Names of gene
string | cell array of strings | categorical array

Names of genes, specified as a comma-separated pair consisting of 'Gene' and a string,
cell array of strings, or categorical array.

The names must come from the Gene field of AnnotObj. If a name does not exist, the
function provides a warning and ignores the name.

Default:

'Transcript' — Names of transcripts
string | cell array of strings | categorical array

Names of transcripts, specified as a comma-separated pair consisting of 'Transcript'
and a string, cell array of strings, or categorical array.

The names must come from the Transcript field of AnnotObj. If a name does not exist,
the function gives a warning and ignores the name.

Use one of these name-value pair arguments at a time to retrieve only those exons which
belong to the specified references, genes, or transcripts. You cannot specify more than
one name-value pair arguments.

Output Arguments

exons — Exons in AnnotObj
table

Exons in AnnotObj, returned as a table. The table contains the following variables for
each transcript.

Variable Name Description

Transcript Cell array of strings containing transcript IDs, obtained from the
Transcript field of AnnotObj.

 getExons

1-747

Variable Name Description

GeneName Cell array of strings containing the names of expressed genes,
obtained from the Attributes field of AnnotObj. This cell array can
contain empty strings if the corresponding gene names are not found
in Attributes.

GeneID Cell array of strings containing the expressed gene IDs, obtained from
the Gene field of AnnotObj.

Reference Categorical array representing the names of reference sequences to
which the expressed genes belong. The reference names are from the
Reference field of AnnotObj.

Start Start location of each exon.
Stop Stop location of each exon.
Strand Categorical array containing the strand of expressed gene.

junctions — Spliced junctions for each reference
table

Spliced junctions for each reference, returned as a table. The table contains the following
variables for each junction.

Variable Name Description

Start Start location of each junction.
Stop Stop location of each junction.
Reference Categorical array representing the names of reference sequences

to which the junctions belong. The reference names are from the
Reference field of AnnotObj.

Examples

Retrieve Exons from a GTF-formatted File

Create a GTFAnnotation object from a GTF-formatted file.

obj = GTFAnnotation('hum37_2_1M.gtf');

Get the list of gene names listed in the object.

1 Alphabetical List

1-748

gNames = getGeneNames(obj)

gNames =

 'uc002qvu.2'

 'uc002qvv.2'

 'uc002qvw.2'

 'uc002qvx.2'

 'uc002qvy.2'

 'uc002qvz.2'

 'uc002qwa.2'

 'uc002qwb.2'

 'uc002qwc.1'

 'uc002qwd.2'

 'uc002qwe.3'

 'uc002qwf.2'

 'uc002qwg.2'

 'uc002qwh.2'

 'uc002qwi.3'

 'uc002qwk.2'

 'uc002qwl.2'

 'uc002qwm.1'

 'uc002qwn.1'

 'uc002qwo.1'

 'uc002qwp.2'

 'uc002qwq.2'

 'uc010ewe.2'

 'uc010ewf.1'

 'uc010ewg.2'

 'uc010ewh.1'

 'uc010ewi.2'

 'uc010yim.1'

Get a table of exons which belong to the first gene uc002qvu.2.

exons = getExons(obj,'Gene',gNames{1})

exons =

 Transcript GeneName GeneID Reference Start Stop Strand

 ____________ ________ ____________ _________ ______ ______ ______

 getExons

1-749

 'uc002qvu.2' '' 'uc002qvu.2' chr2 218138 219001 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 224864 224920 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 229966 230044 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 231023 231191 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 233101 233229 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 234160 234272 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 247538 247602 -

 'uc002qvu.2' '' 'uc002qvu.2' chr2 249731 249852 -

See Also
GTFAnnotation | GTFAnnotation.getData | GTFAnnotation.getFeatureNames
| GTFAnnotation.getGeneNames | GTFAnnotation.getIndex |
GTFAnnotation.getRange | GTFAnnotation.getReferenceNames
| GTFAnnotation.getSubset | GTFAnnotation.getGenes |
GTFAnnotation.getSegments | GTFAnnotation.getTranscripts

More About
• “Store and Manage Feature Annotations in Objects”

External Web Sites
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

1 Alphabetical List

1-750

getFeatureNames
Class: GFFAnnotation

Retrieve unique feature names from GFFAnnotation object

Syntax

Features = getFeatureNames(AnnotObj)

Description

Features = getFeatureNames(AnnotObj) returns Features, a cell array of strings
specifying the unique feature names associated with annotations in AnnotObj.

Input Arguments

AnnotObj

Object of the GFFAnnotation class.

Default:

Output Arguments

Features

Cell array of strings specifying the unique feature names associated with annotations in
AnnotObj.

Examples

Construct a GFFAnnotation object from a GFF-formatted file that is provided with
Bioinformatics Toolbox, and then retrieve the feature names from the annotation object:

 getFeatureNames

1-751

% Construct a GFFAnnotation object from a GFF file

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

% Retrieve feature names for the annotation object

featureNames = getFeatureNames(GFFAnnotObj)

featureNames =

 'CDS'

 'exon'

 'five_prime_UTR'

 'gene'

 'mRNA'

 'miRNA'

 'ncRNA'

 'protein'

 'pseudogene'

 'pseudogenic_exon'

 'pseudogenic_transcript'

 'tRNA'

 'three_prime_UTR'

 'transposable_element_gene'

See Also
GTFAnnotation.getFeatureNames

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

1 Alphabetical List

1-752

getFeatureNames
Class: GTFAnnotation

Retrieve unique feature names from GTFAnnotation object

Syntax

Features = getFeatureNames(AnnotObj)

Description

Features = getFeatureNames(AnnotObj) returns Features, a cell array of strings
specifying the unique feature names associated with annotations in AnnotObj.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Default:

Output Arguments

Features

Cell array of strings specifying the unique feature names associated with annotations in
AnnotObj.

Examples

Construct a GTFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox, and then retrieve the feature names from the annotation object:

 getFeatureNames

1-753

% Construct a GTFAnnotation object from a GTF file

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

% Retrieve feature names for the annotation object

featureNames = getFeatureNames(GTFAnnotObj)

featureNames =

 'CDS'

 'exon'

 'start_codon'

 'stop_codon'

See Also
GFFAnnotation.getFeatureNames

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

1 Alphabetical List

1-754

getgenbank

Retrieve sequence information from GenBank database

Syntax

Data = getgenbank(AccessionNumber)

getgenbank(AccessionNumber)

Data = getgenbank(..., 'PartialSeq', PartialSeqValue, ...)

Data = getgenbank(..., 'ToFile', ToFileValue, ...)

Data = getgenbank(..., 'FileFormat', FileFormatValue, ...)

Data = getgenbank(..., 'SequenceOnly', SequenceOnlyValue, ...)

Arguments

AccessionNumber String specifying a unique alphanumeric identifier for a
sequence record.

PartialSeqValue Two-element array of integers containing the start and
end positions of the subsequence [StartBP, EndBP] that
specifies a subsequence to retrieve. StartBP is an integer
between 1 and EndBP. EndBP is an integer between StartBP
and the length of the sequence.

ToFileValue String specifying either a file name or a path and file name for
saving the GenBank data. If you specify only a file name, the
file is saved to the MATLAB Current Folder.

FileFormatValue String specifying the format for the sequence information.
Choices are:

• 'GenBank' — Default when SequenceOnlyValue is
false.

• 'FASTA' — Default when SequenceOnlyValue is true.

When 'FASTA', then Data contains only two fields, Header
and Sequence.

 getgenbank

1-755

SequenceOnlyValue Controls the return of only the sequence as a character array.
Choices are true or false (default).

Description

getgenbank retrieves nucleotide information from the GenBank database. This
database is maintained by the National Center for Biotechnology Information (NCBI).
For more details about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenbank(AccessionNumber) searches for the accession number in the
GenBank database and returns Data, a MATLAB structure containing information for
the sequence.

Tip If an error occurs while retrieving the GenBank-formatted information, try rerunning
the query. Errors can occur due to Internet connectivity issues that are unrelated to the
GenBank record.

getgenbank(AccessionNumber) displays information in the MATLAB Command
Window without returning data to a variable. The displayed information is only
hyperlinks to the URLs used to search for and retrieve the data.

getgenbank(..., 'PropertyName', PropertyValue, ...) calls getgenbank
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

Data = getgenbank(..., 'PartialSeq', PartialSeqValue, ...)

returns the specified subsequence in the Sequence field of the MATLAB structure.
PartialSeqValue is a two-element array of integers containing the start and end
positions of the subsequence [StartBP, EndBP]. StartBP is an integer between 1 and
EndBP. EndBP is an integer between StartBP and the length of the sequence.

Data = getgenbank(..., 'ToFile', ToFileValue, ...) saves the data returned
from the GenBank database to a file. ToFileValue is a string specifying either a file

http://www.ncbi.nlm.nih.gov/Genbank/

1 Alphabetical List

1-756

name or a path and file name for saving the GenBank data. If you specify only a file
name, the file is saved to the MATLAB Current Folder.

Tip You can read a GenBank-formatted file back into MATLAB using the genbankread
function.

Tip To append GenBank data to an existing file, specify that file name, and the data will
be added to the end of the file.

If you are using getgenbank in a script, you can disable the append warning message by
entering the following command lines before the getgenbank command:

warnState = warning %Save the current warning state

warning('off','Bioinfo:getncbidata:AppendToFile');

Then enter the following command line after the getgenbank command:

warning(warnState) %Reset warning state to previous settings

Data = getgenbank(..., 'FileFormat', FileFormatValue, ...) returns
the sequence in the specified format. Choices are 'GenBank' or 'FASTA'. When
'FASTA', then Data contains only two fields, Header and Sequence. 'GenBank'
is the default when SequenceOnlyValue is false. 'FASTA' is the default when
SequenceOnlyValue is true.

Data = getgenbank(..., 'SequenceOnly', SequenceOnlyValue, ...) returns
only the sequence in Data, a character array. Choices are true or false (default).

Note: If you use the 'SequenceOnly' and 'ToFile' properties together, the output is
always a FASTA-formatted file.

Examples

Retrieving an RNA Sequence

To retrieve the sequence from chromosome 19 that codes for the human insulin receptor
and store it in a structure, S, in the MATLAB Command Window, type:
S = getgenbank('M10051')

 getgenbank

1-757

S =

 LocusName: 'HUMINSR'

 LocusSequenceLength: '4723'

 LocusNumberofStrands: ''

 LocusTopology: 'linear'

 LocusMoleculeType: 'mRNA'

 LocusGenBankDivision: 'PRI'

 LocusModificationDate: '06-JAN-1995'

 Definition: 'Human insulin receptor mRNA, complete cds.'

 Accession: 'M10051'

 Version: 'M10051.1'

 GI: '186439'

 Project: []

 DBLink: []

 Keywords: 'insulin receptor; tyrosine kinase.'

 Segment: []

 Source: 'Homo sapiens (human)'

 SourceOrganism: [4x65 char]

 Reference: {[1x1 struct]}

 Comment: [14x67 char]

 Features: [51x74 char]

 CDS: [1x1 struct]

 Sequence: [1x4723 char]

 SearchURL: [1x67 char]

 RetrieveURL: [1x101 char]

Retrieving a Partial RNA Sequence

By looking at the Features field of the structure returned in Retrieving an RNA
Sequence, you can determine that the coding sequence is positions 139 through 4287. To
retrieve only the coding sequence from chromosome 19 that codes for the human insulin
receptor and store it in a structure, CDS, in the MATLAB Command Window, type:

CDS = getgenbank('M10051','PARTIALSEQ',[139,4287]);

See Also
genbankread | getembl | getgenpept | getpdb | seqviewer

1 Alphabetical List

1-758

getGenes

Class: GTFAnnotation

Return table of unique genes in GTFAnnotation object

Syntax

genes = getGenes(AnnotObj)

genes= getGenes(AnnotObj,Name,Value)

Description

genes = getGenes(AnnotObj) returns genes, a table of genes referenced by exons in
AnnotObj.

genes= getGenes(AnnotObj,Name,Value) uses an additional option specified by a
Name,Value pair argument.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference' — Names of reference sequences
string | cell array of strings | categorical array

 getGenes

1-759

Names of reference sequences, specified as a comma-separated pair consisting of
'Reference' and a string, cell array of strings, or categorical array.

The names must come from the Reference field of AnnotObj. If a name does not exist,
the function provides a warning and ignores it.

'Gene' — Names of gene
string | cell array of strings | categorical array

Names of genes, specified as a comma-separated pair consisting of 'Gene' and a string,
cell array of strings, or categorical array.

The names must come from the Gene field of AnnotObj. If a name does not exist, the
function provides a warning and ignores the name.

Default:

'Transcript' — Names of transcripts
string | cell array of strings | categorical array

Names of transcripts, specified as a comma-separated pair consisting of 'Transcript'
and a string, cell array of strings, or categorical array.

The names must come from the Transcript field of AnnotObj. If a name does not exist,
the function gives a warning and ignores the name.

Use one of these name-value pair arguments at a time to retrieve only those specified
genes or those genes which belong to the specified references or transcripts. You cannot
specify more than one name-value pair arguments.

Output Arguments

genes — Genes referenced by exons in AnnotObj
table

Genes referenced by exons in AnnotObj, returned as a table. The table contains the
following variables for each gene.

Variable Name Description

GeneID Cell array of strings containing gene IDs as listed in AnnotObj,
obtained from the Gene field of AnnotObj.

1 Alphabetical List

1-760

Variable Name Description

GeneName Cell array of strings containing gene names, obtained from the
Attributes field of AnnotObj. This cell array can contain empty
strings if the corresponding gene names are not found in Attributes.

Reference Categorical array representing the names of reference sequences
to which the genes belong, obtained from the Reference field of
AnnotObj.

Start Start location of the first exon in each gene.
Stop Stop location of the last exon in each gene.
Strand Categorical array containing the strand of each gene.
NumTranscriptsInteger array listing the number of transcripts in each gene.

Examples

Retrieve Genes from a GTF-formatted File

Create a GTFAnnotation object from a GTF-formatted file.

obj = GTFAnnotation('hum37_2_1M.gtf');

Retrieve unique reference names. In this case, there is only one reference sequence,
which is chromosome 2 (chr2).

ref = getReferenceNames(obj)

ref =

 'chr2'

Get a table of all genes which belong to chr2.

genes = getGenes(obj,'Reference',ref)

genes =

 getGenes

1-761

 GeneID GeneName Reference Start Stop Strand NumTranscripts

 ____________ ________ _________ ______ _______ ______ ______________

 'uc010yim.1' '' chr2 41609 46385 - 1

 'uc002qvu.2' '' chr2 218138 249852 - 1

 'uc002qvv.2' '' chr2 218138 256690 - 1

 'uc002qvw.2' '' chr2 218138 260702 - 1

 'uc002qvx.2' '' chr2 218138 264068 - 1

 'uc002qvy.2' '' chr2 218138 264068 - 1

 'uc002qvz.2' '' chr2 218138 264392 - 1

 'uc002qwa.2' '' chr2 218138 264743 - 1

 'uc010ewe.2' '' chr2 218138 264810 - 1

 'uc002qwb.2' '' chr2 239563 242178 - 1

 'uc002qwc.1' '' chr2 243503 262786 - 1

 'uc002qwd.2' '' chr2 264869 272481 + 1

 'uc002qwe.3' '' chr2 264869 273148 + 1

 'uc002qwg.2' '' chr2 264869 278280 + 1

 'uc002qwh.2' '' chr2 264869 278280 + 1

 'uc002qwf.2' '' chr2 264869 278280 + 1

 'uc002qwi.3' '' chr2 279563 288308 - 1

 'uc010ewf.1' '' chr2 279929 287892 - 1

 'uc002qwk.2' '' chr2 667975 676158 - 1

 'uc002qwl.2' '' chr2 667975 677439 - 1

 'uc002qwm.1' '' chr2 677186 682802 + 1

 'uc002qwn.1' '' chr2 780347 863877 - 1

 'uc002qwo.1' '' chr2 780347 863877 - 1

 'uc010ewg.2' '' chr2 902783 905582 - 1

 'uc010ewh.1' '' chr2 902823 906011 - 1

 'uc002qwp.2' '' chr2 946555 1157355 + 1

 'uc002qwq.2' '' chr2 946555 1371382 + 1

 'uc010ewi.2' '' chr2 946555 1371382 + 1

See Also
GTFAnnotation | GTFAnnotation.getData | GTFAnnotation.getFeatureNames
| GTFAnnotation.getGeneNames | GTFAnnotation.getIndex |
GTFAnnotation.getRange | GTFAnnotation.getReferenceNames
| GTFAnnotation.getSubset | GTFAnnotation.getTranscripts |
GTFAnnotation.getSegments | GTFAnnotation.getExons

More About
• “Store and Manage Feature Annotations in Objects”

1 Alphabetical List

1-762

External Web Sites
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getGeneNames

1-763

getGeneNames
Class: GTFAnnotation

Retrieve unique gene names from GTFAnnotation object

Syntax

Genes = getGeneNames(AnnotObj)

Description

Genes = getGeneNames(AnnotObj) returns Genes, a cell array of strings specifying
the unique gene names associated with annotations in AnnotObj.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Default:

Output Arguments

Genes

Cell array of strings specifying the unique gene names associated with annotations in
AnnotObj.

Examples

Construct a GTFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox, and then retrieve a list of the unique gene names from the object:

1 Alphabetical List

1-764

% Construct a GTFAnnotation object from a GTF file

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

% Get gene names from object

geneNames = getGeneNames(GTFAnnotObj)

geneNames =

 'uc002qvu.2'

 'uc002qvv.2'

 'uc002qvw.2'

 'uc002qvx.2'

 'uc002qvy.2'

 'uc002qvz.2'

 'uc002qwa.2'

 'uc002qwb.2'

 'uc002qwc.1'

 'uc002qwd.2'

 'uc002qwe.3'

 'uc002qwf.2'

 'uc002qwg.2'

 'uc002qwh.2'

 'uc002qwi.3'

 'uc002qwk.2'

 'uc002qwl.2'

 'uc002qwm.1'

 'uc002qwn.1'

 'uc002qwo.1'

 'uc002qwp.2'

 'uc002qwq.2'

 'uc010ewe.2'

 'uc010ewf.1'

 'uc010ewg.2'

 'uc010ewh.1'

 'uc010ewi.2'

 'uc010yim.1'

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getgenpept

1-765

getgenpept
Retrieve sequence information from GenPept database

Syntax
Data = getgenpept(AccessionNumber)

getgenpept(AccessionNumber)

Data = getgenpept(..., 'PartialSeq', PartialSeqValue, ...)

Data = getgenpept(..., 'ToFile', ToFileValue, ...)

Data = getgenpept(..., 'FileFormat', FileFormatValue, ...)

Data = getgenpept(..., 'SequenceOnly', SequenceOnlyValue, ...)

Arguments
AccessionNumber String specifying a unique alphanumeric identifier for a

sequence record.
PartialSeqValue Two-element array of integers containing the start and

end positions of the subsequence [StartAA, EndAA] that
specifies a subsequence to retrieve. StartAA is an integer
between 1 and EndAA; EndAA is an integer between StartAA
and the length of the sequence.

ToFileValue String specifying either a file name or a path and file name for
saving the GenPept data. If you specify only a file name, the
file is saved to the MATLAB Current Folder.

FileFormatValue String specifying the format for the sequence information.
Choices are:

• 'Genpept' — Default when SequenceOnlyValue is
false.

• 'FASTA' — Default when SequenceOnlyValue is true.

When 'FASTA', then Data contains only two fields, Header
and Sequence.

SequenceOnlyValue Controls the return of only the sequence as a character array.
Choices are true or false (default).

1 Alphabetical List

1-766

Description

getgenpept retrieves a protein (amino acid) sequence information from the GenPept
database, which is a translation of the nucleotide sequences in the GenBank database
and is maintained by the National Center for Biotechnology Information (NCBI).

Note: NCBI has changed the name of their protein search engine from GenPept to
Entrez Protein. However, the function names in the Bioinformatics Toolbox software
(getgenpept and genpeptread) are unchanged representing the still-used GenPept
report format.

Data = getgenpept(AccessionNumber) searches for the accession number in the
GenPept database and returns Data, a MATLAB structure containing information for
the sequence.

Tip If an error occurs while retrieving the GenPept-formatted information, try rerunning
the query. Errors can occur due to Internet connectivity issues that are unrelated to the
GenPept record.

getgenpept(AccessionNumber) displays information in the MATLAB Command
Window without returning data to a variable. The displayed information is only
hyperlinks to the URLs used to search for and retrieve the data.

getgenpept(..., 'PropertyName', PropertyValue, ...) calls getgenpept
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

Data = getgenpept(..., 'PartialSeq', PartialSeqValue, ...)

returns the specified subsequence in the Sequence field of the MATLAB structure.
PartialSeqValue is a two-element array of integers containing the start and end
positions of the subsequence [StartAA, EndAA]. StartAA is an integer between 1 and
EndAA; EndAA is an integer between StartAA and the length of the sequence.

Data = getgenpept(..., 'ToFile', ToFileValue, ...) saves the data returned
from the GenPept database to a file. ToFileValue is a string specifying either a file

 getgenpept

1-767

name or a path and file name for saving the GenPept data. If you specify only a file
name, the file is saved to the MATLAB Current Folder.

Tip You can read a GenPept-formatted file back into MATLAB using the genpeptread
function.

Tip To append GenPept data to an existing file, specify that file name, and the data will
be added to the end of the file.

If you are using getgenpept in a script, you can disable the append warning message by
entering the following command lines before the getgenpept command:

warnState = warning %Save the current warning state

warning('off','Bioinfo:getncbidata:AppendToFile');

Then enter the following command line after the getgenpept command:

warning(warnState) %Reset warning state to previous settings

Data = getgenpept(..., 'FileFormat', FileFormatValue, ...) returns
the sequence in the specified format. Choices are 'GenPept' or 'FASTA'. When
'FASTA', then Data contains only two fields, Header and Sequence. 'GenPept'
is the default when SequenceOnlyValue is false. 'FASTA' is the default when
SequenceOnlyValue is true.

Data = getgenpept(..., 'SequenceOnly', SequenceOnlyValue, ...) returns
only the sequence in Data, a character array. Choices are true or false (default).

Note: If you use the 'SequenceOnly' and 'ToFile' properties together, the output is
always a FASTA-formatted file.

Examples

Retrieving a Peptide Sequence

To retrieve the sequence for the human insulin receptor and store it in a structure, Seq,
in the MATLAB Command Window, type:

1 Alphabetical List

1-768

Seq = getgenpept('AAA59174')

Seq =

 LocusName: 'AAA59174'

 LocusSequenceLength: '1382'

 LocusNumberofStrands: ''

 LocusTopology: 'linear'

 LocusMoleculeType: ''

 LocusGenBankDivision: 'PRI'

 LocusModificationDate: '06-JAN-1995'

 Definition: 'insulin receptor precursor.'

 Accession: 'AAA59174'

 Version: 'AAA59174.1'

 GI: '307070'

 Project: []

 DBSource: 'locus HUMINSR accession M10051.1'

 Keywords: ''

 Source: 'Homo sapiens (human)'

 SourceOrganism: [4x65 char]

 Reference: {[1x1 struct]}

 Comment: [14x67 char]

 Features: [40x64 char]

 Sequence: [1x1382 char]

 SearchURL: [1x104 char]

 RetrieveURL: [1x92 char]

Retrieving a Partial Peptide Sequence

By looking at the Features field of the structure returned in Retrieving a Peptide
Sequence, you can determine that the furin-like repeats domain is positions 234 through
281. To retrieve only the furin-like repeats domain from the sequence for the human
insulin receptor and store it in a structure, Fur, in the MATLAB Command Window,
type:

Fur = getgenpept('AAA59174','PARTIALSEQ',[234,281]);

See Also
genpeptread | getembl | getgenbank | getpdb

 getgeodata

1-769

getgeodata

Retrieve Gene Expression Omnibus (GEO) format data

Syntax

GEOData = getgeodata(AccessionNumber)

getgeodata(AccessionNumber, 'ToFile', ToFileValue)

Input Arguments

AccessionNumberString specifying a unique identifier for a GEO Sample (GSM),
Data Set (GDS), Platform (GPL), or Series (GSE) record in the GEO
database.

Tip Recently submitted data sets may not be available for immediate
download. There can be a one- to two-day delay between an
experiment being submitted to the GEO database and its availability
on the FTP site.

Tip If you are unable to retrieve data for an accession number,
increase your Java® heap space:

• If you have MATLAB version 7.10 (R2010a) or later, see

“Java Heap Memory Preferences”

• If you have MATLAB version 7.9 (R2009b) or earlier, see

http://www.mathworks.com/support/solutions/data/1-18I2C.html

ToFileValue String specifying a file name or path and file name for saving the
data. If you specify only a file name, that file will be saved in the
MATLAB Current Folder.

http://www.mathworks.com/support/solutions/data/1-18I2C.html

1 Alphabetical List

1-770

Output Arguments

GEOData MATLAB structure containing information for a GEO record
retrieved from the GEO database.

Description

GEOData = getgeodata(AccessionNumber) searches the Gene Expression Omnibus
database for the specified accession number of a Sample (GSM), Data Set (GDS),
Platform (GPL), or Series (GSE) record and returns a MATLAB structure containing the
following fields:

Field Description

Scope Type of data retrieved (SAMPLE, DATASET, PLATFORM,
or SERIES)

Accession Accession number for record in GEO database.
Header Microarray experiment information.
ColumnDescriptions Cell array containing descriptions of columns in the data.
ColumnNames Cell array containing names of columns in the data.
Data Array containing microarray data.
Identifier (GDS files
only)

Cell array containing probe IDs.

IDRef (GDS files only) Cell array containing indices to probes.

Note: Currently, the getgeodata function supports Sample (GSM), Data Set (GDS),
Platform (GPL), and Series (GSE) records.

getgeodata(AccessionNumber, 'ToFile', ToFileValue) saves the data returned
from the database to a file.

Note: You can read a GEO SOFT-formatted file back into the MATLAB software using
the geosoftread function. You can read a GEO SERIES-formatted file back into the
MATLAB software using the geoseriesread function.

 getgeodata

1-771

For more information, see

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

Examples
geoStruct = getgeodata('GSM1768')

See Also
geoseriesread | geosoftread | getgenbank | getgenpept

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

1 Alphabetical List

1-772

getHeader
Class: BioRead

Retrieve sequence headers from object

Syntax
Headers = getHeader(BioObj)

Headers = getHeader(BioObj, Subset)

Description
Headers = getHeader(BioObj) returns Headers, a cell array of strings containing
sequence headers from an object.

Headers = getHeader(BioObj, Subset) returns header strings for only object
elements specified by Subset.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

 getHeader

1-773

Default:

Output Arguments

Headers

Cell array of strings containing the sequence headers specified by Subset in BioObj.

Examples

Retrieve the headers from different elements of a BioRead object:

% Create variables containing sequences, quality scores, and headers

seqs = {randseq(10); randseq(15); randseq(20)};

quals = {repmat('!', 1, 10); repmat('%', 1, 15); repmat('&', 1, 20)};

headers = {'H1'; 'H2'; 'H3'};

% Construct a BioRead object from these three variables

BRObj = BioRead(seqs, quals, headers);

% Retrieve the Header value of the second element in the object

getHeader(BRObj, 2);

getHeader(BRObj, [false true false]);

% Retrieve the Header values of the first and third elements in the

% object

getHeader(BRObj, [1 3]);

getHeader(BRObj, [true false true]);

% Retrieve the Header value of all the elements in the object

getHeader(BRObj);

getHeader(BRObj, 1:3);

Alternatives

An alternative to using the getHeader method is to use dot indexing with the Header
property:

BioObj.Header(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

1 Alphabetical List

1-774

See Also
setHeader | BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 gethmmalignment

1-775

gethmmalignment
Retrieve multiple sequence alignment associated with hidden Markov model (HMM)
profile from PFAM database

Syntax

AlignStruct = gethmmalignment(PFAMName)

AlignStruct = gethmmalignment(PFAMAccessNumber)

AlignStruct = gethmmalignment(PFAMNumber)

AlignStruct = gethmmalignment(..., 'ToFile', ToFileValue, ...)

AlignStruct = gethmmalignment(..., 'Type', TypeValue, ...)

AlignStruct = gethmmalignment(..., 'Mirror', MirrorValue, ...)

AlignStruct = gethmmalignment(..., 'IgnoreGaps', IgnoreGaps, ...)

Input Arguments

PFAMName String specifying a protein family name (unique identifier) of
an HMM profile record in the PFAM database. For example,
'7tm_2'.

PFAMAccessNumber String specifying a protein family accession number of an HMM
profile record in the PFAM database. For example, 'PF00002'.

PFAMNumber Integer specifying a protein family number of an HMM profile
record in the PFAM database. For example, 2 is the protein
family number for the protein family PF00002.

ToFileValue String specifying a file name or a path and file name for saving
the data. If you specify only a file name, that file will be saved
in the MATLAB Current Folder.

TypeValue String that specifies the set of alignments returned. Choices
are:

• 'full' — Default. Returns all alignments that fit the HMM
profile.

• 'seed' — Returns only the alignments used to generate the
HMM profile.

1 Alphabetical List

1-776

MirrorValue String that specifies a Web database. Choices are:

• 'Sanger' (default)
• 'Janelia'

IgnoreGapsValue Controls the removal of the symbols - and . from the sequence.
Choices are true or false (default).

Output Arguments

AlignStruct MATLAB structure array containing the multiple sequence
alignment associated with an HMM profile.

Description

AlignStruct = gethmmalignment(PFAMName) searches the PFAM database for
the HMM profile record represented by PFAMName, a protein family name, retrieves
the multiple sequence alignment associated with the HMM profile, and returns
AlignStruct, a MATLAB structure array, with each structure containing the following
fields:

Field Description

Header Protein name
Sequence Protein sequence

AlignStruct = gethmmalignment(PFAMAccessNumber) searches the PFAM
database for the HMM profile record represented by PFAMAccessNumber, a protein
family accession number, retrieves the multiple sequence alignment associated with the
HMM profile, and returns AlignStruct, a MATLAB structure array.

AlignStruct = gethmmalignment(PFAMNumber) determines a protein family
accession number from PFAMNumber, an integer, searches the PFAM database for the
associated HMM profile record, retrieves the multiple sequence alignment associated
with the HMM profile, and returns AlignStruct, a MATLAB structure array.

 gethmmalignment

1-777

AlignStruct = gethmmalignment(..., 'PropertyName',

PropertyValue, ...) calls gethmmalignment with optional properties that use
property name/property value pairs. You can specify one or more properties in any order.
Each PropertyName must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

AlignStruct = gethmmalignment(..., 'ToFile', ToFileValue, ...) saves
the data returned from the PFAM database to a file specified by ToFileValue.

Note: You can read a FASTA-formatted file containing PFAM data back into the
MATLAB software using the fastaread function.

AlignStruct = gethmmalignment(..., 'Type', TypeValue, ...) specifies the
set of alignments returned. Choices are:

• 'full' — Default. Returns all sequences that fit the HMM profile.
• 'seed' — Returns only the sequences used to generate the HMM profile.

AlignStruct = gethmmalignment(..., 'Mirror', MirrorValue, ...)

specifies a Web database. Choices are:

• 'Sanger' (default)
• 'Janelia'

You can reach other mirror sites by passing the complete URL to the fastaread
function.

Note: These mirror sites are maintained separately and may have slight variations.

For more information about the PFAM database, see:

http://pfam.sanger.ac.uk

http://pfam.janelia.org/

AlignStruct = gethmmalignment(..., 'IgnoreGaps', IgnoreGaps, ...)

controls the removal of the symbols - and . from the sequence. Choices are true or
false (default).

http://pfam.sanger.ac.uk
http://pfam.janelia.org/

1 Alphabetical List

1-778

Examples

To retrieve a multiple alignment of the sequences used to train the HMM profile for
global alignment to the 7-transmembrane receptor protein in the secretin family, enter
either of the following:

pfamalign = gethmmalignment(2,'Type','seed')

pfamalign = gethmmalignment('PF00002','Type','seed')

pfamalign =

32x1 struct array with fields:

 Header

 Sequence

See Also
fastaread | gethmmprof | gethmmtree | multialignread | multialignwrite |
pfamhmmread

 gethmmprof

1-779

gethmmprof

Retrieve hidden Markov model (HMM) profile from PFAM database

Syntax

HMMStruct = gethmmprof(PFAMName)

HMMStruct = gethmmprof(PFAMNumber)

HMMStruct = gethmmprof(..., 'ToFile', ToFileValue, ...)

HMMStruct = gethmmprof(..., 'Mode', ModeValue, ...)

HMMStruct = gethmmprof(..., 'Mirror', MirrorValue, ...)

Input Arguments

PFAMName String specifying a protein family name (unique identifier) of
an HMM profile record in the PFAM database. For example,
'7tm_2'.

PFAMNumber Integer specifying a protein family number of an HMM profile
record in the PFAM database. For example, 2 is the protein
family number for the protein family 'PF00002'.

ToFileValue String specifying a file name or a path and file name for saving
the data. If you specify only a file name, that file will be saved
in the MATLAB Current Folder.

ModeValue String that specifies the returned alignment mode. Choices are:

• 'ls' — Default. Global alignment mode.
• 'fs' — Local alignment mode.

MirrorValue String that specifies a Web database. Choices are:

• 'Sanger' (default)
• 'Janelia'

1 Alphabetical List

1-780

Output Arguments

HMMStruct MATLAB structure containing information for an HMM profile
retrieved from the PFAM database.

Description

Note: gethmmprof retrieves information from PFAM-HMM profiles, from file format
version HMMER2.0 to HMMER3/b.

HMMStruct = gethmmprof(PFAMName) searches the PFAM database for the
record represented by PFAMName (a protein family name), retrieves the HMM profile
information, and stores it in HMMStruct, a MATLAB structure containing the following
fields corresponding to parameters of an HMM profile.

Field Description

Name The protein family name (unique identifier) of the HMM
profile record in the PFAM database.

PfamAccessionNumber The protein family accession number of the HMM profile
record in the PFAM database.

ModelDescription Description of the HMM profile.
ModelLength The length of the profile (number of MATCH states).
Alphabet The alphabet used in the model, 'AA' or 'NT'.

Note: AlphaLength is 20 for 'AA' and 4 for 'NT'.
MatchEmission Symbol emission probabilities in the MATCH states.

The format is a matrix of size ModelLength-
by-AlphaLength, where each row corresponds to the
emission distribution for a specific MATCH state.

InsertEmission Symbol emission probabilities in the INSERT state.

 gethmmprof

1-781

Field Description

The format is a matrix of size ModelLength-
by-AlphaLength, where each row corresponds to the
emission distribution for a specific INSERT state.

NullEmission Symbol emission probabilities in the MATCH and INSERT
states for the NULL model.

The format is a 1-by-AlphaLength row vector.

Note: NULL probabilities are also known as the background
probabilities.

BeginX BEGIN state transition probabilities.

Format is a 1-by-(ModelLength + 1) row vector:

[B->D1 B->M1 B->M2 B->M3 B->Mend]

MatchX MATCH state transition probabilities.

Format is a 4-by-(ModelLength - 1) matrix:

[M1->M2 M2->M3 ... M[end-1]->Mend;

 M1->I1 M2->I2 ... M[end-1]->I[end-1];

 M1->D2 M2->D3 ... M[end-1]->Dend;

 M1->E M2->E ... M[end-1]->E]

InsertX INSERT state transition probabilities.

Format is a 2-by-(ModelLength - 1) matrix:

[I1->M2 I2->M3 ... I[end-1]->Mend;

 I1->I1 I2->I2 ... I[end-1]->I[end-1]]

DeleteX DELETE state transition probabilities.

Format is a 2-by-(ModelLength - 1) matrix:

[D1->M2 D2->M3 ... D[end-1]->Mend ;

 D1->D2 D2->D3 ... D[end-1]->Dend]

1 Alphabetical List

1-782

Field Description

FlankingInsertX Flanking insert states (N and C) used for LOCAL profile
alignment.

Format is a 2-by-2 matrix:

[N->B C->T ;

 N->N C->C]

LoopX Loop states transition probabilities used for multiple hits
alignment.

Format is a 2-by-2 matrix:

[E->C J->B ;

 E->J J->J]

NullX Null transition probabilities used to provide scores with log-
odds values also for state transitions.

Format is a 2-by-1 column vector:

[G->F ; G->G]

HMMStruct = gethmmprof(PFAMNumber) determines a protein family accession
number from PFAMNumber (an integer), searches the PFAM database for the associated
record, retrieves the HMM profile information, and stores it in HMMStruct, a MATLAB
structure.

HMMStruct = gethmmprof(..., 'PropertyName', PropertyValue, ...) calls
gethmmprof with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

HMMStruct = gethmmprof(..., 'ToFile', ToFileValue, ...) saves the data
returned from the PFAM database in a file specified by ToFileValue.

Note: You can read an HMM-formatted file back into the MATLAB software using the
pfamhmmread function.

 gethmmprof

1-783

HMMStruct = gethmmprof(..., 'Mode', ModeValue, ...) specifies the returned
alignment mode. Choices are:

• 'ls' (default) — Global alignment mode.
• 'fs' — Local alignment mode.

HMMStruct = gethmmprof(..., 'Mirror', MirrorValue, ...) specifies a Web
database. Choices are:

• 'Sanger' (default)
• 'Janelia'

You can reach other mirror sites by passing the complete URL to the pfamhmmread
function.

Note: These mirror sites are maintained separately and may have slight variations.

For more information about the PFAM database, see:

http://pfam.sanger.ac.uk

http://pfam.janelia.org/

For more information on HMM profile models, see “HMM Profile Model” on page
1-976.

Examples

To retrieve a hidden Markov model (HMM) profile for the global alignment of the 7-
transmembrane receptor protein in the secretin family, enter either of the following:

hmm = gethmmprof(2)

hmm = gethmmprof('7tm_2')

hmm =

 Name: '7tm_2'

 PfamAccessionNumber: 'PF00002.14'

 ModelDescription: [1x42 char]

http://pfam.sanger.ac.uk
http://pfam.janelia.org/

1 Alphabetical List

1-784

 ModelLength: 296

 Alphabet: 'AA'

 MatchEmission: [296x20 double]

 InsertEmission: [296x20 double]

 NullEmission: [1x20 double]

 BeginX: [297x1 double]

 MatchX: [295x4 double]

 InsertX: [295x2 double]

 DeleteX: [295x2 double]

 FlankingInsertX: [2x2 double]

 LoopX: [2x2 double]

 NullX: [2x1 double]

See Also
gethmmalignment | hmmprofalign | hmmprofstruct | pfamhmmread |
showhmmprof

 gethmmtree

1-785

gethmmtree

Retrieve phylogenetic tree data from PFAM database

Syntax

Tree = gethmmtree(PFAMName)

Tree = gethmmtree(PFAMAccessionNumber)

Tree = gethmmtree(PFAMNumber)

Tree = gethmmtree(...'ToFile', ToFileValue, ...)

Tree = gethmmtree(...'Type', TypeValue, ...)

Input Arguments

PFAMName String specifying a protein family name (unique
identifier) of an HMM profile record in the PFAM
database. For example, '7tm_2'.

PFAMAccessionNumber String specifying a protein family accession number
of an HMM profile record in the PFAM database. For
example, 'PF00002'.

PFAMNumber Integer specifying a protein family number of an HMM
profile record in the PFAM database. For example,
2 is the protein family number for the protein family
PF0002.

ToFileValue Property to specify the location and file name for saving
data. Enter either a file name or a path and file name
supported by your system (ASCII text file).

TypeValue String that specifies which alignments to include in the
tree. Choices are:

• 'seed' — Returns a tree with only the alignments
used to generate the HMM model.

• 'full' (default) — Returns a tree with all of the
alignments that match the model.

1 Alphabetical List

1-786

Warning Setting the 'Type' name-value pair argument
to 'seed' or 'full' is now ignored since the PFAM
database no longer provides trees for the full
alignment. This name-value pair argument will
be removed in a future release. To download the
'seed' tree use gethmmtree without any extra input
arguments. To obtain the 'full' tree you may use the
gethmmalignment function to download the 'full'
alignment and build a tree using the seqpdist and
seqneighjoin functions as illustrated in the following
example.

Output Arguments

Tree An object containing a phylogenetic tree representative
of the protein family.

Description

Tree = gethmmtree(PFAMName) searches the PFAM database for the record
represented by PFAMName, a protein family name, retrieves information, and returns
Tree, an object containing a phylogenetic tree representative of the protein family.

Tree = gethmmtree(PFAMAccessionNumber) searches the PFAM database for the
record represented by PFAMAccessionNumber, a protein family accession number,
retrieves information, and returns Tree, an object containing a phylogenetic tree
representative of the protein family.

Tree = gethmmtree(PFAMNumber) determines a protein family accession number
from PFAMNumber, an integer, searches the PFAM database for the associated record,
retrieves information, and returns Tree, an object containing a phylogenetic tree
representative of the protein family.

Tree = gethmmtree(...'PropertyName', PropertyValue, ...) calls
gethmmtree with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in

 gethmmtree

1-787

single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

Tree = gethmmtree(...'ToFile', ToFileValue, ...) saves the data returned
from the PFAM database in the file ToFileValue.

Tree = gethmmtree(...'Type', TypeValue, ...) specifies which alignments to
include in the tree. Choices for TypeValue are:

• 'seed' — Returns a tree with only the alignments used to generate the HMM model.
• 'full' (default) — Returns a tree with all of the alignments that match the model.

Warning Setting the 'Type' name-value pair argument to 'seed' or 'full' is now
ignored since the PFAM database no longer provides trees for the full alignment. This
name-value pair argument will be removed in a future release. To download the 'seed'
tree use gethmmtree without any extra input arguments. To obtain the 'full' tree you
may use the gethmmalignment function to download the 'full' alignment and build
a tree using the seqpdist and seqneighjoin functions as illustrated in the following
example.

Examples

Retrieve phylogenetic tree built from the multiple-aligned sequences used to train the
HMM profile model for global alignment. The PFAM accession number PF00002 is for
the 7-transmembrane receptor protein in the secretin family.

tree = gethmmtree('PF00002');

Recover the 'full' tree for the same family by downloading the full multiple sequence
alignment and building the tree using the seqdist and seqneighjoin functions. It
may take some considerable amount of time to calculate the tree for large families.

seqs = gethmmalignment('PF00002','type','full');

dis = seqpdist(seqs);

tree = seqneighjoin(dis,'equivar',seqs);

See Also
gethmmalignment | phytreeread

1 Alphabetical List

1-788

getIndex
Class: GFFAnnotation

Return index array of annotations from GFFAnnotation object

Syntax

Idx = getIndex(AnnotObj)

Idx = getIndex(AnnotObj,StartPos,EndPos)

Idx = getIndex(___ ,Name,Value)

Description

Idx = getIndex(AnnotObj) returns an index array Idx, an array of integers
containing the index of each annotation in AnnotObj.

Idx = getIndex(AnnotObj,StartPos,EndPos) returns an index array Idx for a
subset of elements that falls within each reference sequence range specified by StartPos
and EndPos.

Idx = getIndex(___ ,Name,Value) returns an index array Idx, using any of the
input arguments from the previous syntaxes and additional options specified by one or
more Name,Value pair arguments.

Input Arguments

AnnotObj

Object of the GFFAnnotation class.

Default:

StartPos

Nonnegative integer specifying the start of a range in each reference sequence in
AnnotObj. The integer StartPos must be less than or equal to EndPos.

 getIndex

1-789

Default:

EndPos

Nonnegative integer specifying the end of a range in each reference sequence in
AnnotObj. The integer EndPos must be greater than or equal to StartPos.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference'

String or cell array of strings specifying one or more reference sequences in AnnotObj.
Only indices of annotations whose reference field matches one of the strings are included
in Idx.

Default:

'Feature'

String or cell array of strings specifying one or more features in AnnotObj. Only indices
of annotations whose feature field matches one of the strings are included in Idx.

Default:

'Overlap'

Minimum number of base positions that an annotation must overlap in the range, to
have its index included in Idx. This value can be any of the following:

• Positive integer
• 'full' — An annotation must be fully contained in the range to be included.
• 'start' — An annotation’s start position must lie within the range to be included.

Default: 1

1 Alphabetical List

1-790

Output Arguments
Idx

Array of integers representing indices of elements in AnnotObj.

Examples
Retrieve Indices of Annotations from a GFFAnnotation Object

Construct a GFFAnnotation object using a GFF-formatted file that is provided with
Bioinformatics Toolbox.

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

Extract indices of annotations or features for positions 10,000 through 20,000 from the
reference sequence.

Idx = getIndex(GFFAnnotObj,10000,20000)

Idx =

 61

 62

 63

 64

 65

 66

 67

 68

 69

See Also
GTFAnnotation.getData

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

 getIndex

1-791

getIndex
Class: GTFAnnotation

Return index array of annotations from GTFAnnotation object

Syntax

Idx = getIndex(AnnotObj)

Idx = getIndex(AnnotObj,StartPos,EndPos)

Idx = getIndex(___ ,Name,Value)

Description

Idx = getIndex(AnnotObj) returns an index array Idx, an array of integers
containing the index of each annotation in AnnotObj.

Idx = getIndex(AnnotObj,StartPos,EndPos) returns an index array Idx for a
subset of elements that falls within each reference sequence range specified by StartPos
and EndPos.

Idx = getIndex(___ ,Name,Value) returns an index array Idx, using any of the
input arguments from the previous syntaxes and additional options specified by one or
more Name,Value pair arguments.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Default:

StartPos

Nonnegative integer specifying the start of a range in each reference sequence in
AnnotObj. The integer StartPos must be less than or equal to EndPos.

1 Alphabetical List

1-792

Default:

EndPos

Nonnegative integer specifying the end of a range in each reference sequence in
AnnotObj. The integer EndPos must be greater than or equal to StartPos.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference'

String or cell array of strings specifying one or more reference sequences in AnnotObj.
Only indices of annotations whose reference field matches one of the strings are included
in Idx.

Default:

'Feature'

String or cell array of strings specifying one or more features in AnnotObj. Only indices
of annotations whose feature field matches one of the strings are included in Idx.

Default:

'Gene'

String or cell array of strings specifying one or more genes in AnnotObj. Only
annotations whose gene field matches one of the strings are included in AnnotStruct.

'Transcript'

String or cell array of strings specifying one or more transcripts in AnnotObj.
Only annotations whose transcript field matches one of the strings are included in
AnnotStruct.

 getIndex

1-793

'Overlap'

Minimum number of base positions that an annotation must overlap in the range, to
have its index included in Idx. This value can be any of the following:

• Positive integer
• 'full' — An annotation must be fully contained in the range to be included.
• 'start' — An annotation’s start position must lie within the range to be included.

Default: 1

Output Arguments

Idx

Array of integers representing indices of elements in AnnotObj.

Examples

Retrieve Indices of Annotations from a GTFAnnotation Object

Construct a GTFAnnotation object using a GTF-formatted file that is provided with
Bioinformatics Toolbox.

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

Extract indices of annotations for positions 210,000 through 220,000 from the reference
sequence.

Idx = getIndex(GTFAnnotObj,210000,220000)

Idx =

 7

 15

 16

 17

 36

 47

 48

1 Alphabetical List

1-794

 49

 69

 70

 71

 89

 99

 111

 112

 113

See Also
GTFAnnotation.getData

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getIndexByKey

1-795

getIndexByKey

Class: BioIndexedFile

Retrieve indices from source file associated with BioIndexedFile object using
alphanumeric key

Syntax

Indices = getIndexByKey(BioIFobj, Key)

[Indices, LogicalVals] = getIndexByKey(BioIFobj, Key)

Description

Indices = getIndexByKey(BioIFobj, Key) returns the indices of entries in the
source file associated with BioIFobj, a BioIndexedFile object. It returns the indices of
entries that have the keys specified by Key, a string or cell array of strings specifying
one or more alphanumeric keys. It returns Indices, a numeric vector of the indices
of entries that have the alphanumeric keys specified by Key. If the keys in the source
file are not unique, it returns all indices of entries that match a specified key, all at the
position of the key in the Key cell array. If the keys in the source file are unique, there
is a one-to-one relationship between the number and order of elements in Key and the
output Indices.

[Indices, LogicalVals] = getIndexByKey(BioIFobj, Key) returns a
logical vector that indicates only the last match for each key, such that there is
a one-to-one relationship between the number and order of elements in Key and
Indices(LogicalVals).

Tips

Use this method to determine the indices of specific entries with known keys.

1 Alphabetical List

1-796

Input Arguments

BioIFobj

Object of the BioIndexedFile class.

Default:

Key

String or cell array of strings specifying one or more keys in the source file associated
with BioIFobj, the BioIndexedFile object.

Default:

Output Arguments

Indices

Numeric vector of the indices of entries in source file that have the alphanumeric keys
specified by Key.

LogicalVals

Logical vector containing the same number of elements as Indices. The vector
indicates only the last match for each key specified in Key, such that there is a
one-to-one relationship between the number and order of elements in Key and
Indices(LogicalVals).

Tip Some files contain repeated keys. For example, SAM-formatted files use the same
key for entries that are paired end reads. Use the Indices(LogicalVals) syntax to
return only the last index of a repeated key. For more information, see “Examples” on
page 1-796.

Examples

Construct a BioIndexedFile object to access a table containing cross-references between
gene names and gene ontology (GO) terms:

 getIndexByKey

1-797

% Create variable containing full absolute path of source file

sourcefile = which('yeastgenes.sgd');

% Create a BioIndexedFile object from the source file. Indicate

% the source file is a tab-delimited file where contiguous rows

% with the same key are considered a single entry. Store the

% index file in the Current Folder. Indicate that keys are

% located in column 3 and that header lines are prefaced with !

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

Return the indices for the entries in the source file that are specified by the keys AAC1
and AAD10.

% Access indices for entries that have the keys AAC1 and AAD10

indices = getIndexByKey(gene2goObj, {'AAC1' 'AAD10'})

indices =

 3

 5

Construct a BioIndexedFile object to access a SAM-formatted file that has repeated keys.

% Create variable containing full absolute path of source file

samsourcefile = which('ex1.sam');

% Create a BioIndexedFile object from the source file. Store the

% index file in the Current Folder.

samObj = BioIndexedFile('sam', samsourcefile, '.')

Return only the last indices for the entries in the source file that are specified by two
keys,'B7_593:7:15:244:876 and EAS56_65:4:296:78:421, both of which are repeated keys.

% Return all indices for entries that have two specific keys

[Indices, LogicalVal] = getIndexByKey(samObj, ...

 {'B7_593:7:15:244:876', 'EAS56_65:4:296:78:421'})

Indices =

 3058

 3238

 3292

 3293

LogicalVal =

1 Alphabetical List

1-798

 0

 1

 0

 1

% Return only the last index for each key

LastIndices = Indices(LogicalVal)

LastIndices =

 3238

 3293

See Also
BioIndexedFile.getEntryByKey | BioIndexedFile.getKeys | BioIndexedFile
| BioIndexedFile.getSubset

How To
• “Work with Large Multi-Entry Text Files”

 getKeys

1-799

getKeys
Class: BioIndexedFile

Retrieve alphanumeric keys from source file associated with BioIndexedFile object

Syntax
Keys = getKeys(BioIFobj)

Description
Keys = getKeys(BioIFobj) returns Keys, a cell array of strings specifying all the
keys to the entries in the source file associated with BioIFobj, a BioIndexedFile object.
The keys appear in the same order as they do in the source file, even if they are not
unique.

Tips
Use this method to see a complete list of the alphanumeric keys, in the order they occur
in the source file from which the BioIndexedFile object was created.

Input Arguments
BioIFobj

Object of the BioIndexedFile class.

Default:

Output Arguments
Keys

Cell array of strings specifying all the keys to the entries in the source file. The keys
appear in the same order as they do in the source file, even if they are not unique.

1 Alphabetical List

1-800

Examples
Construct a BioIndexedFile object to access a table containing cross-references between
gene names and gene ontology (GO) terms:

% Create variable containing full absolute path of source file

sourcefile = which('yeastgenes.sgd');

% Create a BioIndexedFile object from the source file. Indicate

% the source file is a tab-delimited file where contiguous rows

% with the same key are considered a single entry. Store the

% index file in the Current Folder. Indicate that keys are

% located in column 3 and that header lines are prefaced with !

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

Retrieve all the keys for the entries in the source file, then view the first 12 keys:

% Retrieve all keys for entries in gene2goObj

keys = getKeys(gene2goObj);

% View the first 12 keys

keys(1:12)

ans =

 '15S_RRNA'

 '21S_RRNA'

 'AAC1'

 'AAC3'

 'AAD10'

 'AAD14'

 'AAD15'

 'AAD16'

 'AAD3'

 'AAD4'

 'AAD6'

 'AAH1'

See Also
BioIndexedFile.getEntryByKey | BioIndexedFile.getIndexByKey |
BioIndexedFile | BioIndexedFile.getSubset

How To
• “Work with Large Multi-Entry Text Files”

 getmatrix (biograph)

1-801

getmatrix (biograph)
Get connection matrix from biograph object

Syntax
[Matrix, ID, Distances] = getmatrix(BGObj)

Arguments
BGObj Biograph object created by biograph (object constructor).

Description
[Matrix, ID, Distances] = getmatrix(BGObj) converts the biograph object,
BiographObj, into a logical sparse matrix, Matrix, in which 1 indicates that a node
(row index) is connected to another node (column index). ID is a cell array of strings
listing the ID properties for each node, and corresponds to the rows and columns of
Matrix. Distances is a column vector with one entry for every nonzero entry in Matrix
traversed column-wise and representing the respective Weight property for each edge.

Examples
 cm = [0 1 1 0 0;2 0 0 4 4;4 0 0 0 0;0 0 0 0 2;4 0 5 0 0];

 bg = biograph(cm);

 [cm, IDs, dist] = getmatrix(bg)

More About
• “biograph object”

See Also
biograph | getancestors | getedgesbynodeid | getrelatives | dolayout |
getdescendants | getnodesbyid | view

1 Alphabetical List

1-802

getmatrix
Class: geneont

Convert geneont object into relationship matrix

Syntax

[Matrix, ID, Relationship] = getmatrix(GeneontObj)

Description

[Matrix, ID, Relationship] = getmatrix(GeneontObj) converts a geneont
object, GeneontObj, into Matrix, a matrix of relationship values between nodes
(row and column indices), in which 0 indicates no relationship, 1 indicates an “is_a”
relationship, and 2 indicates a “part_of” relationship. ID is a column vector listing Gene
Ontology IDs that correspond to the rows and columns of Matrix. Relationship is a
cell array of strings defining the types of relationships.

Input Arguments

GeneontObj A geneont object, such as created by the geneont constructor
function.

Output Arguments

Matrix Matrix of relationship values between nodes (row and column
indices), in which 0 indicates no relationship, 1 indicates an “is_a”
relationship, and 2 indicates a “part_of” relationship.

ID Column vector listing Gene Ontology IDs that correspond to the
rows and columns of Matrix.

Relationship Cell array of strings defining the types of relationships.

 getmatrix

1-803

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GO = geneont('LIVE',true)

The MATLAB software creates a geneont object and displays the number of terms in
the database.

Gene Ontology object with 27595 Terms.

2 Convert this geneont object into a relationship matrix.

[MATRIX, ID, REL] = getmatrix(GO);

See Also
goannotread | num2goid | term

1 Alphabetical List

1-804

getmatrix (phytree)
Convert phytree object into relationship matrix

Syntax

[Matrix, ID, Distances] = getmatrix(PhytreeObj)

Arguments

PhytreeObj phytree object created by phytree (object constructor).

Description

[Matrix, ID, Distances] = getmatrix(PhytreeObj) converts a phytree object,
PhytreeObj, into a logical sparse matrix, Matrix, in which 1 indicates that a branch
node (row index) is connected to its child (column index). The child can be either another
branch node or a leaf node. ID is a column vector of strings listing the labels that
correspond to the rows and columns of Matrix, with the labels from 1 to Number of
Leaves being the leaf nodes, then the labels from Number of Leaves + 1 to Number of
Leaves + Number of Branches being the branch nodes, and the label for the last branch
node also being the root node. Distances is a column vector with one entry for every
nonzero entry in Matrix traversed column-wise and representing the distance between
the branch node and the child.

Examples
 T = phytreeread('pf00002.tree')

 [MATRIX, ID, DIST] = getmatrix(T);

More About
• “phytree object”

 getmatrix (phytree)

1-805

See Also
phytree | pdist | prune | phytreeviewer | get

1 Alphabetical List

1-806

getnewickstr (phytree)
Create Newick-formatted string

Syntax

String = getnewickstr(Tree)

getnewickstr(..., 'PropertyName', PropertyValue,...)

getnewickstr(..., 'Distances', DistancesValue)

getnewickstr(..., 'BranchNames', BranchNamesValue)

Arguments

Tree Phytree object created with the function phytree.
DistancesValue Property to control including or excluding distances in the

output. Enter either true (include distances) or false
(exclude distances). Default is true.

BranchNamesValue Property to control including or excluding branch names in
the output. Enter either true (include branch names) or
false (exclude branch names). Default is false.

Description

String = getnewickstr(Tree) returns the Newick formatted string of a
phylogenetic tree object (Tree).

getnewickstr(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

getnewickstr(..., 'Distances', DistancesValue), when DistancesValue is
false, excludes the distances from the output.

getnewickstr(..., 'BranchNames', BranchNamesValue), when
BranchNamesValue is true, includes the branch names in the output.

 getnewickstr (phytree)

1-807

Examples

1 Create some random sequences.

seqs = int2nt(ceil(rand(10)*4));

2 Calculate pairwise distances.

dist = seqpdist(seqs,'alpha','nt');

3 Construct a phylogenetic tree.

tree = seqlinkage(dist);

4 Get the Newick string.

str = getnewickstr(tree)

More About
• “phytree object”

References

Information about the Newick tree format.

http://evolution.genetics.washington.edu/phylip/newicktree.html

See Also
phytree | get | getcanonical | phytreeread | phytreeviewer | phytreewrite
| seqlinkage | getbyname

http://evolution.genetics.washington.edu/phylip/newicktree.html

1 Alphabetical List

1-808

getnodesbyid (biograph)
Get handles to nodes

Syntax

NodesHandles = getnodesbyid(BGobj,NodeIDs)

Arguments

BGobj Biograph object.
NodeIDs Enter a cell string of node identifications.

Description

NodesHandles = getnodesbyid(BGobj,NodeIDs) gets the handles for the specified
nodes (NodeIDs) in a biograph object.

Examples

1 Create a biograph object.

species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon',...

 'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);

bg = biograph(cm, species)

2 Find the handles to members of the Cercopithecidae family and members of the
Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};

Hominidae = {'Homosapiens','Pan','Gorilla','Pongo'};

CercopithecidaeNodes = getnodesbyid(bg,Cercopithecidae);

HominidaeNodes = getnodesbyid(bg,Hominidae);

3 Color the families differently and draw a graph.

 getnodesbyid (biograph)

1-809

More About
• “biograph object”

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

1 Alphabetical List

1-810

getpdb

Retrieve protein structure data from Protein Data Bank (PDB) database

Syntax

PDBStruct = getpdb(PDBid)

PDBStruct = getpdb(PDBid, ...'ToFile', ToFileValue, ...)

PDBStruct = getpdb(PDBid, ...'SequenceOnly', SequenceOnlyValue, ...)

Input Arguments

PDBid String specifying a unique identifier for a protein structure
record in the PDB database.

Note: Each structure in the PDB database is represented by
a four-character alphanumeric identifier. For example, 4hhb
is the identifier for hemoglobin.

ToFileValue String specifying a file name or a path and file name for
saving the PDB-formatted data. If you specify only a file
name, that file will be saved in the MATLAB Current Folder.

Tip After you save the protein structure record to a local
PDB-formatted file, you can use the pdbread function to
read the file into the MATLAB software offline or use the
molviewer function to display and manipulate a 3-D image
of the structure.

SequenceOnlyValue Controls the return of the protein sequence only. Choices are
true or false (default).

If there is one sequence, it is returned as a character array.
If there are multiple sequences, they are returned as a cell
array.

 getpdb

1-811

Output Arguments

PDBStruct MATLAB structure containing a field for each PDB record.

Description

The Protein Data Bank (PDB) database is an archive of experimentally determined 3-D
biological macromolecular structure data. For more information about the PDB format,
see:

http://www.wwpdb.org/documentation/format23/v2.3.html

getpdb retrieves protein structure data from the Protein Data Bank (PDB) database,
which contains 3-D biological macromolecular structure data.

PDBStruct = getpdb(PDBid) searches the PDB database for the protein structure
record specified by the identifier PDBid and returns the MATLAB structure PDBStruct,
which contains a field for each PDB record. The following table summarizes the possible
PDB records and the corresponding fields in the MATLAB structure PDBStruct:

PDB Database Record Field in the MATLAB Structure

HEADER Header

OBSLTE Obsolete

TITLE Title

CAVEAT Caveat

COMPND Compound

SOURCE Source

KEYWDS Keywords

EXPDTA ExperimentData

AUTHOR Authors

REVDAT RevisionDate

SPRSDE Superseded

JRNL Journal

REMARK 1 Remark1

http://www.wwpdb.org/documentation/format23/v2.3.html

1 Alphabetical List

1-812

PDB Database Record Field in the MATLAB Structure

REMARK N

Note: N equals 2 through 999.

Remarkn

Note: n equals 2 through 999.
DBREF DBReferences

SEQADV SequenceConflicts

SEQRES Sequence

FTNOTE Footnote

MODRES ModifiedResidues

HET Heterogen

HETNAM HeterogenName

HETSYN HeterogenSynonym

FORMUL Formula

HELIX Helix

SHEET Sheet

TURN Turn

SSBOND SSBond

LINK Link

HYDBND HydrogenBond

SLTBRG SaltBridge

CISPEP CISPeptides

SITE Site

CRYST1 Cryst1

ORIGXn OriginX

SCALEn Scale

MTRIXn Matrix

TVECT TranslationVector

MODEL Model

 getpdb

1-813

PDB Database Record Field in the MATLAB Structure

ATOM Atom

SIGATM AtomSD

ANISOU AnisotropicTemp

SIGUIJ AnisotropicTempSD

TER Terminal

HETATM HeterogenAtom

CONECT Connectivity

PDBStruct = getpdb(PDBid, ...'PropertyName', PropertyValue, ...) calls
getpdb with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

PDBStruct = getpdb(PDBid, ...'ToFile', ToFileValue, ...) saves the data
returned from the database to a PDB-formatted file, ToFileValue.

Tip After you save the protein structure record to a local PDB-formatted file, you can
use the pdbread function to read the file into the MATLAB software offline or use the
molviewer function to display and manipulate a 3-D image of the structure.

PDBStruct = getpdb(PDBid, ...'SequenceOnly', SequenceOnlyValue, ...)

controls the return of the protein sequence only. Choices are true or false (default). If
there is one sequence, it is returned as a character array. If there are multiple sequences,
they are returned as a cell array.

The Sequence Field

The Sequence field is also a structure containing sequence information in the following
subfields:

• NumOfResidues

• ChainID

• ResidueNames — Contains the three-letter codes for the sequence residues.

1 Alphabetical List

1-814

• Sequence — Contains the single-letter codes for the sequence residues.

Note: If the sequence has modified residues, then the ResidueNames subfield might not
correspond to the standard three-letter amino acid codes. In this case, the Sequence
subfield will contain the modified residue code in the position corresponding to the
modified residue. The modified residue code is provided in the ModifiedResidues field.

The Model Field

The Model field is also a structure or an array of structures containing coordinate
information. If the MATLAB structure contains one model, the Model field is a structure
containing coordinate information for that model. If the MATLAB structure contains
multiple models, the Model field is an array of structures containing coordinate
information for each model. The Model field contains the following subfields:

• Atom

• AtomSD

• AnisotropicTemp

• AnisotropicTempSD

• Terminal

• HeterogenAtom

The Atom Field

The Atom field is also an array of structures containing the following subfields:

• AtomSerNo

• AtomName

• altLoc

• resName

• chainID

• resSeq

• iCode

• X

 getpdb

1-815

• Y

• Z

• occupancy

• tempFactor

• segID

• element

• charge

• AtomNameStruct — Contains three subfields: chemSymbol, remoteInd, and
branch.

Examples

Retrieve the structure information for the electron transport (heme) protein that has
a PDB identifier of 5CYT, read the information into a MATLAB structure pdbstruct,
and save the information to a PDB-formatted file electron_transport.pdb in the
MATLAB Current Folder.

pdbstruct = getpdb('5CYT', 'ToFile', 'electron_transport.pdb')

See Also
getembl | getgenbank | getgenpept | molviewer | pdbdistplot | pdbread |
pdbsuperpose | pdbtransform | pdbwrite

1 Alphabetical List

1-816

getQuality
Class: BioRead

Retrieve sequence quality scores from object

Syntax

Quality = getQuality(BioObj)

Quality = getQuality(BioObj, Subset)

Description

Quality = getQuality(BioObj) returns Quality, a cell array of strings containing
the ASCII representations of per-base quality scores for nucleotide sequences from an
object.

Quality = getQuality(BioObj, Subset) returns quality strings for only object
elements specified by Subset.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

 getQuality

1-817

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

Output Arguments

Quality

Quality property of a subset of elements in BioObj. Quality is a cell array of strings
containing the quality scores for sequences specified by Subset.

Examples

Retrieve the quality scores from different elements of a BioRead object:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Retrieve the Quality value of the second element in the object

getQuality(BRObj, 2);

getQuality(BRObj, [false true false]);

% Retrieve the Quality values of the first and third elements

% in the object

getQuality(BRObj, [1 3]);

getQuality(BRObj, [true false true]);

% Retrieve the Quality value of all the elements in the object

getQuality(BRObj, 1:50);

Alternatives

An alternative to using the getQuality method is to use dot indexing with the Quality
property:

BioObj.Quality(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

1 Alphabetical List

1-818

See Also
setQuality | BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getRange

1-819

getRange
Class: GFFAnnotation

Retrieve range of annotations from GFFAnnotation object

Syntax
Range = getRange(AnnotObj)

Description
Range = getRange(AnnotObj) returns Range, a 1-by-2 numeric array specifying the
minimum and maximum positions in the reference sequence covered by annotations in
AnnotObj.

Tips
• Use the GFFAnnotation.getSubset method with the Reference name-value pair

to return a GFFAnnotation object containing only one reference sequence. Then use
this subsetted object as input to the getRange method.

Input Arguments
AnnotObj

Object of the GFFAnnotation class.

Default:

Output Arguments
Range

1-by-2 numeric array specifying the minimum and maximum positions in the reference
sequence covered by annotations in AnnotObj

1 Alphabetical List

1-820

Examples

Construct a GFFAnnotation object from a GFF-formatted file that is provided with
Bioinformatics Toolbox, and then return the range of the feature annotations:

% Construct a GFFAnnotation object from a GFF file

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

% Return first and last positions of reference associated with feature annotations

range = getRange(GFFAnnotObj)

range =

 3631 498516

See Also
GFFAnnotation.getSubset | GTFAnnotation.getRange

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

 getRange

1-821

getRange
Class: GTFAnnotation

Retrieve range of annotations from GTFAnnotation object

Syntax
Range = getRange(AnnotObj)

Description
Range = getRange(AnnotObj) returns Range, a 1-by-2 numeric array specifying the
minimum and maximum positions in the reference sequence covered by annotations in
AnnotObj.

Tips
• Use the GTFAnnotation.getSubset method with the Reference name-value pair

to return a GFFAnnotation object containing only one reference sequence. Then use
this subsetted object as input to the getRange method.

Input Arguments
AnnotObj

Object of the GTFAnnotation class.

Default:

Output Arguments
Range

1-by-2 numeric array specifying the minimum and maximum positions in the reference
sequence covered by annotations in AnnotObj

1 Alphabetical List

1-822

Examples

Construct a GTFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox, and then return the range of the feature annotations:

% Construct a GTFAnnotation object from a GTF file

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

% Return first and last positions of reference associated with feature annotations

range = getRange(GTFAnnotObj)

range =

 41609 1371382

See Also
GTFAnnotation.getSubset | GFFAnnotation.getRange

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getReferenceNames

1-823

getReferenceNames
Class: GFFAnnotation

Retrieve reference names from GFFAnnotation object

Syntax

References = getReferenceNames(AnnotObj)

Description

References = getReferenceNames(AnnotObj) returns References, a cell array of
strings specifying the names of all reference sequences in AnnotObj.

Input Arguments

AnnotObj

Object of the GFFAnnotation class.

Default:

Output Arguments

References

Cell array of strings specifying the names of all reference sequences in AnnotObj.

Examples

Construct a GFFAnnotation object from a GFF-formatted file that is provided with
Bioinformatics Toolbox, and then return the names of the reference sequences from the
annotation object:

1 Alphabetical List

1-824

% Construct a GFFAnnotation object from a GFF file

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

% Return reference names for the annotation object

refNames = getReferenceNames(GFFAnnotObj)

refNames =

 'Chr1'

See Also
GTFAnnotation.getReferenceNames

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

 getReferenceNames

1-825

getReferenceNames
Class: GTFAnnotation

Retrieve reference names from GTFAnnotation object

Syntax

References = getReferenceNames(AnnotObj)

Description

References = getReferenceNames(AnnotObj) returns References, a cell array of
strings specifying the names of all reference sequences in AnnotObj.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Default:

Output Arguments

References

Cell array of strings specifying the names of all reference sequences in AnnotObj

Examples

Construct a GTFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox, and then return the names of the reference sequences from the
annotation object:

1 Alphabetical List

1-826

% Construct a GTFAnnotation object from a GTF file

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

% Return reference names for the annotation object

refNames = getReferenceNames(GTFAnnotObj)

refNames =

 'chr2'

See Also
GFFAnnotation.getReferenceNames

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getrelatives (biograph)

1-827

getrelatives (biograph)
Find relatives in biograph object

Syntax

Nodes = getrelatives(BiographNode)

Nodes = getrelatives(BiographNode,NumGenerations)

Arguments

BiographNode Node in a biograph object.
NumGenerations Number of generations. Enter a positive integer.

Description

Nodes = getrelatives(BiographNode) finds all the direct relatives for a given node
(BiographNode).

Nodes = getrelatives(BiographNode,NumGenerations) finds the direct
relatives for a given node (BiographNode) up to a specified number of generations
(NumGenerations).

Examples

1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg = biograph(cm)

2 Find all nodes interacting with node 1.

intNodes = getrelatives(bg.nodes(1));

set(intNodes,'Color',[.7 .7 1]);

bg.view;

1 Alphabetical List

1-828

More About
• “biograph object”

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

 getrelatives

1-829

getrelatives
Class: geneont

Find terms that are relatives of specified Gene Ontology (GO) term

Syntax

RelativeIDs = getrelatives(GeneontObj, ID)

[RelativeIDs, Counts] = getrelatives(GeneontObj, ID)

... = getrelatives(..., 'Height', HeightValue, ...)

... = getrelatives(..., 'Depth', DepthValue, ...)

... = getrelatives(..., 'Levels', LevelsValue, ...)

... = getrelatives(..., 'Relationtype', RelationtypeValue, ...)

... = getrelatives(..., 'Exclude', ExcludeValue, ...)

Description

RelativeIDs = getrelatives(GeneontObj, ID) searches GeneontObj, a geneont
object, for GO terms that are relatives of the GO term(s) specified by ID, which is a GO
term identifier or vector of identifiers. It returns RelativeIDs, a vector of GO term
identifiers including ID. ID is a nonnegative integer or a vector containing nonnegative
integers.

[RelativeIDs, Counts] = getrelatives(GeneontObj, ID) also returns the
number of times each relative is found. Counts is a column vector with the same number
of elements as terms in GeneontObj.

Tip The Counts return value is useful when you tally counts in gene enrichment studies.
For more information, see Gene Ontology Enrichment in Microarray Data.

... = getrelatives(..., 'PropertyName', PropertyValue, ...) calls
getrelatives with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

1 Alphabetical List

1-830

... = getrelatives(..., 'Height', HeightValue, ...) searches up through
a specified number of levels, HeightValue, in the gene ontology. HeightValue is a
positive integer. Default is 1.

... = getrelatives(..., 'Depth', DepthValue, ...) searches down through a
specified number of levels, DepthValue, in the gene ontology. DepthValue is a positive
integer. Default is 1.

... = getrelatives(..., 'Levels', LevelsValue, ...) searches up and down
through a specified number of levels, LevelsValue, in the gene ontology. LevelsValue
is a positive integer. When specified, it overrides HeightValue and DepthValue.

... = getrelatives(..., 'Relationtype', RelationtypeValue, ...)

searches for specified relationship types, RelationtypeValue, in the gene ontology.
RelationtypeValue is a string. Choices are 'is_a', 'part_of', or 'both' (default).

... = getrelatives(..., 'Exclude', ExcludeValue, ...) controls excluding
ID, the original queried term(s), from the output RelativeIDs, unless a term was found
while searching the gene ontology. Choices are true or false (default).

Input Arguments

GeneontObj A geneont object, such as created by the geneont constructor
function.

ID GO term identifier or vector of identifiers.
HeightValue Positive integer specifying the number of levels to search upward

in the gene ontology.
DepthValue Positive integer specifying the number of levels to search

downward in the gene ontology.
LevelsValue Positive integer specifying the number of levels up and down

to search in the gene ontology. When specified, it overrides
HeightValue and DepthValue.

RelationtypeValueString specifying the relationship types to search for in the gene
ontology. Choices are:

• 'is_a'

 getrelatives

1-831

• 'part_of'

• 'both' (default)
ExcludeValue Controls excluding ID, the original queried term(s), from the

output RelativeIDs, unless the term was reached while
searching the gene ontology. Choices are true or false (default).

Output Arguments

RelativeIDs Vector of GO term identifiers including ID.
Counts Column vector with the same number of elements as terms in

GeneontObj, indicating the number of times each relative is
found.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GO = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of terms in
the database.

Gene Ontology object with 27769 Terms.

2 Retrieve the immediate relatives for the mitochondrial membrane GO term with a
GO identifier of 31966.

relatives = getrelatives(GO,31966,'levels',1)

relatives =

 5741

 5743

 31090

 31966

 44429

3 Create a subordinate Gene Ontology.

1 Alphabetical List

1-832

subontology = GO(relatives)

Gene Ontology object with 5 Terms.

4 Create a report of the subordinate Gene Ontology terms, that includes the GO
identifier and name.

rpt = get(subontology.terms,{'id','name'})

rpt =

 [5741] [1x28 char]

 [5743] [1x28 char]

 [31090] 'organelle membrane'

 [31966] [1x22 char]

 [44429] 'mitochondrial part'

5 View relationships of the subordinate Gene Ontology by using the getmatrix
method to create a connection matrix to pass to the biograph function, and color the
mitochondrial membrane GO term red.

[cm acc rels] = getmatrix(subontology);

BG = biograph(cm, get(subontology.terms, 'name'));

BG.nodes(acc==31966).Color = [1 0 0];

view(BG)

 getrelatives

1-833

6 Retrieve all relatives for the mithocondrial outer membrane GO term with an
identifier of 5741.

relatives = getrelatives(GO,5741,'levels',inf);

7 Create a subordinate Gene Ontology.

subontology = GO(relatives)

Gene Ontology object with 13 Terms.

8 View relationships of the subordinate Gene Ontology by using the getmatrix
method to create a connection matrix to pass to the biograph function and methods,
and color the mitochondrial outer membrane GO terms red.

[cm acc rels] = getmatrix(subontology);

BG = biograph(cm, get(subontology.terms, 'name'));

BG.nodes(acc==5741).Color = [1 0 0];

view(BG)

1 Alphabetical List

1-834

See Also
goannotread | num2goid | term

 getSegments

1-835

getSegments
Class: GTFAnnotation

Return table of non-overlapping segments from GTFAnnotation object

Syntax

segments = getSegments(AnnotObj)

[segments,transcriptIDs] = getSegments(AnnotObj)

[___] = getSegments(AnnotObj,Name,Value)

Description

segments = getSegments(AnnotObj) returns segments, a table of non-overlapping
segments of nucleotide sequences built by flattening the transcripts in AnnotObj. If an
exon boundary is not the same in two or more transcripts of a gene, then the function
creates two or more non-overlapping segments which cover all exons in the transcript.

[segments,transcriptIDs] = getSegments(AnnotObj) returns transcriptIDs, a
cell array of strings containing all unique transcript IDs in AnnotObj.

[___] = getSegments(AnnotObj,Name,Value) uses an additional option specified
by a Name,Value pair argument.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-836

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference' — Names of reference sequences
string | cell array of strings | categorical array

Names of reference sequences, specified as a comma-separated pair consisting of
'Reference' and a string, cell array of strings, or categorical array.

The names must come from the Reference field of AnnotObj. If a name does not exist,
the function provides a warning and ignores it.

'Gene' — Names of gene
string | cell array of strings | categorical array

Names of genes, specified as a comma-separated pair consisting of 'Gene' and a string,
cell array of strings, or categorical array.

The names must come from the Gene field of AnnotObj. If a name does not exist, the
function provides a warning and ignores the name.

Default:

'Transcript' — Names of transcripts
string | cell array of strings | categorical array

Names of transcripts, specified as a comma-separated pair consisting of 'Transcript'
and a string, cell array of strings, or categorical array.

The names must come from the Transcript field of AnnotObj. If a name does not exist,
the function gives a warning and ignores the name.

Use one of these name-value pair arguments at a time to retrieve only those segments
which belong to the specified references, genes, or transcripts. You cannot specify more
than one name-value pair arguments.

Output Arguments

segments — Non-overlapping segments
table

 getSegments

1-837

Non-overlapping segments, returned as a table. The table contains the following
variables for each segments.

Variable Name Description

Start Start location of each segment.
Stop Stop location of each segment.
Reference Categorical array representing the names of reference sequences to

which the segments belong, obtained from the Reference field of
AnnotObj.

ExonIndicator Logical sparse matrix of segment versus exon. The rows represent
segments. The columns are exons. If the ith segment is part of the jth
exon, the element at position (i,j) is 1. Otherwise, it is 0.

TranscriptIndicatorLogical sparse matrix of segment versus transcript. The rows
represent segments and the columns are transcripts. The element at
position (i,j) is 1 if the ith segment is part of the jth transcript, and 0
otherwise.

transcriptIDs — Unique transcript IDs
cell array of strings

Unique transcript IDs, returned as a cell array of strings. The transcript IDs correspond
to columns of the TranscriptIndicator variable of segments. For instance, the first
element of transcriptIDs is the ID of the first column of TranscriptIndicator matrix.

Examples

Retrieve Segments from a GTF-formatted File

Create a GTFAnnotation object from a GTF-formatted file.

obj = GTFAnnotation('hum37_2_1M.gtf');

Retrieve unique reference names. In this case, there is only one reference sequence,
which is chromosome 2 (chr2).

ref = getReferenceNames(obj)

ref =

1 Alphabetical List

1-838

 'chr2'

Get a table of all non-overlapping segments of nucleotide sequences which belong to
chr2.

segments = getSegments(obj,'Reference',ref);

See Also
GTFAnnotation | GTFAnnotation.getData | GTFAnnotation.getFeatureNames
| GTFAnnotation.getGeneNames | GTFAnnotation.getIndex |
GTFAnnotation.getRange | GTFAnnotation.getReferenceNames
| GTFAnnotation.getSubset | GTFAnnotation.getGenes |
GTFAnnotation.getTranscripts | GTFAnnotation.getExons

More About
• “Store and Manage Feature Annotations in Objects”

External Web Sites
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getSequence

1-839

getSequence
Class: BioRead

Retrieve sequences from object

Syntax
Sequences = getSequence(BioObj)

Sequences = getSequence(BioObj, Subset)

Description
Sequences = getSequence(BioObj) returns Sequences, a cell array of strings
containing the letter representations of nucleotide sequences from an object.

Sequences = getSequence(BioObj, Subset) returns sequence strings for only
object elements specified by Subset.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

1 Alphabetical List

1-840

Default:

Output Arguments

Sequences

Cell array of strings containing the sequences specified by Subset in BioObj.

Examples

Retrieve the sequences from different elements of a BioRead object:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Retrieve the sequence of the second element in the object

getSequence(BRObj, 2);

getSequence(BRObj, {'SRR005164.2'});

getSequence(BRObj, [false true false]);

% Retrieve the sequences of the first and third elements in the object

getSequence(BRObj, [1 3]);

getSequence(BRObj, {'SRR005164.1', 'SRR005164.3'});

getSequence(BRObj, [true false true]);

% Retrieve the sequences of all the elements in the object

getSequence(BRObj, 1:50);

Alternatives

An alternative to using the getSequence method is to use dot indexing with the
Sequence property:

BioObj.Sequence(Indices)

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers.

See Also
setSequence | BioRead | BioMap

 getSequence

1-841

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-842

getSubsequence
Class: BioRead

Retrieve partial sequences from object

Syntax

Subsequences = getSubsequence(BioObj, Subset, Positions)

Description

Subsequences = getSubsequence(BioObj, Subset, Positions) returns
Subsequences, a cell array of strings containing the letter representations of partial
nucleotide sequences from an object. getSubsequence returns sequence strings for
only object elements specified by Subset and for only sequence positions specified by
Positions.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

 getSubsequence

1-843

Default:

Positions

One of the following to specify a subset of positions in a sequence:

• Vector of positive integers
• Logical vector

Note: The last position specified by Positions must be within the range of positions for
each sequence specified by Subset.

Default:

Output Arguments

SubSequences

Cell array of strings containing the partial sequences specified by Subset and
Positions in BioObj.

Examples

Retrieve subsequences from different elements of a BioRead object:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Retrieve the first five positions of the first three sequences in

% the object

getSubsequence(BRObj, 1:3, 1:5)

% Retrieve the first five positions of the sequence with a header

% of SRR005164.3

getSubsequence(BRObj, 'SRR005164.3', 1:5)

See Also
BioRead | BioMap | setSubsequence

1 Alphabetical List

1-844

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getSubset

1-845

getSubset
Class: BioIndexedFile

Create object containing subset of elements from BioIndexedFile object

Syntax

NewObj = getSubset(BioIFObj, Indices)

NewObj = getSubset(BioIFObj, Keys)

Description

NewObj = getSubset(BioIFObj, Indices) returns NewObj, a new BioIndexedFile
object that accesses a subset of entries in the source file associated with BioIFObj, a
BioIndexedFile object. The entries are specified by Indices, a vector containing unique
positive integers.

NewObj = getSubset(BioIFObj, Keys) returns NewObj, a new BioIndexedFile
object that accesses a subset of entries in the source file associated with BioIFObj, a
BioIndexedFile object. The entries are specified by Keys, a string or cell array of unique
strings specifying keys.

Tips

Use this method to create a smaller, more manageable BioIndexedFile object.

Input Arguments

BioIFObj

Object of the BioIndexedFile class.

Default:

1 Alphabetical List

1-846

Indices

Vector containing unique positive integers that specify the entries in the source file to
access with NewObj. The number of elements in Indices cannot exceed the number of
entries indexed by BioIFObj. There is a one-to-one relationship between the elements in
Indices and the entries that NewObj accesses.

Keys

String or cell array of unique strings specifying keys that specify the entries in the source
file to access with NewObj. The number of elements in Keys is less than or equal to the
number of entries indexed by BioIFObj. If the keys in the source file are not unique,
then all entries that match a given key are indexed by NewObj. In this case, there is not
a one-to-one relationship between the elements in Keys and the entries that NewObj
accesses. If the keys in the source file are unique, then there is a one-to-one relationship
between the elements in Keys and the entries that NewObj accesses.

Output Arguments

NewObj

Object of the BioIndexedFile class.

Examples

Construct a BioIndexedFile object to access a table containing cross-references between
gene names and gene ontology (GO) terms:

% Create a variable containing the full absolute path of the source file.

sourcefile = which('yeastgenes.sgd');

% Create a BioIndexedFile object from the source file. Indicate

% the source file is a tab-delimited file where contiguous rows

% with the same key are considered a single entry. Store the

% index file in the Current Folder. Indicate that keys are

% located in column 3 and that header lines are prefaced with !

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

Create a new BioIndexedFile object that accesses only the first 1,000 cross-references and
reuses the same index file as gene2goObj:

 getSubset

1-847

% Create a new BioIndexedFile object.

gene2goSubset = getSubset(gene2goObj,1:1000);

See Also
BioIndexedFile.getEntryByKey | BioIndexedFile.getIndexByKey
| BioIndexedFile.getKeys | BioIndexedFile |
BioIndexedFile.getEntryByIndex | BioIndexedFile.read

How To
• “Work with Large Multi-Entry Text Files”

1 Alphabetical List

1-848

getSubset
Class: BioRead

Create object containing subset of elements from object

Syntax

NewObj = getSubset(BioObj, Subset)

NewObj = getSubset(BioObj, 'SelectReference', R)

NewObj = getSubset(..., 'ParameterName', ParameterValue)

Description

NewObj = getSubset(BioObj, Subset) returns NewObj, a new object containing
a subset of the elements from BioObj. getSubset returns object elements specified by
Subset. If BioObj is indexed, then NewObj is indexed. If BioObj is in memory, then
NewObj is in memory.

NewObj = getSubset(BioObj, 'SelectReference', R) for BioObj objects of the
BioMap class creates a subset object with only the short reads mapped to R.

NewObj = getSubset(..., 'ParameterName', ParameterValue) accepts one
or more comma-separated parameter name/value pairs. Specify ParameterName inside
single quotes.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

 getSubset

1-849

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: If you use a cell array of header strings to specify Subset, be aware that a
repeated header specifies all elements with that header.

Default:

R

Vector of positive integers indexing the SequenceDictionary property of BioObj or
a cell array of strings specifying the actual names of references in objects of the BioMap
class.

Parameter Name/Value Pairs

'Name'

String specifying a name for NewObj. This information populates the Name property of
NewObj.

Default: Empty string

'InMemory'

Logical specifying whether getSubset uses indexed access to the source file or loads the
contents of the source file into memory. If the data specified for the subset is still large,
set to false to use indexed access and be memory efficient. If the data specified for the
subset fits in memory, set to true to load the data into memory, which lets you access
NewObj faster and update its properties.

If BioObj was not constructed using indexed access and is already in memory, the
InMemory name/value pair is ignored, and the data is automatically placed in memory.

Default: false

1 Alphabetical List

1-850

Output Arguments

NewObj

Object of the BioRead or BioMap class. If BioObj is in memory, then NewObj is in
memory. If BioObj is indexed, then NewObj is indexed, unless you set the InMemory
parameter name/value pair to true.

Examples

Retrieve a subset of elements from a BioRead object:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Retrieve the information associated with the second and third

% elements in the object

getSubset(BRObj, [2 3]);

getSubset(BRObj, [2:3]);

getSubset(BRObj, {'SRR005164.2', 'SRR005164.3'});

getSubset(BRObj, [false true true]);

% Create a new BioRead object containing the first and third elements

% from the object

NewBRObj = getSubset(BRObj, [1 3]);

See Also
setSubset | BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 getSubset

1-851

getSubset
Class: GFFAnnotation

Retrieve subset of elements from GFFAnnotation object

Syntax

NewObj = getSubset(AnnotObj,StartPos,EndPos)

NewObj = getSubset(AnnotObj,Subset)

NewObj = getSubset(___ ,Name,Value)

Description

NewObj = getSubset(AnnotObj,StartPos,EndPos) returns NewObj, a new object
containing a subset of the elements from AnnotObj that falls within each reference
sequence range specified by StartPos and EndPos.

NewObj = getSubset(AnnotObj,Subset) returns NewObj, a new object containing a
subset of elements specified by Subset, a vector of integers.

NewObj = getSubset(___ ,Name,Value) returns NewObj, a new object containing
a subset of the elements from AnnotObj, using any of the input arguments from the
previous syntaxes and additional options specified by one or more Name,Value pair
arguments.

Tips

• The getSubset method selects annotations from the range specified by StartPos and
EndPos for all reference sequences in AnnotObj unless you use the Reference name-
value pair argument to limit the reference sequences.

• After creating a subsetted object, you can access the number of entries, range
of reference sequence covered by annotations, field names, and reference
names. To access the values of all fields, create a structure of the data using the
GFFAnnotation.getData method.

1 Alphabetical List

1-852

Input Arguments

AnnotObj

Object of the GFFAnnotation class.

Default:

StartPos

Nonnegative integer specifying the start of a range in each reference sequence in
AnnotObj. The integer StartPos must be less than or equal to EndPos.

Default:

EndPos

Nonnegative integer specifying the end of a range in each reference sequence in
AnnotObj. The integer EndPos must be greater than or equal to StartPos.

Default:

Subset

Vector of positive integers equal or less than the number of entries in the object. Use the
vector Subset to retrieve any element or subset of the object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference'

String or cell array of strings specifying one or more reference sequences in AnnotObj.
Only annotations whose reference field matches one of the strings are included in
NewObj.

Default:

 getSubset

1-853

'Feature'

String or cell array of strings specifying one or more features in AnnotObj. Only
annotations whose feature field matches one of the strings are included in NewObj.

Default:

'Overlap'

Minimum number of base positions that an annotation must overlap in the range, to be
included in NewObj. This value can be any of the following:

• Positive integer
• 'full' — An annotation must be fully contained in the range to be included.
• 'start' — An annotation’s start position must lie within the range to be included.

Default: 1

Output Arguments

NewObj

Object of the GFFAnnotation class.

Examples

Create a Subset of Data Containing Only Protein Features from a GFF-formatted File

Construct a GFFAnnotation object using a GFF-formatted file that is provided with
Bioinformatics Toolbox.

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

Create a subset of data containing only protein features.

subsetGFF1 = getSubset(GFFAnnotObj,'Feature','protein')

subsetGFF1 =

 GFFAnnotation with properties:

1 Alphabetical List

1-854

 FieldNames: {1x9 cell}

 NumEntries: 200

Retrieve Subsets of Data from a GFFAnnotation Object

Construct a GFFAnnotation object using a GFF-formatted file that is provided with
Bioinformatics Toolbox.

GFFAnnotObj = GFFAnnotation('tair8_1.gff');

Retrieve a subset of data from the first to fifth elements of GFFAnnotObj.

subsetGFF2 = getSubset(GFFAnnotObj,[1:5])

subsetGFF2 =

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 5

Retrieve only the first, fifth and eighth elements of GFFAnnotObj.

subsetGFF3 = getSubset(GFFAnnotObj,[1 5 8])

subsetGFF3 =

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 3

See Also
GTFAnnotation.getSubset | GFFAnnotation.getData

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

 getSubset

1-855

getSubset
Class: GTFAnnotation

Create object containing subset of elements from GTFAnnotation object

Syntax

NewObj = getSubset(AnnotObj,StartPos,EndPos)

NewObj = getSubset(AnnotObj,Subset)

NewObj = getSubset(___ ,Name,Value)

Description

NewObj = getSubset(AnnotObj,StartPos,EndPos) returns NewObj, a new object
containing a subset of the elements from AnnotObj that falls within each reference
sequence range specified by StartPos and EndPos.

NewObj = getSubset(AnnotObj,Subset) returns NewObj, a new object containing a
subset of elements specified by Subset, a vector of integers.

NewObj = getSubset(___ ,Name,Value) returns NewObj, a new object containing
a subset of the elements from AnnotObj, using any of the input arguments from the
previous syntaxes and additional options specified by one or more Name,Value pair
arguments.

Tips

• The getSubset method selects annotations from the range specified by StartPos and
EndPos for each reference sequence in AnnotObj unless you use the 'Reference' name-
value pair argument to limit the reference sequences.

• After creating a subsetted object, you can access the number of entries, range
of reference sequences covered by annotations, field names, and reference
names. To access the values of all fields, create a structure of the data using the
GTFAnnotation.getData method.

1 Alphabetical List

1-856

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Default:

StartPos

Nonnegative integer specifying the start of a range in each reference sequence in
AnnotObj. The integer StartPos must be less than or equal to EndPos.

Default:

EndPos

Nonnegative integer specifying the end of a range in each reference sequence in
AnnotObj. The integer EndPos must be greater than or equal to StartPos.

Default:

Subset

Vector of positive integers less than or equal to the number of entries in the object. Use
the vector Subset to retrieve any element or subset of the object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference'

String or cell array of strings specifying one or more reference sequences in AnnotObj.
Only annotations whose reference field matches one of the strings are included in
NewObj.

Default:

 getSubset

1-857

'Feature'

String or cell array of strings specifying one or more features in AnnotObj. Only
annotations whose feature field matches one of the strings are included in NewObj.

Default:

'Gene'

String or cell array of strings specifying one or more genes in AnnotObj. Only
annotations whose gene field matches one of the strings are included in NewObj.

'Transcript'

String or cell array of strings specifying one or more transcripts in AnnotObj. Only
annotations whose transcript field matches one of the strings are included in NewObj.

'Overlap'

Minimum number of base positions that an annotation must overlap in the range, to be
included in NewObj. This value can be any of the following:

• Positive integer
• 'full' — An annotation must be fully contained in the range to be included.
• 'start' — An annotation’s start position must lie within the range to be included.

Default: 1

Output Arguments

NewObj

Object of the GTFAnnotation class.

Examples

Create a Subset of Data Containing Only CDS Features from a GTF-formatted File

Construct a GTFAnnotation object using a GTF-formatted file that is provided with
Bioinformatics Toolbox.

1 Alphabetical List

1-858

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

Create a subset of the data containing only CDS features.

subsetGTF = getSubset(GTFAnnotObj,'Feature','CDS')

subsetGTF =

 GTFAnnotation with properties:

 FieldNames: {1x11 cell}

 NumEntries: 92

Retrieve Subsets of Data from a GTFAnnotation Object

Construct a GTFAnnotation object using a GTF-formatted file that is provided with
Bioinformatics Toolbox.

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

Retrieve a subset of data from the first to fifth elements of GTFAnnotObj.

subsetGTF1 = getSubset(GTFAnnotObj,[1:5])

subsetGTF1 =

 GTFAnnotation with properties:

 FieldNames: {1x11 cell}

 NumEntries: 5

Retrieve only the first, fifth and eighth elements of GTFAnnotObj.

subsetGTF2 = getSubset(GTFAnnotObj,[1 5 8])

subsetGTF2 =

 GTFAnnotation with properties:

 FieldNames: {1x11 cell}

 NumEntries: 3

See Also
GFFAnnotation.getSubset | GTFAnnotation.getData

 getSubset

1-859

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

1 Alphabetical List

1-860

getTranscripts

Class: GTFAnnotation

Return table of unique transcripts in GTFAnnotation object

Syntax

transcriptsTable = getTranscripts(AnnotObj)

transcriptsTable= getTranscripts(AnnotObj,Name,Value)

Description

transcriptsTable = getTranscripts(AnnotObj) returns transcriptsTable, a table
of transcripts referenced by exons in AnnotObj.

transcriptsTable= getTranscripts(AnnotObj,Name,Value) uses an additional
option specified by a Name,Value pair argument.

Input Arguments

AnnotObj

Object of the GTFAnnotation class.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Reference' — Names of reference sequences
string | cell array of strings | categorical array

 getTranscripts

1-861

Names of reference sequences, specified as a comma-separated pair consisting of
'Reference' and a string, cell array of strings, or categorical array.

The names must come from the Reference field of AnnotObj. If a name does not exist,
the function provides a warning and ignores it.

'Gene' — Names of gene
string | cell array of strings | categorical array

Names of genes, specified as a comma-separated pair consisting of 'Gene' and a string,
cell array of strings, or categorical array.

The names must come from the Gene field of AnnotObj. If a name does not exist, the
function provides a warning and ignores the name.

Default:

'Transcript' — Names of transcripts
string | cell array of strings | categorical array

Names of transcripts, specified as a comma-separated pair consisting of 'Transcript'
and a string, cell array of strings, or categorical array.

The names must come from the Transcript field of AnnotObj. If a name does not exist,
the function gives a warning and ignores the name.

Use one of these name-value pair arguments at a time to retrieve only those specified
transcripts or those transcripts which belong to the specified references or genes. You
cannot specify more than one name-value pair arguments.

Output Arguments

transcriptsTable — Transcripts
table

Transcripts, returned as a table. The table contains the following variables for each
transcript.

Variable Name Description

Transcript Cell array of strings containing transcript IDs, obtained from the
Transcript field of AnnotObj.

1 Alphabetical List

1-862

Variable Name Description

GeneName Cell array of strings containing the names of expressed genes,
obtained from the Attributes field of AnnotObj. This cell array can
contain empty strings if the corresponding gene names are not found
in Attributes.

GeneID Cell array of strings containing the expressed gene IDs, obtained from
the Gene field of AnnotObj.

Reference Categorical array representing the names of reference sequences to
which the expressed genes belong. The reference names are from the
Reference field of AnnotObj.

Start Start location of the first exon in each transcript.
Stop Stop location of the last exon in each transcript.
Strand Categorical array containing the strand of expressed gene.

Examples

Retrieve Transcripts from a GTF-formatted File

Create a GTFAnnotation object from a GTF-formatted file.

obj = GTFAnnotation('hum37_2_1M.gtf');

Get the list of gene names listed in the object.

gNames = getGeneNames(obj)

gNames =

 'uc002qvu.2'

 'uc002qvv.2'

 'uc002qvw.2'

 'uc002qvx.2'

 'uc002qvy.2'

 'uc002qvz.2'

 'uc002qwa.2'

 'uc002qwb.2'

 'uc002qwc.1'

 'uc002qwd.2'

 getTranscripts

1-863

 'uc002qwe.3'

 'uc002qwf.2'

 'uc002qwg.2'

 'uc002qwh.2'

 'uc002qwi.3'

 'uc002qwk.2'

 'uc002qwl.2'

 'uc002qwm.1'

 'uc002qwn.1'

 'uc002qwo.1'

 'uc002qwp.2'

 'uc002qwq.2'

 'uc010ewe.2'

 'uc010ewf.1'

 'uc010ewg.2'

 'uc010ewh.1'

 'uc010ewi.2'

 'uc010yim.1'

Get a table of transcripts which belong to the first gene uc002qvu.2.

transcripts = getTranscripts(obj,'Gene',gNames{1})

transcripts =

 Transcript GeneName GeneID Reference Start Stop Strand

 ____________ ________ ____________ _________ ______ ______ ______

 'uc002qvu.2' '' 'uc002qvu.2' chr2 218138 249852 -

See Also
GTFAnnotation | GTFAnnotation.getData | GTFAnnotation.getFeatureNames
| GTFAnnotation.getGeneNames | GTFAnnotation.getIndex |
GTFAnnotation.getRange | GTFAnnotation.getReferenceNames
| GTFAnnotation.getSubset | GTFAnnotation.getGenes |
GTFAnnotation.getSegments | GTFAnnotation.getExons

More About
• “Store and Manage Feature Annotations in Objects”

1 Alphabetical List

1-864

External Web Sites
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 getTranscriptNames

1-865

getTranscriptNames
Class: GTFAnnotation

Retrieve unique transcript names from GTFAnnotation object

Syntax
Transcripts = getTranscriptNames(AnnotObj)

Description
Transcripts = getTranscriptNames(AnnotObj) returns Transcripts, a cell
array of strings specifying the unique transcript names associated with annotations in
AnnotObj.

Input Arguments
AnnotObj

Object of the GTFAnnotation class.

Default:

Output Arguments
Transcripts

Cell array of strings specifying the unique transcript names associated with annotations
in AnnotObj.

Examples
Construct a GTFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox, and then retrieve a list of the unique transcript names from the
object:

1 Alphabetical List

1-866

% Construct a GTFAnnotation object from a GTF file

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

% Get transcript names from object

transcriptNames = getTranscriptNames(GTFAnnotObj)

transcriptNames =

 'uc002qvu.2'

 'uc002qvv.2'

 'uc002qvw.2'

 'uc002qvx.2'

 'uc002qvy.2'

 'uc002qvz.2'

 'uc002qwa.2'

 'uc002qwb.2'

 'uc002qwc.1'

 'uc002qwd.2'

 'uc002qwe.3'

 'uc002qwf.2'

 'uc002qwg.2'

 'uc002qwh.2'

 'uc002qwi.3'

 'uc002qwk.2'

 'uc002qwl.2'

 'uc002qwm.1'

 'uc002qwn.1'

 'uc002qwo.1'

 'uc002qwp.2'

 'uc002qwq.2'

 'uc010ewe.2'

 'uc010ewf.1'

 'uc010ewg.2'

 'uc010ewh.1'

 'uc010ewi.2'

 'uc010yim.1'

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 GFFAnnotation class

1-867

GFFAnnotation class

Represent General Feature Format (GFF) annotations

Description

The GFFAnnotation class contains annotations for one or more reference sequences,
conforming to the GFF file format.

You construct a GFFAnnotation object from a GFF- or GTF-formatted file. Each element
in the object represents an annotation. Use the object properties and methods to filter
annotations by feature, reference sequence, or reference sequence position. Use object
methods to extract data for a subset of annotations into an array of structures.

Construction

Annotobj = GFFAnnotation(File) constructs Annotobj, a GFFAnnotation object,
from File, a GFF- or GTF-formatted file.

Input Arguments

File

String specifying a GFF- or GTF-formatted file.

Default:

Properties

FieldNames

Cell array of strings specifying the names of the available data fields for each annotation
in the GFFAnnotation object. This property is read only.

1 Alphabetical List

1-868

NumEntries

Integer specifying number of annotations in the GFFAnnotation object. This property is
read only.

Methods

getData
Create structure containing subset of data
from GFFAnnotation object

getFeatureNames
Retrieve unique feature names from
GFFAnnotation object

getIndex
Return index array of annotations from
GFFAnnotation object

getRange
Retrieve range of annotations from
GFFAnnotation object

getReferenceNames
Retrieve reference names from
GFFAnnotation object

getSubset
Retrieve subset of elements from
GFFAnnotation object

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB documentation.

Indexing

GFFAnnotation objects support dot . indexing to extract properties.

 GFFAnnotation class

1-869

Examples

Construct a GFFAnnotation object from a GFF-formatted file that is provided with
Bioinformatics Toolbox:

GFFAnnotObj = GFFAnnotation('tair8_1.gff')

GFFAnnotObj =

 GFFAnnotation with properties:

 FieldNames: {'Reference' 'Start' 'Stop' 'Feature' 'Source' 'Score' 'Strand' 'Frame' 'Attributes'}

 NumEntries: 3331

Construct a GFFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox:

GFFAnnotObj = GFFAnnotation('hum37_2_1M.gtf')

GFFAnnotObj =

 GFFAnnotation with properties:

 FieldNames: {'Reference' 'Start' 'Stop' 'Feature' 'Source' 'Score' 'Strand' 'Frame' 'Attributes'}

 NumEntries: 308

See Also
GTFAnnotation

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GFF (General Feature Format) specifications document

http://www.sanger.ac.uk/resources/software/gff/spec.html

1 Alphabetical List

1-870

goannotread
Read annotations from Gene Ontology annotated file

Syntax
Annotation = goannotread(File)

Annotation = goannotread(File, ...'Fields', FieldsValue, ...)

Annotation = goannotread(File, ...'Aspect', AspectValue, ...)

Input Arguments

File String specifying a file name of a Gene Ontology (GO) annotated
format (GAF) file.

FieldsValue String or cell array of strings specifying one or more fields to read
from the Gene Ontology annotated file. Default is to read all fields.
Valid fields are listed below.

AspectValue Character array specifying one or more characters. Valid aspects are:

• P — Biological process
• F — Molecular function
• C — Cellular component

Default is 'CFP', which specifies to read all aspects.

Output Arguments

Annotation MATLAB array of structures containing annotations from a Gene
Ontology annotated file.

Description

Note: The goannotread function supports GAF 1.0 and 2.0 file formats.

 goannotread

1-871

Annotation = goannotread(File) converts the contents of File, a Gene Ontology
annotated file, into Annotation, an array of structures. Files should have the structure
specified in:

http://www.geneontology.org/GO.annotation.shtml#file

A list with some annotated files can be found at:

http://www.geneontology.org/GO.current.annotations.shtml

Annotation = goannotread(File, ...'PropertyName',

PropertyValue, ...) calls goannotread with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

Annotation = goannotread(File, ...'Fields', FieldsValue, ...) specifies
the fields to read from the Gene Ontology annotated file. FieldsValue is a string or cell
array of strings specifying one or more fields. Default is to read all fields. Valid fields are:

• Database

• DB_Object_ID

• DB_Object_Symbol

• Qualifier

• GOid

• DBReference

• Evidence

• WithFrom

• Aspect

• DB_Object_Name

• Synonym

• DB_Object_Type

• Taxon

• Date

• Assigned_by

For more information on these fields, see:

http://www.geneontology.org/GO.annotation.shtml#file
http://www.geneontology.org/GO.current.annotations.shtml

1 Alphabetical List

1-872

http://www.geneontology.org/GO.format.annotation.shtml

Annotation = goannotread(File, ...'Aspect', AspectValue, ...) specifies
the aspects to read from the Gene Ontology annotated file. AspectValue is a character
array specifying one or more characters. Valid aspects are:

• P — Biological process
• F — Molecular function
• C — Cellular component

Default is 'CFP', which specifies to read all aspects.

Examples

Reading All Annotations from a Gene Ontology Annotated File

1 Open a Web browser to

http://www.geneontology.org/GO.current.annotations.shtml

2 Download gene_association.sgd.gz, the file containing GO annotations for the
gene products of Saccharomyces cerevisiae, to your MATLAB Current Folder.

3 Uncompress the file using the gunzip function.

gunzip('gene_association.sgd.gz')

4 Read the file into the MATLAB software.

SGDGenes = goannotread('gene_association.sgd');

5 Create a structure with GO annotations and display a list of the first five genes.

S = struct2cell(SGDGenes);

genes = S(3,1:5)'

genes =

 '15S_RRNA'

 '15S_RRNA'

 '15S_RRNA'

 '15S_RRNA'

 '21S_RRNA'

http://www.geneontology.org/GO.format.annotation.shtml
http://www.geneontology.org/GO.current.annotations.shtml

 goannotread

1-873

Reading a Subset of Annotations from a Gene Ontology Annotated File

1 Open a Web browser to

http://www.geneontology.org/GO.current.annotations.shtml

2 Download gene_association.goa_human.gz, the file containing GO annotations
for the gene products of Homo sapiens, to your MATLAB Current Folder.

3 Uncompress the file using the gunzip function.

gunzip('gene_association.goa_human.gz')

4 Read the file into the MATLAB software, but limit the annotations to genes related
to molecular function (F), and to the fields for the gene symbol and the associated ID,
that is, DB_Object_Symbol and GOid.

HumanStruct = goannotread('gene_association.goa_human', ...

 'Aspect','F','Fields',{'DB_Object_Symbol','GOid'});

5 Create a list of the Homo sapiens genes and a list of the associated GO terms.

Humangenes = {HumanStruct.DB_Object_Symbol};

HumanGO = [HumanStruct.GOid];

See Also
geneont.getancestors | geneont.getmatrix | geneont | num2goid | geneont |
geneont.getdescendants | geneont.getrelatives

http://www.geneontology.org/GO.current.annotations.shtml

1 Alphabetical List

1-874

gonnet
Return Gonnet scoring matrix

Syntax

gonnet

Description

gonnet returns the Gonnet matrix.

The Gonnet matrix is the recommended mutation matrix for initially aligning protein
sequences. Matrix elements are ten times the logarithmic of the probability that the
residues are aligned divided by the probability that the residues are aligned by chance,
and then matrix elements are normalized to 250 PAM units.

Expected score = -0.6152, Entropy = 1.6845 bits, Lowest score = -8, Highest score =
14.2

Order:
A R N D C Q E G H I L K M F P S T W Y V B Z X *

References

[1] Gaston, H., Gonnet, M., Cohen, A., and Benner, S. (1992). Exhaustive matching of the
entire protein sequence database. Science. 256, 1443–1445.

See Also
blosum | dayhoff | localalign | nuc44 | nwalign | pam | swalign

 gprread

1-875

gprread
Read microarray data from GenePix Results (GPR) file

Syntax

GPRData = gprread('File')

gprread(..., 'PropertyName', PropertyValue,...)

gprread(..., 'CleanColNames', CleanColNamesValue)

Arguments

File GenePix Results (GPR) formatted file. Enter a file name
or a path and file name.

CleanColNamesValue Controls the creation of column names that can be used
as variable names.

Description

GPRData = gprread('File') reads GenePix results data from File and creates a
MATLAB structure (GPRData).

gprread(..., 'PropertyName', PropertyValue,...) defines optional properties
using property name/value pairs.

gprread(..., 'CleanColNames', CleanColNamesValue) controls the creation
of column names that can be used as variable names. A GPR file may contain column
names with spaces and some characters that the MATLAB software cannot use in
MATLAB variable names. If CleanColNamesValue is true, gprread returns names
in the field ColumnNames that are valid MATLAB variable names and names that
you can use in functions. By default, CleanColNamesValue is false and the field
ColumnNames may contain characters that are invalid for MATLAB variable names.

The field Indices of the structure contains indices that can be used for plotting heat
maps of the data.

1 Alphabetical List

1-876

For more details on the GPR format, see

http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr

For a list of supported file format versions, see

http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html

Examples

Read and display data from GenePix® result (GPR) file

This example shows how to read and display data from a GenePix® result (GPR) file.

Read in a sample GPR file.

gprStruct = gprread('mouse_a1pd.gpr')

gprStruct =

 Header: [1x1 struct]

 Data: [9504x38 double]

 Blocks: [9504x1 double]

 Columns: [9504x1 double]

 Rows: [9504x1 double]

 Names: {9504x1 cell}

 IDs: {9504x1 cell}

 ColumnNames: {38x1 cell}

 Indices: [132x72 double]

 Shape: [1x1 struct]

Plot the median foreground intensity for the 635 nm channel.

maimage(gprStruct,'F635 Median')

http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr
http://support.moleculardevices.com/pages/software/gn_genepix_file_formats.html

 gprread

1-877

See Also
affyread | agferead | celintensityread | galread | geoseriesread |
geosoftread | ilmnbsread | imageneread | magetfield | sptread

1 Alphabetical List

1-878

graphallshortestpaths
Find all shortest paths in graph

Syntax

[dist] = graphallshortestpaths(G)

[dist] = graphallshortestpaths(G, ...'Directed', DirectedValue, ...)

[dist] = graphallshortestpaths(G, ...'Weights', WeightsValue, ...)

Arguments

G N-by-N sparse matrix that represents a graph. Nonzero entries in
matrix G represent the weights of the edges.

DirectedValue Property that indicates whether the graph is directed or
undirected. Enter false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is
true.

WeightsValue Column vector that specifies custom weights for the edges in
matrix G. It must have one entry for every nonzero value (edge)
in matrix G. The order of the custom weights in the vector must
match the order of the nonzero values in matrix G when it is
traversed column-wise. This property lets you use zero-valued
weights. By default, graphallshortestpaths gets weight
information from the nonzero entries in matrix G.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[dist] = graphallshortestpaths(G) finds the shortest paths between every pair
of nodes in the graph represented by matrix G, using Johnson's algorithm. Input G is an

 graphallshortestpaths

1-879

N-by-N sparse matrix that represents a graph. Nonzero entries in matrix G represent the
weights of the edges.

Output dist is an N-by-N matrix where dist(S,T) is the distance of the shortest
path from source node S to target node T. Elements in the diagonal of this matrix are
always 0, indicating the source node and target node are the same. A 0 not in the
diagonal indicates that the distance between the source node and target node is 0. An
Inf indicates there is no path between the source node and the target node.

Johnson's algorithm has a time complexity of O(N*log(N)+N*E), where N and E are the
number of nodes and edges respectively.

[...] = graphallshortestpaths (G, 'PropertyName',

PropertyValue, ...) calls graphallshortestpaths with optional properties that
use property name/property value pairs. You can specify one or more properties in any
order. Each PropertyName must be enclosed in single quotes and is case insensitive.
These property name/property value pairs are as follows:

[dist] = graphallshortestpaths(G, ...'Directed', DirectedValue, ...)

indicates whether the graph is directed or undirected. Set DirectedValue to false
for an undirected graph. This results in the upper triangle of the sparse matrix being
ignored. Default is true.

[dist] = graphallshortestpaths(G, ...'Weights', WeightsValue, ...)

lets you specify custom weights for the edges. WeightsValue is a column vector
having one entry for every nonzero value (edge) in matrix G. The order of the custom
weights in the vector must match the order of the nonzero values in matrix G when it
is traversed column-wise. This property lets you use zero-valued weights. By default,
graphallshortestpaths gets weight information from the nonzero entries in matrix G.

Examples

Finding All Shortest Paths in a Directed Graph

1 Create and view a directed graph with 6 nodes and 11 edges.

W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21];

DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W)

DG =

1 Alphabetical List

1-880

 (4,1) 0.4500

 (6,2) 0.4100

 (2,3) 0.5100

 (5,3) 0.3200

 (6,3) 0.2900

 (3,4) 0.1500

 (5,4) 0.3600

 (1,5) 0.2100

 (2,5) 0.3200

 (1,6) 0.9900

 (4,6) 0.3800

view(biograph(DG,[],'ShowWeights','on'))

2 Find all the shortest paths between every pair of nodes in the directed graph.

 graphallshortestpaths

1-881

graphallshortestpaths(DG)

ans =

 0 1.3600 0.5300 0.5700 0.2100 0.9500

 1.1100 0 0.5100 0.6600 0.3200 1.0400

 0.6000 0.9400 0 0.1500 0.8100 0.5300

 0.4500 0.7900 0.6700 0 0.6600 0.3800

 0.8100 1.1500 0.3200 0.3600 0 0.7400

 0.8900 0.4100 0.2900 0.4400 0.7300 0

The resulting matrix shows the shortest path from node 1 (first row) to node 6 (sixth
column) is 0.95. You can see this in the graph by tracing the path from node 1 to
node 5 to node 4 to node 6 (0.21 + 0.36 + 0.38 = 0.95).

Finding All Shortest Paths in an Undirected Graph

1 Create and view an undirected graph with 6 nodes and 11 edges.

UG = tril(DG + DG')

UG =

 (4,1) 0.4500

 (5,1) 0.2100

 (6,1) 0.9900

 (3,2) 0.5100

 (5,2) 0.3200

 (6,2) 0.4100

 (4,3) 0.1500

 (5,3) 0.3200

 (6,3) 0.2900

 (5,4) 0.3600

 (6,4) 0.3800

view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

1 Alphabetical List

1-882

2 Find all the shortest paths between every pair of nodes in the undirected graph.

graphallshortestpaths(UG,'directed',false)

ans =

 0 0.5300 0.5300 0.4500 0.2100 0.8300

 0.5300 0 0.5100 0.6600 0.3200 0.7000

 0.5300 0.5100 0 0.1500 0.3200 0.5300

 0.4500 0.6600 0.1500 0 0.3600 0.3800

 0.2100 0.3200 0.3200 0.3600 0 0.7400

 0.8300 0.7000 0.5300 0.3800 0.7400 0

 graphallshortestpaths

1-883

The resulting matrix is symmetrical because it represents an undirected graph. It
shows the shortest path from node 1 (first row) to node 6 (sixth column) is 0.83. You
can see this in the graph by tracing the path from node 1 to node 4 to node 6 (0.45 +
0. 38 = 0.83). Because UG is an undirected graph, we can use the edge between node 1
and node 4, which we could not do in the directed graph DG.

References

[1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM 24(1), 1-13.

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphconncomp | allshortestpaths | graphisdag | graphisomorphism |
graphisspantree | graphmaxflow | graphminspantree | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

1 Alphabetical List

1-884

graphconncomp

Find strongly or weakly connected components in graph

Syntax

[S, C] = graphconncomp(G)

[S, C] = graphconncomp(G, ...'Directed', DirectedValue, ...)

[S, C] = graphconncomp(G, ...'Weak', WeakValue, ...)

Arguments

G N-by-N sparse matrix that represents a graph. Nonzero entries
in matrix G indicate the presence of an edge.

DirectedValue Property that indicates whether the graph is directed or
undirected. Enter false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is
true.

A DFS-based algorithm computes the connected components.
Time complexity is O(N+E), where N and E are number of nodes
and edges respectively.

WeakValue Property that indicates whether to find weakly connected
components or strongly connected components. A weakly
connected component is a maximal group of nodes that are
mutually reachable by violating the edge directions. Set
WeakValue to true to find weakly connected components.
Default is false, which finds strongly connected components.
The state of this parameter has no effect on undirected graphs
because weakly and strongly connected components are the same
in undirected graphs. Time complexity is O(N+E), where N and E
are number of nodes and edges respectively.

 graphconncomp

1-885

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[S, C] = graphconncomp(G) finds the strongly connected components of the graph
represented by matrix G using Tarjan's algorithm. A strongly connected component
is a maximal group of nodes that are mutually reachable without violating the edge
directions. Input G is an N-by-N sparse matrix that represents a graph. Nonzero entries
in matrix G indicate the presence of an edge.

The number of components found is returned in S, and C is a vector indicating to which
component each node belongs.

Tarjan's algorithm has a time complexity of O(N+E), where N and E are the number of
nodes and edges respectively.

[S, C] = graphconncomp(G, ...'PropertyName', PropertyValue, ...)

calls graphconncomp with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property name/property value
pairs are as follows:

[S, C] = graphconncomp(G, ...'Directed', DirectedValue, ...) indicates
whether the graph is directed or undirected. Set directedValue to false for an
undirected graph. This results in the upper triangle of the sparse matrix being ignored.
Default is true. A DFS-based algorithm computes the connected components. Time
complexity is O(N+E), where N and E are number of nodes and edges respectively.

[S, C] = graphconncomp(G, ...'Weak', WeakValue, ...) indicates whether
to find weakly connected components or strongly connected components. A weakly
connected component is a maximal group of nodes that are mutually reachable by
violating the edge directions. Set WeakValue to true to find weakly connected
components. Default is false, which finds strongly connected components. The state
of this parameter has no effect on undirected graphs because weakly and strongly
connected components are the same in undirected graphs. Time complexity is O(N+E),
where N and E are number of nodes and edges respectively.

1 Alphabetical List

1-886

Note: By definition, a single node can be a strongly connected component.

Note: A directed acyclic graph (DAG) cannot have any strongly connected components
larger than one.

Examples

1 Create and view a directed graph with 10 nodes and 17 edges.

DG = sparse([1 1 1 2 2 3 3 4 5 6 7 7 8 9 9 9 9], ...

 [2 6 8 3 1 4 2 5 4 7 6 4 9 8 10 5 3],true,10,10)

DG =

 (2,1) 1

 (1,2) 1

 (3,2) 1

 (2,3) 1

 (9,3) 1

 (3,4) 1

 (5,4) 1

 (7,4) 1

 (4,5) 1

 (9,5) 1

 (1,6) 1

 (7,6) 1

 (6,7) 1

 (1,8) 1

 (9,8) 1

 (8,9) 1

 (9,10) 1

h = view(biograph(DG));

 graphconncomp

1-887

2 Find the number of strongly connected components in the directed graph and
determine to which component each of the 10 nodes belongs.

[S,C] = graphconncomp(DG)

S =

 4

C =

 4 4 4 1 1 2 2 4 4 3

3 Color the nodes for each component with a different color.

1 Alphabetical List

1-888

colors = jet(S);

for i = 1:numel(h.nodes)

 h.Nodes(i).Color = colors(C(i),:);

end

References

[1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–160.

[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

 graphconncomp

1-889

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | conncomp | graphisdag | graphisomorphism |
graphisspantree | graphmaxflow | graphminspantree | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

1 Alphabetical List

1-890

graphisdag
Test for cycles in directed graph

Syntax

graphisdag(G)

Arguments

G N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix
G indicate the presence of an edge.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

graphisdag(G) returns logical 1 (true) if the directed graph represented by matrix
G is a directed acyclic graph (DAG) and logical 0 (false) otherwise. G is an N-by-N
sparse matrix that represents a directed graph. Nonzero entries in matrix G indicate the
presence of an edge.

Examples

Testing for Cycles in Directed Graphs

1 Create and view a directed acyclic graph (DAG) with six nodes and eight edges.

DG = sparse([1 1 1 2 2 3 4 6],[2 4 6 3 5 4 6 5],true,6,6)

DG =

 graphisdag

1-891

 (1,2) 1

 (2,3) 1

 (1,4) 1

 (3,4) 1

 (2,5) 1

 (6,5) 1

 (1,6) 1

 (4,6) 1

view(biograph(DG))

2 Test for cycles in the DAG.

graphisdag(DG)

1 Alphabetical List

1-892

ans =

 1

3 Add an edge to the DAG to make it cyclic, and then view the directed graph.

DG(5,1) = true

DG =

 (5,1) 1

 (1,2) 1

 (2,3) 1

 (1,4) 1

 (3,4) 1

 (2,5) 1

 (6,5) 1

 (1,6) 1

 (4,6) 1

view(biograph(DG))

 graphisdag

1-893

4 Test for cycles in the new graph.

graphisdag(DG)

ans =

 0

Testing for Cycles in a Very Large Graph (Greater Than 20,000 Nodes and 30,000 Edges)

1 Download the Gene Ontology database to a geneont object.

GO = geneont('live',true);

2 Convert the geneont object to a matrix.

1 Alphabetical List

1-894

CM = getmatrix(GO);

3 Test for cycles in the graph.

graphisdag(CM)

Creating a Random DAG

1 Create and view a random directed acyclic graph (DAG) with 15 nodes and 20 edges.

g = sparse([],[],true,15,15);

while nnz(g) < 20

 edge = randsample(15*15,1); % get a random edge

 g(edge) = true;

 g(edge) = graphisdag(g);

end

view(biograph(g))

2 Test for cycles in the graph.

graphisdag(g)

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | isdag | graphconncomp | graphisomorphism |
graphisspantree | graphmaxflow | graphminspantree | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

 graphisomorphism

1-895

graphisomorphism

Find isomorphism between two graphs

Syntax

[Isomorphic, Map] = graphisomorphism(G1, G2)

[Isomorphic, Map] = graphisomorphism(G1,

G2,'Directed', DirectedValue)

Arguments

G1 N-by-N sparse matrix that represents a directed or undirected
graph. Nonzero entries in matrix G1 indicate the presence of an
edge.

G2 N-by-N sparse matrix that represents a directed or undirected
graph. G2 must be the same (directed or undirected) as G1.

DirectedValue Property that indicates whether the graphs are directed or
undirected. Enter false when both G1 and G2 are undirected
graphs. In this case, the upper triangles of the sparse matrices G1
and G2 are ignored. Default is true, meaning that both graphs
are directed.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[Isomorphic, Map] = graphisomorphism(G1, G2) returns logical 1 (true) in
Isomorphic if G1 and G2 are isomorphic graphs, and logical 0 (false) otherwise. A
graph isomorphism is a 1-to-1 mapping of the nodes in the graph G1 and the nodes in
the graph G2 such that adjacencies are preserved. G1 and G2 are both N-by-N sparse

1 Alphabetical List

1-896

matrices that represent directed or undirected graphs. Return value Isomorphic is
Boolean. When Isomorphic is true, Map is a row vector containing the node indices
that map from G2 to G1 for one possible isomorphism. When Isomorphic is false, Map
is empty. The worst-case time complexity is O(N!), where N is the number of nodes.

[Isomorphic, Map] = graphisomorphism(G1,

G2,'Directed', DirectedValue) indicates whether the graphs are directed or
undirected. Set DirectedValue to false when both G1 and G2 are undirected graphs.
In this case, the upper triangles of the sparse matrices G1 and G2 are ignored. Default is
true, meaning that both graphs are directed.

Examples

1 Create and view a directed graph with 8 nodes and 11 edges.

m('ABCDEFGH') = [1 2 3 4 5 6 7 8];

g1 = sparse(m('ABDCDCGEFFG'),m('BCBDGEEFHGH'),true,8,8)

g1 =

 (1,2) 1

 (4,2) 1

 (2,3) 1

 (3,4) 1

 (3,5) 1

 (7,5) 1

 (5,6) 1

 (4,7) 1

 (6,7) 1

 (6,8) 1

 (7,8) 1

view(biograph(g1,'ABCDEFGH'))

 graphisomorphism

1-897

2 Set a random permutation vector and then create and view a new permuted graph.

p = randperm(8)

p =

 7 8 2 3 6 4 1 5

1 Alphabetical List

1-898

g2 = g1(p,p);

view(biograph(g2,'12345678'))

3 Check if the two graphs are isomorphic.

[F,Map] = graphisomorphism(g2,g1)

F =

 1

Map =

 7 8 2 3 6 4 1 5

 graphisomorphism

1-899

Note that the Map row vector containing the node indices that map from g2 to g1 is
the same as the permutation vector you created in step 2.

4 Reverse the direction of the D-G edge in the first graph, and then check for
isomorphism again.

g1(m('DG'),m('GD')) = g1(m('GD'),m('DG'));

view(biograph(g1,'ABCDEFGH'))

[F,M] = graphisomorphism(g2,g1)

F =

1 Alphabetical List

1-900

 0

M =

 []

5 Convert the graphs to undirected graphs, and then check for isomorphism.

[F,M] = graphisomorphism(g2+g2',g1+g1','directed',false)

F =

 1

M =

 7 8 2 3 6 4 1 5

References

[1] Fortin, S. (1996). The Graph Isomorphism Problem. Technical Report, 96-20, Dept. of
Computer Science, University of Alberta, Edomonton, Alberta, Canada.

[2] McKay, B.D. (1981). Practical Graph Isomorphism. Congressus Numerantium 30,
45-87.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | isomorphism | graphconncomp | graphisdag |
graphisspantree | graphmaxflow | graphminspantree | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

 graphisspantree

1-901

graphisspantree
Determine if tree is spanning tree

Syntax

TF = graphisspantree(G)

Arguments

G N-by-N sparse matrix whose lower triangle represents an undirected graph.
Nonzero entries in matrix G indicate the presence of an edge.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

TF = graphisspantree(G) returns logical 1 (true) if G is a spanning tree, and logical
0 (false) otherwise. A spanning tree must touch all the nodes and must be acyclic. G is
an N-by-N sparse matrix whose lower triangle represents an undirected graph. Nonzero
entries in matrix G indicate the presence of an edge.

Examples

1 Create a phytree object from a phylogenetic tree file.

tr = phytreeread('pf00002.tree')

Phylogenetic tree object with 33 leaves (32 branches)

2 Create a connection matrix from the phytree object.

[CM,labels,dist] = getmatrix(tr);

1 Alphabetical List

1-902

3 Determine if the connection matrix is a spanning tree.

graphisspantree(CM)

ans =

 1

4 Add an edge between the root and the first leaf in the connection matrix.

CM(end,1) = 1;

5 Determine if the modified connection matrix is a spanning tree.

graphisspantree(CM)

ans =

 0

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | isspantree | graphconncomp | graphisdag |
graphisomorphism | graphmaxflow | graphminspantree | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

 graphmaxflow

1-903

graphmaxflow

Calculate maximum flow in directed graph

Syntax

[MaxFlow, FlowMatrix, Cut] = graphmaxflow(G, SNode, TNode)

[...] = graphmaxflow(G, SNode, TNode, ...'Capacity',

CapacityValue, ...)

[...] = graphmaxflow(G, SNode, TNode, ...'Method', MethodValue, ...)

Arguments

G N-by-N sparse matrix that represents a directed graph. Nonzero
entries in matrix G represent the capacities of the edges.

SNode Node in G.
TNode Node in G.
CapacityValue Column vector that specifies custom capacities for the edges in

matrix G. It must have one entry for every nonzero value (edge)
in matrix G. The order of the custom capacities in the vector must
match the order of the nonzero values in matrix G when it is
traversed column-wise. By default, graphmaxflow gets capacity
information from the nonzero entries in matrix G.

MethodValue String that specifies the algorithm used to find the minimal
spanning tree (MST). Choices are:

• 'Edmonds' — Uses the Edmonds and Karp algorithm, the
implementation of which is based on a variation called the
labeling algorithm. Time complexity is O(N*E^2), where N and
E are the number of nodes and edges respectively.

• 'Goldberg' — Default algorithm. Uses the Goldberg
algorithm, which uses the generic method known as preflow-
push. Time complexity is O(N^2*sqrt(E)), where N and E are
the number of nodes and edges respectively.

1 Alphabetical List

1-904

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[MaxFlow, FlowMatrix, Cut] = graphmaxflow(G, SNode, TNode)calculates the
maximum flow of directed graph G from node SNode to node TNode. Input G is an N-by-
N sparse matrix that represents a directed graph. Nonzero entries in matrix G represent
the capacities of the edges. Output MaxFlow is the maximum flow, and FlowMatrix is a
sparse matrix with all the flow values for every edge. FlowMatrix(X,Y) is the flow from
node X to node Y. Output Cut is a logical row vector indicating the nodes connected to
SNode after calculating the minimum cut between SNode and TNode. If several solutions
to the minimum cut problem exist, then Cut is a matrix.

Tip The algorithm that determines Cut, all minimum cuts, has a time complexity of
O(2^N), where N is the number of nodes. If this information is not needed, use the
graphmaxflow function without the third output.

[...] = graphmaxflow(G, SNode, TNode, ...'PropertyName',

PropertyValue, ...) calls graphmaxflow with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[...] = graphmaxflow(G, SNode, TNode, ...'Capacity',

CapacityValue, ...) lets you specify custom capacities for the edges.
CapacityValue is a column vector having one entry for every nonzero value (edge) in
matrix G. The order of the custom capacities in the vector must match the order of the
nonzero values in matrix G when it is traversed column-wise. By default, graphmaxflow
gets capacity information from the nonzero entries in matrix G.

[...] = graphmaxflow(G, SNode, TNode, ...'Method', MethodValue, ...)

lets you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

• 'Edmonds' — Uses the Edmonds and Karp algorithm, the implementation of which
is based on a variation called the labeling algorithm. Time complexity is O(N*E^2),
where N and E are the number of nodes and edges respectively.

 graphmaxflow

1-905

• 'Goldberg' — Default algorithm. Uses the Goldberg algorithm, which uses the
generic method known as preflow-push. Time complexity is O(N^2*sqrt(E)), where
N and E are the number of nodes and edges respectively.

Examples

1 Create a directed graph with six nodes and eight edges.

cm = sparse([1 1 2 2 3 3 4 5],[2 3 4 5 4 5 6 6],...

 [2 3 3 1 1 1 2 3],6,6)cm =

 (1,2) 2

 (1,3) 3

 (2,4) 3

 (3,4) 1

 (2,5) 1

 (3,5) 1

 (4,6) 2

 (5,6) 3

2 Calculate the maximum flow in the graph from node 1 to node 6.

[M,F,K] = graphmaxflow(cm,1,6)

M =

 4

F =

 (1,2) 2

 (1,3) 2

 (2,4) 1

 (3,4) 1

 (2,5) 1

 (3,5) 1

 (4,6) 2

 (5,6) 2

K =

1 Alphabetical List

1-906

 1 1 1 1 0 0

 1 0 1 0 0 0

Notice that K is a two-row matrix because there are two possible solutions to the
minimum cut problem.

3 View the graph with the original capacities.

h = view(biograph(cm,[],'ShowWeights','on'))

4 View the graph with the calculated maximum flows.

view(biograph(F,[],'ShowWeights','on'))

 graphmaxflow

1-907

5 Show one solution to the minimum cut problem in the original graph.

set(h.Nodes(K(1,:)),'Color',[1 0 0])

1 Alphabetical List

1-908

Notice that in the three edges that connect the source nodes (red) to the destination
nodes (yellow), the original capacities and the calculated maximum flows are the
same.

References

[1] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in the algorithmic
efficiency for network flow problems. Journal of the ACM 19, 248-264.

[2] Goldberg, A.V. (1985). A New Max-Flow Algorithm. MIT Technical Report MIT/LCS/
TM-291, Laboratory for Computer Science, MIT.

 graphmaxflow

1-909

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | maxflow | graphconncomp | graphisdag |
graphisomorphism | graphisspantree | graphminspantree | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

1 Alphabetical List

1-910

graphminspantree
Find minimal spanning tree in graph

Syntax

[Tree, pred] = graphminspantree(G)

[Tree, pred] = graphminspantree(G, R)

[Tree, pred] = graphminspantree(..., 'Method', MethodValue, ...)

[Tree, pred] = graphminspantree(..., 'Weights', WeightsValue, ...)

Arguments

G N-by-N sparse matrix that represents an undirected graph. Nonzero entries in
matrix G represent the weights of the edges.

R Scalar between 1 and the number of nodes.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[Tree, pred] = graphminspantree(G) finds an acyclic subset of edges that
connects all the nodes in the undirected graph G and for which the total weight is
minimized. Weights of the edges are all nonzero entries in the lower triangle of the N-
by-N sparse matrix G. Output Tree is a spanning tree represented by a sparse matrix.
Output pred is a vector containing the predecessor nodes of the minimal spanning
tree (MST), with the root node indicated by 0. The root node defaults to the first node
in the largest connected component. This computation requires an extra call to the
graphconncomp function.

[Tree, pred] = graphminspantree(G, R) sets the root of the minimal spanning
tree to node R.

 graphminspantree

1-911

[Tree,

pred] = graphminspantree(..., 'PropertyName', PropertyValue, ...)

calls graphminspantree with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each PropertyName
must be enclosed in single quotes and is case insensitive. These property name/property
value pairs are as follows:

[Tree, pred] = graphminspantree(..., 'Method', MethodValue, ...) lets
you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

• 'Kruskal' — Grows the minimal spanning tree (MST) one edge at a time by
finding an edge that connects two trees in a spreading forest of growing MSTs. Time
complexity is O(E+X*log(N)), where X is the number of edges no longer than the
longest edge in the MST, and N and E are the number of nodes and edges respectively.

• 'Prim' — Default algorithm. Grows the minimal spanning tree (MST) one edge at
a time by adding a minimal edge that connects a node in the growing MST with any
other node. Time complexity is O(E*log(N)), where N and E are the number of nodes
and edges respectively.

Note: When the graph is unconnected, Prim's algorithm returns only the tree that
contains R, while Kruskal's algorithm returns an MST for every component.

[Tree, pred] = graphminspantree(..., 'Weights', WeightsValue, ...)

lets you specify custom weights for the edges. WeightsValue is a column vector having
one entry for every nonzero value (edge) in matrix G. The order of the custom weights in
the vector must match the order of the nonzero values in matrix G when it is traversed
column-wise. By default, graphminspantree gets weight information from the nonzero
entries in matrix G.

Examples

1 Create and view an undirected graph with 6 nodes and 11 edges.

W = [.41 .29 .51 .32 .50 .45 .38 .32 .36 .29 .21];

DG = sparse([1 1 2 2 3 4 4 5 5 6 6],[2 6 3 5 4 1 6 3 4 2 5],W);

UG = tril(DG + DG')

UG =

1 Alphabetical List

1-912

 (2,1) 0.4100

 (4,1) 0.4500

 (6,1) 0.2900

 (3,2) 0.5100

 (5,2) 0.3200

 (6,2) 0.2900

 (4,3) 0.5000

 (5,3) 0.3200

 (5,4) 0.3600

 (6,4) 0.3800

 (6,5) 0.2100

view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

 graphminspantree

1-913

2 Find and view the minimal spanning tree of the undirected graph.

 [ST,pred] = graphminspantree(UG)

ST =

 (6,1) 0.2900

 (6,2) 0.2900

 (5,3) 0.3200

 (5,4) 0.3600

 (6,5) 0.2100

pred =

 0 6 5 5 6 1

view(biograph(ST,[],'ShowArrows','off','ShowWeights','on'))

1 Alphabetical List

1-914

References

[1] Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proceedings of the American Mathematical Society 7, 48-50.

[2] Prim, R. (1957). Shortest Connection Networks and Some Generalizations. Bell
System Technical Journal 36, 1389-1401.

[3] Siek, J.G. Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

 graphminspantree

1-915

See Also
graphallshortestpaths | minspantree | graphconncomp | graphisdag |
graphisomorphism | graphisspantree | graphmaxflow | graphpred2path |
graphshortestpath | graphtopoorder | graphtraverse

1 Alphabetical List

1-916

graphpred2path

Convert predecessor indices to paths

Syntax

path = graphpred2path(pred, D)

Arguments

pred Row vector or matrix of predecessor node indices. The value of the root (or
source) node in pred must be 0.

D Destination node in pred.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

path = graphpred2path(pred, D) traces back a path by following the predecessor
list in pred starting at destination node D.

The value of the root (or source) node in pred must be 0. If a NaN is found when
following the predecessor nodes, graphpred2path returns an empty path.

If pred is a ... And D is a ... Then path is a ...

scalar row vector listing the nodes from the root (or
source) to D.

row vector of
predecessor node
indices row vector row cell array with every column containing the

path to the destination for every element in D.

 graphpred2path

1-917

If pred is a ... And D is a ... Then path is a ...

scalar column cell array with every row containing the
path for every row in pred.

matrix

row vector matrix cell array with every row containing the
paths for the respective row in pred, and every
column containing the paths to the respective
destination in D.

Note: If D is omitted, the paths to all the destinations are calculated for every
predecessor listed in pred.

Examples

1 Create a phytree object from the phylogenetic tree file for the GLR_HUMAN protein.

tr = phytreeread('pf00002.tree')

 Phylogenetic tree object with 33 leaves (32 branches)

2 View the phytree object.

view(tr)

1 Alphabetical List

1-918

3 From the phytree object, create a connection matrix to represent the phylogenetic
tree.

[CM,labels,dist] = getmatrix(tr);

4 Find the nodes from the root to one leaf in the phylogenetic tree created from the
phylogenetic tree file for the GLR_HUMAN protein.

root_loc = size(CM,1)

root_loc =

 65

 glr_loc = strncmp('GLR',labels,3);

 graphpred2path

1-919

 glr_loc_ind = find(glr_loc)

glr_loc_ind =

 12

[T,PRED]=graphminspantree(CM,root_loc);

PATH = graphpred2path(PRED,glr_loc_ind)

PATH =

 65 64 53 52 46 45 44 43 12

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | graphconncomp | graphisdag | graphisomorphism |
graphisspantree | graphmaxflow | graphminspantree | graphshortestpath |
graphtopoorder | graphtraverse

1 Alphabetical List

1-920

graphshortestpath
Solve shortest path problem in graph

Syntax

[dist, path, pred] = graphshortestpath(G, S)

[dist, path, pred] = graphshortestpath(G, S, T)

[...] = graphshortestpath(..., 'Directed', DirectedValue, ...)

[...] = graphshortestpath(..., 'Method', MethodValue, ...)

[...] = graphshortestpath(..., 'Weights', WeightsValue, ...)

Arguments

G N-by-N sparse matrix that represents a graph. Nonzero entries in
matrix G represent the weights of the edges.

S Node in G.
T Node in G.
DirectedValue Property that indicates whether the graph is directed or

undirected. Enter false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is
true.

MethodValue String that specifies the algorithm used to find the shortest path.
Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be
nonzero entries in sparse matrix G. Time complexity is
O(N*E), where N and E are the number of nodes and edges
respectively.

• 'BFS' — Breadth-first search. Assumes all weights to be
equal, and nonzero entries in sparse matrix G to represent
edges. Time complexity is O(N+E), where N and E are the
number of nodes and edges respectively.

• 'Acyclic' — Assumes G to be a directed acyclic graph and
that weights of the edges are nonzero entries in sparse matrix

 graphshortestpath

1-921

G. Time complexity is O(N+E), where N and E are the number
of nodes and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes weights of
the edges to be positive values in sparse matrix G. Time
complexity is O(log(N)*E), where N and E are the number of
nodes and edges respectively.

WeightsValue Column vector that specifies custom weights for the edges in
matrix G. It must have one entry for every nonzero value (edge)
in matrix G. The order of the custom weights in the vector
must match the order of the nonzero values in matrix G when
it is traversed column-wise. This property lets you use zero-
valued weights. By default, graphshortestpaths gets weight
information from the nonzero entries in matrix G.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[dist, path, pred] = graphshortestpath(G, S) determines the single-source
shortest paths from node S to all other nodes in the graph represented by matrix G.
Input G is an N-by-N sparse matrix that represents a graph. Nonzero entries in matrix
G represent the weights of the edges. dist are the N distances from the source to every
node (using Infs for nonreachable nodes and 0 for the source node). path contains the
winning paths to every node. pred contains the predecessor nodes of the winning paths.

[dist, path, pred] = graphshortestpath(G, S, T) determines the single
source-single destination shortest path from node S to node T.

[...] = graphshortestpath(..., 'PropertyName', PropertyValue, ...)

calls graphshortestpath with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each PropertyName
must be enclosed in single quotes and is case insensitive. These property name/property
value pairs are as follows:

[...] = graphshortestpath(..., 'Directed', DirectedValue, ...)

indicates whether the graph is directed or undirected. Set DirectedValue to false

1 Alphabetical List

1-922

for an undirected graph. This results in the upper triangle of the sparse matrix being
ignored. Default is true.

[...] = graphshortestpath(..., 'Method', MethodValue, ...) lets you
specify the algorithm used to find the shortest path. Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be nonzero entries in sparse
matrix G. Time complexity is O(N*E), where N and E are the number of nodes and
edges respectively.

• 'BFS' — Breadth-first search. Assumes all weights to be equal, and nonzero entries
in sparse matrix G to represent edges. Time complexity is O(N+E), where N and E are
the number of nodes and edges respectively.

• 'Acyclic' — Assumes G to be a directed acyclic graph and that weights of the edges
are nonzero entries in sparse matrix G. Time complexity is O(N+E), where N and E are
the number of nodes and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes weights of the edges to be positive values
in sparse matrix G. Time complexity is O(log(N)*E), where N and E are the number
of nodes and edges respectively.

[...] = graphshortestpath(..., 'Weights', WeightsValue, ...) lets you
specify custom weights for the edges. WeightsValue is a column vector having one entry
for every nonzero value (edge) in matrix G. The order of the custom weights in the vector
must match the order of the nonzero values in matrix G when it is traversed column-wise.
This property lets you use zero-valued weights. By default, graphshortestpath gets
weight information from the nonzero entries in matrix G.

Examples

Finding the Shortest Path in a Directed Graph

1 Create and view a directed graph with 6 nodes and 11 edges.

W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21];

DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W)

DG =

 (4,1) 0.4500

 (6,2) 0.4100

 (2,3) 0.5100

 graphshortestpath

1-923

 (5,3) 0.3200

 (6,3) 0.2900

 (3,4) 0.1500

 (5,4) 0.3600

 (1,5) 0.2100

 (2,5) 0.3200

 (1,6) 0.9900

 (4,6) 0.3800

h = view(biograph(DG,[],'ShowWeights','on'))

Biograph object with 6 nodes and 11 edges.

2 Find the shortest path in the graph from node 1 to node 6.

[dist,path,pred] = graphshortestpath(DG,1,6)

1 Alphabetical List

1-924

dist =

 0.9500

path =

 1 5 4 6

pred =

 0 6 5 5 1 4

3 Mark the nodes and edges of the shortest path by coloring them red and increasing
the line width.

set(h.Nodes(path),'Color',[1 0.4 0.4])

edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));

set(edges,'LineColor',[1 0 0])

set(edges,'LineWidth',1.5)

 graphshortestpath

1-925

Finding the Shortest Path in an Undirected Graph

1 Create and view an undirected graph with 6 nodes and 11 edges.

UG = tril(DG + DG')

UG =

 (4,1) 0.4500

 (5,1) 0.2100

 (6,1) 0.9900

 (3,2) 0.5100

 (5,2) 0.3200

 (6,2) 0.4100

1 Alphabetical List

1-926

 (4,3) 0.1500

 (5,3) 0.3200

 (6,3) 0.2900

 (5,4) 0.3600

 (6,4) 0.3800

h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

Biograph object with 6 nodes and 11 edges.

2 Find the shortest path in the graph from node 1 to node 6.

[dist,path,pred] = graphshortestpath(UG,1,6,'directed',false)

dist =

 graphshortestpath

1-927

 0.8200

path =

 1 5 3 6

pred =

 0 5 5 1 1 3

3 Mark the nodes and edges of the shortest path by coloring them red and increasing
the line width.

set(h.Nodes(path),'Color',[1 0.4 0.4])

 fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));

 revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID'));

 edges = [fowEdges;revEdges];

 set(edges,'LineColor',[1 0 0])

 set(edges,'LineWidth',1.5)

1 Alphabetical List

1-928

References

[1] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269-271.

[2] Bellman, R. (1958). On a Routing Problem. Quarterly of Applied Mathematics 16(1),
87-90.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

 graphshortestpath

1-929

See Also
graphallshortestpaths | shortestpath | graphconncomp | graphisdag |
graphisomorphism | graphisspantree | graphmaxflow | graphminspantree |
graphpred2path | graphtopoorder | graphtraverse

1 Alphabetical List

1-930

graphtopoorder
Perform topological sort of directed acyclic graph

Syntax

order = graphtopoorder(G)

Arguments

G N-by-N sparse matrix that represents a directed acyclic graph. Nonzero entries
in matrix G indicate the presence of an edge.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

order = graphtopoorder(G) returns an index vector with the order of the nodes
sorted topologically. In topological order, an edge can exist between a source node u and
a destination node v, if and only if u appears before v in the vector order. G is an N-by-N
sparse matrix that represents a directed acyclic graph (DAG). Nonzero entries in matrix
G indicate the presence of an edge.

Examples

1 Create and view a directed acyclic graph (DAG) with six nodes and eight edges.

DG = sparse([6 6 6 2 2 3 5 1],[2 5 1 3 4 5 1 4],true,6,6)

DG =

 (5,1) 1

 graphtopoorder

1-931

 (6,1) 1

 (6,2) 1

 (2,3) 1

 (1,4) 1

 (2,4) 1

 (3,5) 1

 (6,5) 1

view(biograph(DG))

2 Find the topological order of the DAG.

order = graphtopoorder(DG)

order =

1 Alphabetical List

1-932

 6 2 3 5 1 4

3 Permute the nodes so that they appear ordered in the graph display.

DG = DG(order,order)

DG =

 (1,2) 1

 (2,3) 1

 (1,4) 1

 (3,4) 1

 (1,5) 1

 (4,5) 1

 (2,6) 1

 (5,6) 1

view(biograph(DG))

 graphtopoorder

1-933

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | topoorder | graphconncomp | graphisdag |
graphisomorphism | graphisspantree | graphmaxflow | graphminspantree |
graphpred2path | graphshortestpath | graphtraverse

1 Alphabetical List

1-934

graphtraverse

Traverse graph by following adjacent nodes

Syntax

[disc, pred, closed] = graphtraverse(G, S)

[...] = graphtraverse(G, S, ...'Depth', DepthValue, ...)

[...] = graphtraverse(G, S, ...'Directed', DirectedValue, ...)

[...] = graphtraverse(G, S, ...'Method', MethodValue, ...)

Arguments

G N-by-N sparse matrix that represents a directed graph. Nonzero
entries in matrix G indicate the presence of an edge.

S Integer that indicates the source node in graph G.
DepthValue Integer that indicates a node in graph G that specifies the depth

of the search. Default is Inf (infinity).
DirectedValue Property that indicates whether graph G is directed or

undirected. Enter false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is
true.

MethodValue String that specifies the algorithm used to traverse the graph.
Choices are:

• 'BFS' — Breadth-first search. Time complexity is O(N+E),
where N and E are number of nodes and edges respectively.

• 'DFS' — Default algorithm. Depth-first search. Time
complexity is O(N+E), where N and E are number of nodes
and edges respectively.

 graphtraverse

1-935

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[disc, pred, closed] = graphtraverse(G, S) traverses graph G starting from
the node indicated by integer S. G is an N-by-N sparse matrix that represents a directed
graph. Nonzero entries in matrix G indicate the presence of an edge. disc is a vector of
node indices in the order in which they are discovered. pred is a vector of predecessor
node indices (listed in the order of the node indices) of the resulting spanning tree.
closed is a vector of node indices in the order in which they are closed.

[...] = graphtraverse(G, S, ...'PropertyName', PropertyValue, ...)

calls graphtraverse with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property name/property value
pairs are as follows:

[...] = graphtraverse(G, S, ...'Depth', DepthValue, ...) specifies the
depth of the search. DepthValue is an integer indicating a node in graph G. Default is
Inf (infinity).

[...] = graphtraverse(G, S, ...'Directed', DirectedValue, ...)

indicates whether the graph is directed or undirected. Set DirectedValue to false
for an undirected graph. This results in the upper triangle of the sparse matrix being
ignored. Default is true.

[...] = graphtraverse(G, S, ...'Method', MethodValue, ...) lets you
specify the algorithm used to traverse the graph. Choices are:

• 'BFS' — Breadth-first search. Time complexity is O(N+E), where N and E are number
of nodes and edges respectively.

• 'DFS' — Default algorithm. Depth-first search. Time complexity is O(N+E), where N
and E are number of nodes and edges respectively.

Examples
1 Create a directed graph with 10 nodes and 12 edges.

1 Alphabetical List

1-936

DG = sparse([1 2 3 4 5 5 5 6 7 8 8 9],...

 [2 4 1 5 3 6 7 9 8 1 10 2],true,10,10)

DG =

 (3,1) 1

 (8,1) 1

 (1,2) 1

 (9,2) 1

 (5,3) 1

 (2,4) 1

 (4,5) 1

 (5,6) 1

 (5,7) 1

 (7,8) 1

 (6,9) 1

 (8,10) 1

h = view(biograph(DG))

Biograph object with 10 nodes and 12 edges.

 graphtraverse

1-937

2 Traverse the graph to find the depth-first search (DFS) discovery order starting at
node 4.

order = graphtraverse(DG,4)

order =

 4 5 3 1 2 6 9 7 8 10

3 Label the nodes with the DFS discovery order.

for i = 1:10

 h.Nodes(order(i)).Label =...

1 Alphabetical List

1-938

 sprintf('%s:%d',h.Nodes(order(i)).ID,i);

end

h.ShowTextInNodes = 'label'

dolayout(h)

4 Traverse the graph to find the breadth-first search (BFS) discovery order starting at
node 4.

order = graphtraverse(DG,4,'Method','BFS')

order =

 4 5 3 6 7 1 9 8 2 10

 graphtraverse

1-939

5 Label the nodes with the BFS discovery order.

for i = 1:10

 h.Nodes(order(i)).Label =...

 sprintf('%s:%d',h.Nodes(order(i)).ID,i);

end

h.ShowTextInNodes = 'label'

dolayout(h)

6 Find and color nodes that are close to (within two edges of) node 4.

node_idxs = graphtraverse(DG,4,'depth',2)

1 Alphabetical List

1-940

node_idxs =

 4 5 3 6 7

set(h.nodes(node_idxs),'Color',[1 0 0])

References

[1] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

 graphtraverse

1-941

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
graphallshortestpaths | traverse | graphconncomp | graphisdag |
graphisomorphism | graphisspantree | graphmaxflow | graphminspantree |
graphpred2path | graphshortestpath | graphtopoorder

1 Alphabetical List

1-942

gt (DataMatrix)
Test DataMatrix objects for greater than

Syntax

T = gt(DMObj1, DMObj2)

T = DMObj1 > DMObj2

T = gt(DMObj1, B)

T = DMObj1 > B

T = gt(B, DMObj1)

T = B > DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

T Logical matrix of the same size as DMObj1 and DMObj2 or
DMObj1 and B. It contains logical 1 (true) where elements in the
first input are greater than the corresponding element in the
second input, and logical 0 (false) otherwise.

Description

T = gt(DMObj1, DMObj2) or the equivalent T = DMObj1 > DMObj2 compares each
element in DataMatrix object DMObj1 to the corresponding element in DataMatrix
object DMObj2, and returns T, a logical matrix of the same size as DMObj1 and DMObj2,
containing logical 1 (true) where elements in DMObj1 are greater than the corresponding
element in DMObj2, and logical 0 (false) otherwise. DMObj1 and DMObj2 must have

 gt (DataMatrix)

1-943

the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix
object). DMObj1 and DMObj2 can have different Name properties.

T = gt(DMObj1, B) or the equivalent T = DMObj1 > B compares each element in
DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array,
and returns T, a logical matrix of the same size as DMObj1 and B, containing logical 1
(true) where elements in DMObj1 are greater than the corresponding element in B, and
logical 0 (false) otherwise. DMObj1 and B must have the same size (number of rows and
columns), unless one is a scalar.

T = gt(B, DMObj1) or the equivalent T = B > DMObj1 compares each element in B, a
numeric or logical array, to the corresponding element in DataMatrix object DMObj1, and
returns T, a logical matrix of the same size as B and DMObj1, containing logical 1 (true)
where elements in B are greater than the corresponding element in DMObj1, and logical 0
(false) otherwise. B and DMObj1 must have the same size (number of rows and columns),
unless one is a scalar.

MATLAB calls T = gt(X, Y) for the syntax T = X > Y when X or Y is a DataMatrix
object.

More About
• “DataMatrix object”

See Also
DataMatrix | lt

1 Alphabetical List

1-944

GTFAnnotation class

Represent Gene Transfer Format (GTF) annotations

Description
The GTFAnnotation class contains annotations for one or more reference sequences,
conforming to the GTF file format.

You construct a GTFAnnotation object from a GTF-formatted file. Each element in
the object represents an annotation. Use the object properties and methods to filter
annotations by feature, reference sequence, or reference sequence position. Use object
methods to extract data for a subset of annotations into an array of structures.

Construction
Annotobj = GTFAnnotation(File) constructs Annotobj, a GTFAnnotation object,
from File, a GTF-formatted file.

Input Arguments

File

String specifying a GTF-formatted file.

Default:

Properties
FieldNames

Cell array of strings specifying the names of the available data fields for each annotation
in the GTFAnnotation object. This property is read only.

NumEntries

Integer specifying number of annotations in the GTFAnnotation object. This property is
read only.

 GTFAnnotation class

1-945

Methods

getData
Create structure containing subset of data
from GTFAnnotation object

getExons
Return table of exons from
GTFAnnotation object

getFeatureNames
Retrieve unique feature names from
GTFAnnotation object

getGenes
Return table of unique genes in
GTFAnnotation object

getGeneNames
Retrieve unique gene names from
GTFAnnotation object

getIndex
Return index array of annotations from
GTFAnnotation object

getRange
Retrieve range of annotations from
GTFAnnotation object

getReferenceNames
Retrieve reference names from
GTFAnnotation object

getSegments
Return table of non-overlapping segments
from GTFAnnotation object

getSubset
Create object containing subset of elements
from GTFAnnotation object

getTranscripts
Return table of unique transcripts in
GTFAnnotation object

1 Alphabetical List

1-946

getTranscriptNames
Retrieve unique transcript names from
GTFAnnotation object

Copy Semantics

Value. To learn how value classes affect copy operations, see “Copying Objects” in the
MATLAB documentation.

Indexing

GTFAnnotation objects support dot . indexing to extract properties.

Examples

Construct a GTFAnnotation object from a GTF-formatted file that is provided with
Bioinformatics Toolbox:

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf')

GTFAnnotObj =

 GTFAnnotation with properties:

 FieldNames: {1x11 cell}

 NumEntries: 308

See Also
GFFAnnotation

How To
• “Store and Manage Feature Annotations in Objects”

Related Links
• GTF2.2: A Gene Annotation Format

http://mblab.wustl.edu/GTF22.html

 HeatMap object

1-947

HeatMap object
Object containing matrix and heat map display properties

Description
A HeatMap object contains data and display properties that you can view in a heat map
(2-D color image).

Create a HeatMap object using the object constructor function HeatMap. View a
graphical representation of the HeatMap object in a heat map using the view method.

The HeatMap class is a superclass of the clustergram class.

Method Summary
Following are methods of a HeatMap object:

addTitle (HeatMap)
Add title to heat map

addXLabel (HeatMap)
Label x-axis of heat map

addYLabel (HeatMap)
Label y-axis of heat map

plot (HeatMap)
Render heat map for HeatMap object

view (HeatMap)
View heat map of HeatMap object

Property Summary

Properties for Heat Map Creation

Property Name Description

Standardize String or number specifying the dimension for standardizing
the data values. The standardized values are transformed

1 Alphabetical List

1-948

Property Name Description

so that the mean is 0 and the standard deviation is 1 in the
specified dimension. Choices are:

• 'column' or 1 — Standardize along the columns of data.
• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

Colormap Either of the following:

• M-by-3 matrix of RGB values
• Name or function handle of a function that returns a

colormap, such as redgreencmap or redbluecmap

Default is redgreencmap.
DisplayRange Positive scalar specifying the display range of standardized

values. Default is the maximum absolute value in the input
matrix.

For example, if you specify 3, there is a color variation for
values between –3 and 3, but values >3 are the same color as
3, and values < –3 are the same color as –3.

For example, if you specify redgreencmap for the
'Colormap' property, pure red represents values ≥
DisplayRangeValue, and pure green represents values ≤
–DisplayRangeValue.

Symmetric Forces the color scale of the heat map to be symmetric
around zero. Choices are true (default) or false.

ImputeFun One of the following:

• Name of a function that imputes missing data.
• Handle to a function that imputes missing data.
• Cell array where the first element is the name of or

handle to a function that imputes missing data. The
remaining elements are property name/property value
pairs used as inputs to the function.

 HeatMap object

1-949

Properties for Row and Column Labels

Property Name Description

RowLabels Vector of numbers or cell array of text strings to label the
rows in the heat map. Default is a vector of values 1 through
M, where M is the number of rows in Data, the matrix of
data used by the HeatMap function to create the HeatMap
object.

ColumnLabels Vector of numbers or cell array of text strings to label the
columns in the heat map. Default is a vector of values 1
through M, where M is the number of columns in Data, the
matrix of data used by the HeatMap function to create the
HeatMap object.

ColumnLabelsLocation String specifying the location of the column labels. Choices
are 'top' or 'bottom' (default).

RowLabelsLocation String specifying the location of the row labels. Choices are
'left' (default) or 'right'.

RowLabelsColor Structure or structure array containing color information
for labeling the rows (y-axis) of the heat map. If a single
structure, then the fields contain a cell array of elements. If a
structure array, then the fields contain one element:

• Labels — String specifying a row label listed in the
RowLabels vector.

• Colors — String or three-element vector of RGB values
specifying a color for the row label specified in the Labels
field. For more information on specifying colors, see
ColorSpec. If this field is empty, default colors are
assigned to the row label.

ColumnLabelsColor Structure or structure array containing color information
for labeling the columns (x-axis) of the heat map. If a single
structure, then the fields contain a cell array of elements. If a
structure array, then the fields contain one element:

• Labels — String specifying a column label listed in the
ColumnLabels vector.

• Colors — String or three-element vector of RGB values
specifying a color for the column label specified in the

1 Alphabetical List

1-950

Property Name Description

Labels field. For more information on specifying colors,
see ColorSpec. If this field is empty, default colors are
assigned to the column label.

LabelsWithMarkers Controls the display of colored markers instead of colored
text for the row labels and column labels. Choices are true
or false (default).

RowLabelsRotate Numeric value in degrees rotation specifying the orientation
of row (y-axis) labels. Default is 0 degrees, which is
horizontal. Positive values cause counterclockwise rotation.

ColumnLabelsRotate Numeric value in degrees rotation specifying the
orientation of column (x-axis) labels. Default is 90 degrees,
which is vertical. Values greater than 90 degrees cause
counterclockwise rotation.

Properties for Annotating Data

Property Name Description

Annotate Controls the display of intensity values on each area of the
heat map. Choices are true or false (default).

AnnotPrecision Positive integer specifying the precision of the intensity
values when displayed on the heat map. Default is 2.

AnnotColor String or three-element vector of RGB values specifying a
color for the text of the intensity values when displayed on
the heat map. Default is 'white'. For more information on
specifying colors, see ColorSpec.

Examples

Note: The following examples use the get and set methods with property names and
values of a HeatMap object. When supplying a PropertyName, be aware that it is case
sensitive.

 HeatMap object

1-951

Determining Properties and Property Values of a HeatMap Object

Display all properties and their current values of a HeatMap object, HMobj:

get(HMobj)

Return all properties and their current values of HMobj, a HeatMap object, to CGstruct,
a scalar structure in which each field name is a property of a HeatMap object, and each
field contains the value of that property.

CGstruct = get(HMobj)

Return the value of a specific property of a HeatMap object, HMobj, using either:

PropertyValue = get(HMobj, 'PropertyName')

PropertyValue = HMobj.PropertyName

Return the value of specific properties of a HeatMap object, HMobj:

[Property1Value, Property2Value, ...] = get(HMobj, ...

'Property1Name', 'Property2Name', ...)

Determining Possible Values of HeatMap Object Properties

Display possible values for all properties that have a fixed set of property values in a
HeatMap object, HMobj:

set(HMobj)

Display possible values for a specific property that has a fixed set of property values in a
HeatMap object, HMobj:

set(HMobj, 'PropertyName')

Specifying Properties of a HeatMap Object

Set a specific property of a HeatMap object, HMobj, using either:

set(HMobj, 'PropertyName', PropertyValue)

HMobj.PropertyName = PropertyValue

Set multiple properties of a HeatMap object, HMobj:

set(HMobj, 'Property1Name', Property1Value, ...

1 Alphabetical List

1-952

 'Property2Name', Property2Value, ...)

See Also
HeatMap | addXLabel | plot | view | addTitle | addYLabel | display

 HeatMap

1-953

HeatMap
Display heat map of matrix data and create HeatMap object

Syntax

HMobj = HeatMap(Data)

HeatMap(Data, ...'RowLabels', RowLabelsValue, ...)

HeatMap(Data, ...'ColumnLabels', ColumnLabelsValue, ...)

HeatMap(Data, ...'Standardize', StandardizeValue, ...)

HeatMap(Data, ...'Colormap', ColormapValue, ...)

HeatMap(Data, ...'DisplayRange', DisplayRangeValue, ...)

HeatMap(Data, ...'Symmetric', SymmetricValue, ...)

HeatMap(Data, ...'ImputeFun', ImputeFunValue, ...)

HeatMap(Data, ...'RowLabelsColor', RowLabelsColorValue, ...)

HeatMap(Data, ...'ColumnLabelsColor', ColumnLabelsColorValue, ...)

HeatMap(Data, ...'LabelsWithMarkers', LabelsWithMarkersValue, ...)

Arguments

Data DataMatrix object or numeric matrix of data.
RowLabelsValue Vector of numbers or cell array of text strings to label

the rows in the heat map. Default is a vector of values
1 through M, where M is the number of rows in Data.

ColumnLabelsValue Vector of numbers or cell array of text strings to label
the columns in the heat map. Default is a vector of
values 1 through N, where N is the number of columns
in Data.

StandardizeValue String or number specifying the dimension for
standardizing the values in Data. The HeatMap
function transforms the standardized values so that
the mean is 0 and the standard deviation is 1 in the
specified dimension. Choices are:

• 'column' or 1 — Standardize along the columns of
data.

1 Alphabetical List

1-954

• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

ColormapValue Either of the following:

• M-by-3 matrix of RGB values
• Name of or handle to a function that returns a

colormap, such as redgreencmap or redbluecmap

Default is redgreencmap, in which red represents
values above the mean, black represents the mean, and
green represents values below the mean of a row (gene)
across all columns (samples).

DisplayRangeValue Positive scalar that specifies the display range of
standardized values. Default is the maximum absolute
value in the input Data.

For example, if you specify 3, there is a color variation
for values between –3 and 3, but values >3 are the
same color as 3, and values < –3 are the same color as
–3.

For example, if you specify redgreencmap for the
'Colormap' property, pure red represents values
≥ DisplayRangeValue, and pure green represents
values ≤ –DisplayRangeValue.

SymmetricValue Forces the color scale of the heat map to be symmetric
around zero. Choices are true (default) or false.

 HeatMap

1-955

ImputeFunValue One of the following:

• Name of a function that imputes missing data.
• Handle to a function that imputes missing data.
• Cell array where the first element is the name of or

handle to a function that imputes missing data. The
remaining elements are property name/property
value pairs used as inputs to the function.

Tip If data points are missing, you can use the
'ImputeFun' property to impute the missing values.

RowLabelsColorValue Structure or structure array containing color
information for labeling the rows (y-axis) of the heat
map. The structure or structures contain the following
fields. If a single structure, then the fields contain a
cell array of elements. If a structure array, then the
fields contain a single element.

• Labels — String specifying a row label listed in
the RowLabels vector.

• Colors — String or three-element vectors of RGB
values specifying a color for the row label you
specified in the Labels field. For more information
on specifying colors, see ColorSpec. If this field is
empty, default colors are assigned to the row label.

1 Alphabetical List

1-956

ColumnLabelsColorValue Structure or structure array containing color
information for labeling the columns (x-axis) of the
heat map. The structure or structures contain the
following fields. If a single structure, then the fields
contain a cell array of elements. If a structure array,
then the fields contain a single element.

• Labels — String specifying a column label listed in
the ColumnLabels vector.

• Colors — String or three-element vector of RGB
values specifying a color for the column label you
specified in the Labels field. For more information
on specifying colors, see ColorSpec. If this field
is empty, default colors are assigned to the column
label.

LabelsWithMarkersValue Controls the display of colored markers instead of
colored text for the row labels and column labels.
Choices are true or false (default).

Description
HMobj = HeatMap(Data) displays a heat map (2-D color image) of the data and returns
an object containing the data and display properties.

HeatMap(Data, ...'PropertyName', PropertyValue, ...) calls HeatMap with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:

HeatMap(Data, ...'RowLabels', RowLabelsValue, ...) uses the contents of
RowLabelsValue, a vector of numbers or cell array of text strings, as labels for the rows
in the heat map. Default is a vector of values 1 through M, where M is the number of
rows in Data.

HeatMap(Data, ...'ColumnLabels', ColumnLabelsValue, ...) uses the
contents of ColumnLabelsValue, a vector of numbers or cell array of text strings, as
labels for the columns in the heat map. Default is a vector of values 1 through M, where
M is the number of columns in Data.

 HeatMap

1-957

HeatMap(Data, ...'Standardize', StandardizeValue, ...) specifies the
dimension for standardizing the values in Data. The HeatMap function transforms the
standardized values are so that the mean is 0 and the standard deviation is 1 in the
specified dimension. StandardizeValue can be:

• 'column' or 1 — Standardize along the columns of data.
• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

HeatMap(Data, ...'Colormap', ColormapValue, ...) specifies the colormap
to use to create the heat map. The colormap controls the colors used to display the heat
map. ColormapValue is either an M-by-3 matrix of RGB values or the name of or handle
to a function that returns a colormap, such as redgreencmap or redbluecmap. Default
is redgreencmap.

Note: In redgreencmap, red represents values above the mean, black represents the
mean, and green represents values below the mean of a row (gene) across all columns
(samples). In redbluecmap, red represents values above the mean, white represents
the mean, and blue represents values below the mean of a row (gene) across all columns
(samples).

HeatMap(Data, ...'DisplayRange', DisplayRangeValue, ...) specifies the
display range of standardized values. DisplayRangeValue must be a positive scalar.
Default is the maximum absolute value in the input Data. For example, if you specify 3,
there is a color variation for values between –3 and 3, but values >3 are the same color as
3, and values < –3 are the same color as –3.

For example, if you specify redgreencmap for the 'Colormap' property, pure
red represents values ≥ DisplayRangeValue, and pure green represents values ≤
–DisplayRangeValue.

HeatMap(Data, ...'Symmetric', SymmetricValue, ...) controls whether the
color scale of the heat map is symmetric around zero. SymmetricValue can be true
(default) or false.

HeatMap(Data, ...'ImputeFun', ImputeFunValue, ...) specifies a function and
optional inputs that impute missing data. ImputeFunValue can be any of the following:

• Name of a function that imputes missing data.

1 Alphabetical List

1-958

• Handle to a function that imputes missing data.
• Cell array where the first element is the name of or handle to a function that imputes

missing data. The remaining elements are property name/property value pairs used
as inputs to the function.

Tip If data points are missing, you can use the 'ImputeFun' property to impute the
missing values.

HeatMap(Data, ...'RowLabelsColor', RowLabelsColorValue, ...) specifies
color information for labeling the rows (y-axis) of the heat map.

HeatMap(Data, ...'ColumnLabelsColor', ColumnLabelsColorValue, ...)

specifies color information for labeling the columns (x-axis) of the heat map.

HeatMap(Data, ...'LabelsWithMarkers', LabelsWithMarkersValue, ...)

controls the display of colored markers instead of colored text for the row labels and
column labels. Choices are true or false (default).

Examples

Plot a heatmap of a data matrix

This example shows plot a heatmap of a data matrix

Create a matrix of data.

data = gallery('invhess',20);

Display a 2-D color image of the data.

hmo = HeatMap(data)

HeatMap object with 20 rows and 20 columns.

 HeatMap

1-959

More About
• “HeatMap object”

See Also
redbluecmap | addXLabel | plot | view | redgreencmap | addTitle | addYLabel

1 Alphabetical List

1-960

hmmprofalign

Align query sequence to profile using hidden Markov model alignment

Syntax

Score = hmmprofalign(Model, Seq)

[Score, Alignment] = hmmprofalign(Model, Seq)

[Score, Alignment, Pointer] = hmmprofalign(Model, Seq)

hmmprofalign(..., 'ShowScore', ShowScoreValue, ...)

hmmprofalign(..., 'Flanks', FlanksValue, ...)

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue, ...)

hmmprofalign(..., 'ScoreNullTransitions',

ScoreNullTransitionsValue, ...)

Arguments

Model Hidden Markov model created with the function
hmmprofstruct.

Seq Amino acid or nucleotide sequence. You can also
enter a structure with the field Sequence.

ShowScoreValue Controls the display of the scoring space and
the winning path. Choices are true or false
(default).

FlanksValue Controls the inclusion of the symbols generated
by the FLANKING INSERT states in the output
sequence. Choices are true or false (default).

ScoreFlanksValue Controls the inclusion of the transition
probabilities for the flanking states in the raw
score. Choices are true or false (default).

ScoreNullTransitionsValue Controls the adjustment of the raw score using the
null model for transitions (Model.NullX). Choices
are true or false (default).

 hmmprofalign

1-961

Description
Score = hmmprofalign(Model, Seq) returns the score for the optimal alignment of
the query amino acid or nucleotide sequence (Seq) to the profile hidden Markov model
(Model). Scores are computed using log-odd ratios for emission probabilities and log
probabilities for state transitions.

[Score, Alignment] = hmmprofalign(Model, Seq) also returns a string showing
the optimal profile alignment.

Uppercase letters and dashes correspond to MATCH and DELETE states respectively
(the combined count is equal to the number of states in the model). Lowercase letters
are emitted by the INSERT states. For more information about the HMM profile, see
hmmprofstruct.

[Score, Alignment, Pointer] = hmmprofalign(Model, Seq) also returns a
vector of the same length as the profile model with indices pointing to the respective
symbols of the query sequence. Null pointers (NaN) mean that such states did not emit
a symbol in the aligned sequence because they represent model jumps from the BEGIN
state of a MATCH state, model jumps from the from a MATCH state to the END state, or
because the alignment passed through DELETE states.

hmmprofalign(..., 'PropertyName', PropertyValue, ...) calls
hmmprofalign with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

hmmprofalign(..., 'ShowScore', ShowScoreValue, ...), when
ShowScoreValue is true, displays the scoring space and the winning path.

hmmprofalign(..., 'Flanks', FlanksValue, ...), when FlanksValue is
true, includes the symbols generated by the FLANKING INSERT states in the output
sequence.

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue, ...), when
ScoreFlanksValue is true, includes the transition probabilities for the flanking states
in the raw score.

hmmprofalign(..., 'ScoreNullTransitions',

ScoreNullTransitionsValue, ...), when ScoreNullTransitionsValue is true,
adjusts the raw score using the null model for transitions (Model.NullX).

1 Alphabetical List

1-962

Note: Multiple target alignment is not supported in this implementation. All the
Model.LoopX probabilities are ignored.

Examples

Align query sequence to profile using HMM model alignment

This example shows how to align a query sequence to a HMM model profile using HMM
model alignment.

Load the HMM profile structure of the 7 transmembrane receptor (Secretin family).

load('hmm_model_examples','model_7tm_2');

Load an example sequence and align it to the profile structure using the HMM
alignment.

load('hmm_model_examples','sequences');

humanSeq = sequences(1).Sequence;

[a,s]=hmmprofalign(model_7tm_2,humanSeq,'showscore',true)

a =

 483.7231

s =

YILVKAIYTLGYSVS-LMSLATGSIILCLFRKLHCTRNYIHLNLFLSFILRAISVLVKDDVLYSSSgtlhcpdqpsswvgCKLSLVFLQYCIMANFFWLLVEGLYLHTLL-VA---MLPPRRCFLAYLLIGWGLPTVCIGAWTAAR------------LYLEDTGC-WDTN-DHSVPWWVIRIPILISIIVNFVLFISIIRILLQKLT----SPDVGGNDQSQYKRLAKSTLLLIPLFGVHYMVFAVFPIS----ISSKYQILFELCLGSFQGLVVAVLYCFLNSEV

 hmmprofalign

1-963

See Also
gethmmprof | hmmprofestimate | hmmprofgenerate | hmmprofgenerate |
hmmprofstruct | pfamhmmread | showhmmprof | multialign | profalign

1 Alphabetical List

1-964

hmmprofestimate
Estimate profile hidden Markov model (HMM) parameters using pseudocounts

Syntax
hmmprofestimate(Model, MultipleAlignment,'PropertyName',PropertyValue,...)

hmmprofestimate(..., 'A', AValue)

hmmprofestimate(..., 'Ax', AxValue)

hmmprofestimate(..., 'BE', BEValue)

hmmprofestimate(..., 'BDx', BDxValue)

Arguments

Model Hidden Markov model created with the function
hmmprofstruc.

MultipleAlignment Array of sequences. Sequences can also be a structured
array with the aligned sequences in a field Aligned or
Sequences, and the optional names in a field Header or
Name.

A Property to set the pseudocount weight A. Default value is
20.

Ax Property to set the pseudocount weight Ax. Default value
is 20.

BE Property to set the background symbol emission
probabilities. Default values are taken from
Model.NullEmission.

BMx Property to set the background transition probabilities
from any MATCH state ([M->M M->I M->D]). Default values
are taken from hmmprofstruct.

BDx Property to set the background transition probabilities
from any DELETE state ([D->M D->D]). Default values are
taken from hmmprofstruct.

 hmmprofestimate

1-965

Description
hmmprofestimate(Model, MultipleAlignment, 'PropertyName',

PropertyValue...) returns a structure with the fields containing the updated
estimated parameters of a profile HMM. Symbol emission and state transition
probabilities are estimated using the real counts and weighted pseudocounts obtained
with the background probabilities. Default weight is A=20, the default background
symbol emission for match and insert states is taken from Model.NullEmission,
and the default background transition probabilities are the same as default transition
probabilities returned by hmmprofstruct.

Model Construction: Multiple aligned sequences should contain uppercase letters
and dashes indicating the model MATCH and DELETE states agreeing with
Model.ModelLength. If model state annotation is missing, but MultipleAlignment is
space aligned, then a "maximum entropy" criteria is used to select Model.ModelLength
states.

Note: Insert and flank insert transition probabilities are not estimated, but can be
modified afterwards using hmmprofstruct.

hmmprofestimate(..., 'A', AValue) sets the pseudocount weight A = Avalue
when estimating the symbol emission probabilities. Default value is 20.

hmmprofestimate(...,'Ax', AxValue) sets the pseudocount weight Ax = Axvalue
when estimating the transition probabilities. Default value is 20.

hmmprofestimate(...,'BE', BEValue) sets the background symbol emission
probabilities. Default values are taken from Model.NullEmission.

hmmprofestimate(...,'BMx', BMxValue) sets the background transition
probabilities from any MATCH state ([M->M M->I M->D]). Default values are taken from
hmmprofstruct.

hmmprofestimate(..., 'BDx', BDxValue) sets the background transition
probabilities from any DELETE state ([D->M D->D]). Default values are taken from
hmmprofstruct.

See Also
hmmprofalign | hmmprofstruct | showhmmprof

1 Alphabetical List

1-966

hmmprofgenerate
Generate random sequence drawn from profile hidden Markov model (HMM)

Syntax

Sequence = hmmprofgenerate(Model)

[Sequence, Profptr] = hmmprofgenerate(Model)

... = hmmprofgenerate(Model, ...'Align', AlignValue, ...)

... = hmmprofgenerate(Model, ...'Flanks', FlanksValue, ...)

... = hmmprofgenerate(Model, ...'Signature', SignatureValue, ...)

Arguments

Model Hidden Markov model created with the hmmprofstruct
function.

AlignValue Controls the use of uppercase letters for matches and
lowercase letters for inserted letters. Choices are true or
false (default).

FlanksValue Controls the inclusion of the symbols generated by the
FLANKING INSERT states in the output sequence. Choices
are true or false (default).

SignatureValue Controls the return of the most likely path and symbols.
Choices are true or false (default).

Description

Sequence = hmmprofgenerate(Model) returns the string Sequence showing a
sequence of amino acids or nucleotides drawn from the profile Model. The length,
alphabet, and probabilities of the Model are stored in a structure. For more information
about this structure, see hmmprofstruct.

[Sequence, Profptr] = hmmprofgenerate(Model) returns a vector of the same
length as the profile model pointing to the respective states in the output sequence. Null

 hmmprofgenerate

1-967

pointers (0) mean that such states do not exist in the output sequence, either because
they are never touched (i.e., jumps from the BEGIN state to MATCH states or from
MATCH states to the END state), or because DELETE states are not in the output
sequence (not aligned output; see below).

... = hmmprofgenerate(Model, ...'PropertyName', PropertyValue, ...)

calls hmmprofgenerate with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property name/property value
pairs are as follows:

... = hmmprofgenerate(Model, ...'Align', AlignValue, ...) if Align
is true, the output sequence is aligned to the model as follows: uppercase letters and
dashes correspond to MATCH and DELETE states respectively (the combined count
is equal to the number of states in the model). Lowercase letters are emitted by the
INSERT or FLANKING INSERT states. If AlignValue is false, the output is a
sequence of uppercase symbols. The default value is true.

... = hmmprofgenerate(Model, ...'Flanks', FlanksValue, ...) if Flanks is
true, the output sequence includes the symbols generated by the FLANKING INSERT
states. The default value is false.

... = hmmprofgenerate(Model, ...'Signature', SignatureValue, ...) if
SignatureValue is true, returns the most likely path and symbols. The default value
is false.

Examples
load('hmm_model_examples','model_7tm_2') % load a model example

rand_sequence = hmmprofgenerate(model_7tm_2)

See Also
hmmprofalign | hmmprofstruct | showhmmprof

1 Alphabetical List

1-968

hmmprofmerge
Concatenate prealigned strings of several sequences to profile hidden Markov model
(HMM)

Syntax

hmmprofmerge(Sequences)

hmmprofmerge(Sequences, Names)

hmmprofmerge(Sequences, Names, Scores)

Arguments

Sequences Array of sequences. Sequences can also be a structured array with the
aligned sequences in a field Aligned or Sequences, and the optional
names in a field Header or Name.

Names Names for the sequences. Enter a vector of names.
Scores Pairwise alignment scores from the function hmmprofalign. Enter a

vector of values with the same length as the number of sequences in
Sequences.

Description

hmmprofmerge(Sequences) opens your default Web browser and displays a set of
prealigned sequences to an HMM model profile. The output is aligned corresponding to
the HMM states.

• Match states — Uppercase letters
• Insert states — Lowercase letters or asterisks (*)
• Delete states — Dashes

Periods (.) are added at positions corresponding to inserts in other sequences. The input
sequences must have the same number of profile states, that is, the joint count of capital
letters and dashes must be the same.

 hmmprofmerge

1-969

hmmprofmerge(Sequences, Names) labels the sequences with Names.

hmmprofmerge(Sequences, Names, Scores) sorts the displayed sequences using
Scores.

Examples
load('hmm_model_examples','model_7tm_2') %load model

load('hmm_model_examples','sequences') %load sequences

for ind =1:length(sequences)

 [scores(ind),sequences(ind).Aligned] =...

 hmmprofalign(model_7tm_2,sequences(ind).Sequence);

 end

hmmprofmerge(sequences, scores)

See Also
hmmprofalign | hmmprofstruct

1 Alphabetical List

1-970

hmmprofstruct
Create or edit hidden Markov model (HMM) profile structure

Syntax
Model = hmmprofstruct(Length)

Model = hmmprofstruct(Length, Field1, Field1Value, Field2,

Field2Value, ...)

NewModel = hmmprofstruct(Model, Field1, Field1Value, Field2,

Field2Value, ...)

Input Arguments
Length Number of match states in the model.
Model MATLAB structure containing fields for the parameters of an HMM

profile created with the hmmprofstruct function.
Field String containing a field name in the structure Model. See the table

below for field names.
FieldValue Value associated with Field. See the table below for descriptions.

Output Arguments
Model MATLAB structure containing fields for the parameters of an HMM

profile.

Description
Model = hmmprofstruct(Length) returns Model, a MATLAB structure containing
fields for the parameters of an HMM profile. Length specifies the number of match
states in the model. All other required parameters are set to the default values.

Model = hmmprofstruct(Length, Field1, Field1Value, Field2,

Field2Value, ...) returns an HMM profile structure using the specified parameters.
All other required parameters are set to default values.

 hmmprofstruct

1-971

NewModel = hmmprofstruct(Model, Field1, Field1Value, Field2,

Field2Value, ...) returns an updated HMM profile structure using the specified
parameters. All other parameters are taken from the input Model.

HMM Profile Structure

The MATLAB structure Model contains the following fields, which are the required and
optional parameters of an HMM profile. All probability values are in the [0 1] range.

Field Description

ModelLength Integer specifying the length of the profile (number of MATCH
states).

Alphabet String specifying the alphabet used in the model. Choices are
'AA' (default) or 'NT'.

Note: AlphaLength is 20 for 'AA' and 4 for 'NT'.
MatchEmission Symbol emission probabilities in the MATCH states.

Either of the following:

• A matrix of size ModelLength-by-AlphaLength, where
each row corresponds to the emission distribution for a
specific MATCH state. Defaults to uniform distributions.

• A structure containing residue counts, such as returned by
aacount or basecount.

InsertEmission Symbol emission probabilities in the INSERT state.

Either of the following:

• A matrix of size ModelLength-by-AlphaLength, where
each row corresponds to the emission distribution for a
specific INSERT state. Defaults to uniform distributions.

• A structure containing residue counts, such as returned by
aacount or basecount.

NullEmission Symbol emission probabilities in the MATCH and INSERT
states for the NULL model.

1 Alphabetical List

1-972

Field Description

Either of the following:

• A 1-by-AlphaLength row vector. Defaults to a uniform
distribution.

• A structure containing residue counts, such as returned by
aacount or basecount.

Note: The NULL model is used to compute the log-odds
ratio at every state and avoid overflow when propagating the
probabilities through the model.

Note: NULL probabilities are also known as the background
probabilities.

BeginX BEGIN state transition probabilities.

Format is a 1-by-(ModelLength + 1) row vector:

[B->D1 B->M1 B->M2 B->M3 B->Mend]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from the
BEGIN state equals 1:

sum(Model.BeginX) = 1

For fragment profiles:

sum(Model.BeginX(3:end)) = 0

Default is [0.01 0.99 0 0 ... 0].

 hmmprofstruct

1-973

Field Description

MatchX MATCH state transition probabilities.

Format is a 4-by-(ModelLength - 1) matrix:

[M1->M2 M2->M3 ... M[end-1]->Mend;

 M1->I1 M2->I2 ... M[end-1]->I[end-1];

 M1->D2 M2->D3 ... M[end-1]->Dend;

 M1->E M2->E ... M[end-1]->E]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from every
MATCH state equals 1:

sum(Model.MatchX) = [1 1 ... 1]

For fragment profiles:

sum(Model.MatchX(4,:)) = 0

Default is repmat([0.998 0.001 0.001
0],ModelLength-1,1).

InsertX INSERT state transition probabilities.

Format is a 2-by-(ModelLength - 1) matrix:

[I1->M2 I2->M3 ... I[end-1]->Mend;

 I1->I1 I2->I2 ... I[end-1]->I[end-1]]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from every
INSERT state equals 1:

sum(Model.InsertX) = [1 1 ... 1]

Default is repmat([0.5 0.5],ModelLength-1,1).

1 Alphabetical List

1-974

Field Description

DeleteX DELETE state transition probabilities.

Format is a 2-by-(ModelLength - 1) matrix:

[D1->M2 D2->M3 ... D[end-1]->Mend ;

 D1->D2 D2->D3 ... D[end-1]->Dend]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from every
DELETE state equals 1:

sum(Model.DeleteX) = [1 1 ... 1]

Default is repmat([0.5 0.5],ModelLength-1,1).
FlankingInsertX Flanking insert states (N and C) used for LOCAL profile

alignment.

Format is a 2-by-2 matrix:

[N->B C->T ;

 N->N C->C]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from Flanking
Insert states equals 1:

sum(Model.FlankingInsertsX) = [1 1]

Note: To force global alignment use:

Model.FlankingInsertsX = [1 1; 0 0]

Default is [0.01 0.01; 0.99 0.99].

 hmmprofstruct

1-975

Field Description

LoopX Loop states transition probabilities used for multiple hits
alignment.

Format is a 2-by-2 matrix:

[E->C J->B ;

 E->J J->J]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from Loop
states equals 1:

sum(Model.LoopX) = [1 1]

Default is [0.5 0.01; 0.5 0.99].
NullX Null transition probabilities used to provide scores with log-

odds values also for state transitions.

Format is a 2-by-1 column vector:

[G->F ; G->G]

Note: If necessary, hmmprofstruct will normalize the data
such that the sum of the transition probabilities from Null
states equals 1:

sum(Model.NullX) = 1

Default is [0.01; 0.99].
IDNumber Optional. User-assigned identification number.
Description Optional. User-assigned description of the model.

1 Alphabetical List

1-976

HMM Profile Model

An HMM profile model is a common statistical tool for modeling structured sequences
composed of symbols. These symbols include randomness in both the output (emission
of symbols) and the state transitions of the process. Markov models are generally
represented by state diagrams.

The following figure is a state diagram for an HMM profile of length four. INSERT,
MATCH, and DELETE states are in the center section.

• INSERT state represents the excess of one or more symbols in the target sequence
that are not included in the profile.

• MATCH state means that the target sequence is aligned to the profile at the specific
location.

• DELETE state represents a gap or symbol absence in the target sequence (also known
as a silent state because it does not emit any symbols).

Flanking states (S, N, B, E, C, T) are used for proper modeling of the ends of the sequence,
either for global, local or fragment alignment of the profile. S, B, E, and T are silent, while
N and C are used to insert symbols at the flanks.

Examples

Creating an HMM Profile Structure

Create an HMM profile structure with 100 MATCH states, using the amino acid
alphabet.

hmmProfile = hmmprofstruct(100,'Alphabet','AA')

 hmmprofstruct

1-977

hmmProfile =

 ModelLength: 100

 Alphabet: 'AA'

 MatchEmission: [100x20 double]

 InsertEmission: [100x20 double]

 NullEmission: [1x20 double]

 BeginX: [101x1 double]

 MatchX: [99x4 double]

 InsertX: [99x2 double]

 DeleteX: [99x2 double]

 FlankingInsertX: [2x2 double]

 LoopX: [2x2 double]

 NullX: [2x1 double]

Editing an HMM Profile Structure

1 Use the pfamhmmread function to create an HMM profile structure from
pf00002.ls, a PFAM HMM-formatted file included with the software.

hmm02 = pfamhmmread('pf00002.ls');

2 Modify the HMM profile structure to force a global alignment by setting the looping
transition probabilities in the flanking insert states to zero.

hmm02 = hmmprofstruct(hmm02,'FlankingInsertX',[0 0;1 1]);

hmm02.FlankingInsertX

ans =

 0 0

 1 1

See Also
aacount | basecount | gethmmprof | hmmprofalign | hmmprofestimate |
hmmprofgenerate | hmmprofmerge | pfamhmmread | showhmmprof

1 Alphabetical List

1-978

horzcat (DataMatrix)
Concatenate DataMatrix objects horizontally

Syntax

DMObjNew = horzcat(DMObj1, DMObj2, ...)

DMObjNew = (DMObj1, DMObj2, ...)

DMObjNew = horzcat(DMObj1, B, ...)

DMObjNew = (DMObj1, B, ...)

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by horizontal concatenation.

Description

DMObjNew = horzcat(DMObj1, DMObj2, ...) or the equivalent DMObjNew =
(DMObj1, DMObj2, ...) horizontally concatenates the DataMatrix objects DMObj1
and DMObj2 into DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have
the same number of rows. The row names and the order of rows for DMObjNew are the
same as DMObj1. The row names of DMObj2 and any other DataMatrix object input
arguments are not preserved. The columns names for DMObjNew are the column names of
DMObj1, DMObj2, and other DataMatrix object input arguments.

DMObjNew = horzcat(DMObj1, B, ...) or the equivalent DMObjNew = (DMObj1,
B, ...) horizontally concatenates the DataMatrix object DMObj1 and a numeric or

 horzcat (DataMatrix)

1-979

logical array B into DMObjNew, another DataMatrix object. DMObj1 and B must have the
same number of rows. The row names for DMObjNew are the same as DMObj1. The row
names of DMObj2 and any other DataMatrix object input arguments are not preserved.
The column names for DMObjNew are the column names of DMObj1 and empty for the
columns from B.

MATLAB calls DMObjNew = horzcat(X1, X2, X3, ...) for the syntax DMObjNew =
[X1, X2, X3, ...] when any one of X1, X2, X3, etc. is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | vertcat

1 Alphabetical List

1-980

ilmnbslookup
Look up Illumina BeadStudio target (probe) sequence and annotation information

Syntax

AnnotStruct = ilmnbslookup(AnnotationFile, ID)

AnnotStruct = ilmnbslookup(AnnotationFile, ID, 'LookUpField',

LookUpFieldValue)

Input Arguments

AnnotationFile String specifying a file name or a path and file name of an
Illumina® annotation file (CSV, BGX, or TXT format). If you
specify only a file name, that file must be on the MATLAB
search path or in the current folder.

Tip You can download Illumina annotation files, such as
HumanRef-8_V3_0_R0_11282963_A.bgx, from the Illumina
Web site.

ID String or cell array of strings representing a unique
identifier(s) for one or more targets (probes) on an Illumina
microarray.

Tip By default, ID must match the Search_key field in
AnnotationFile. However, you can use an identifier that
corresponds to any of the fields in AnnotationFile, then set
the 'LookUpField' property appropriately. For example, if
you want to look up annotation information for the targets
(probes) on chromosome 7 only, set ID to '7', then set
LookUpFieldValue to 'Chromosome'. For a list of all fields
in AnnotationFile, see the following tables.

LookUpFieldValue Field in AnnotationFile where ilmnbslookup looks for the
specified ID. Default is the Search_key field.

http://www.switchtoi.com/annotationfiles.ilmn
http://www.switchtoi.com/annotationfiles.ilmn

 ilmnbslookup

1-981

Tip Set this property so that it corresponds to the ID you use as
input.

Output Arguments

AnnotStruct Structure containing the probe sequence and annotation
information for one or more targets (probes) specified by ID,
and by AnnotationFile, an Illumina annotation file.

AnnotStruct contains the same fields as AnnotationFile.
The fields are described in the following two tables.

Description
AnnotStruct = ilmnbslookup(AnnotationFile, ID) returns AnnotStruct, a
structure containing probe sequence and annotation information for one or more targets
(probes) specified by ID, and by AnnotationFile, an Illumina annotation file (CSV,
BGX, or TXT format).

AnnotStruct contains the same fields as AnnotationFile. The fields are described in
the following two tables.

Structure Created from Illumina CSV Annotation File

Field Description

Search_key Internal identifier for the target, useful for custom design
array

Target Unique identifier for the target
ProbeId Illumina probe identifier
Gid GenBank identifier for the gene
Transcript Illumina internal transcript identifier
Accession GenBank accession number for the gene
Symbol Typically, the gene symbol
Type Probe type
Start Starting position of the probe sequence in the GenBank record

1 Alphabetical List

1-982

Field Description

Probe_Sequence Sequence of the probe
Definition Definition field from the GenBank record
Ontology Gene Ontology terms associated with the gene
Synonym Synonyms for the gene (from the GenBank record)

Structure Created from a BGX or TXT Annotation File

Field Description

Accession GenBank accession number for the gene
Array_Address_Id Decoder identifier
Chromosome Chromosome on which the gene is located
Cytoband Cytogenetic banding region of the chromosome on

which the gene associated with the target is located
Definition Definition field from the GenBank record
Entrez_Gene_ID Entrez Gene database identifier for the gene
GI GenBank identifier for the gene
ILMN_Gene Illuminainternal gene symbol
Obsolete_Probe_Id Probe identifier before BGX annotation files
Ontology_Component Gene Ontology cellular components associated with

the gene
Ontology_Function Gene Ontology molecular functions associated with

the gene
Ontology_Process Gene Ontology biological processes associated with

the gene
Probe_Chr_Orientation Orientation of the probe on the NCBI genome build
Probe_Coordinates Genomic position of the probe on the NCBI genome

build
Probe_Id Illuminaprobe identifier
Probe_Sequence Sequence of the probe
Probe_Start Start position of the probe relative to the 5' end of

the source transcript sequence

 ilmnbslookup

1-983

Field Description

Probe_Type Information about what the probe is targeting
Protein_Product NCBI protein accession number
RefSeq_ID Identifier from the NCBI RefSeq database
Reporter_Composite_map Information associated with control probes
Reporter_Group_Name Information associated with control probes
Reporter_Group_id Information associated with control probes
Search_Key Internal identifier for the target, useful for custom

design array
Source Source from which the transcript sequence was

obtained
Source_Reference_ID Source's identifier
Species Species associated with the gene
Symbol Typically, the gene symbol
Synonyms Synonyms for the gene (from the GenBank record)
Transcript Illuminainternal transcript identifier
Unigene_ID Identifier from the NCBI UniGene database

AnnotStruct = ilmnbslookup(AnnotationFile, ID, 'LookUpField',

LookUpFieldValue) looks for ID in the annotation file in the field specified by
LookUpFieldValue. Default is the Search_key field.

Examples

Note: The gene expression file, TumorAdjacent-probe-raw.txt, and the annotation
file, HumanRef-8_V3_0_R0_11282963_A.bgx, used in the following examples are not
provided with the Bioinformatics Toolbox software.

Look Up Annotation Information for a Single Target (Probe)

1 Read the contents of a tab-delimited file exported from the Illumina BeadStudio™
software into a MATLAB structure.

1 Alphabetical List

1-984

ilmnStruct = ilmnbsread('TumorAdjacent-probe-raw.txt')

ilmnStruct =

 Header: [1x1 struct]

 TargetID: {22184x1 cell}

 ColumnNames: {1x37 cell}

 Data: [22184x37 double]

 TextColumnNames: {1x23 cell}

 TextData: {22184x23 cell}

2 Find the number of the Search_key column in the TextColumnNames cell array,
which is returned in the ilmnStruct structure by the ilmnbsread function.

srchCol = find(strcmpi('Search_Key',ilmnStruct.TextColumnNames))

srchCol =

 1

3 Use the output from step 2 to look up the probe sequence and annotation information
for the 10th entry in the annotation file, HumanRef-8_V3_0_R0_11282963_A.bgx.
annotation = ilmnbslookup('HumanRef-8_V3_0_R0_11282963_A.bgx',...

 ilmnStruct.TextData{10,srchCol})

annotation =

 Accession: 'NM_144670.2'

 Array_Address_Id: '0004050154'

 Chromosome: '12'

 Cytoband: '12p13.31b'

 Definition: 'Homo sapiens alpha-2-macroglobulin-like 1 (A2ML1), mRNA.'

 Entrez_Gene_ID: '144568'

 GI: '74271844'

 ILMN_Gene: 'A2ML1'

 Obsolete_Probe_Id: ''

 Ontology_Component: ''

 Ontology_Function: 'endopeptidase inhibitor activity [goid 4866] [evidence IEA]'

 Ontology_Process: ''

 Probe_Chr_Orientation: '+'

 Probe_Coordinates: '8920412-8920461'

 Probe_Id: 'ILMN_2136495'

 Probe_Sequence: 'TGTAATCGCAGCCCCTTGGAAGGCCAAGGCAGGAGAATCGCCTCAACACT'

 Probe_Start: '4889'

 Probe_Type: 'S'

 Protein_Product: 'NP_653271.2'

 RefSeq_ID: 'NM_144670.2'

 Reporter_Composite_map: ''

 Reporter_Group_Name: ''

 Reporter_Group_id: ''

 Search_Key: 'ILMN_17375'

 Source: 'RefSeq'

 Source_Reference_ID: 'NM_144670.2'

 Species: 'Homo sapiens'

 ilmnbslookup

1-985

 Symbol: 'A2ML1'

 Synonyms: [1x141 char]

 Transcript: 'ILMN_17375'

 Unigene_ID: ''

Look Up Annotation Information for a Subset of Targets (Probes)

Use the ilmnbslookup function with the 'LookUpField' property to look up the
annotation information for all targets located on chromosome 12 in the annotation file,
HumanRef-8_V3_0_R0_11282963_A.bgx.

chr12annotation = ilmnbslookup('HumanRef-8_V3_0_R0_11282963_A.bgx',...

 '12','LookUpField','Chromosome')

chr12annotation =

 Accession: {1x1186 cell}

 Array_Address_Id: {1x1186 cell}

 Chromosome: {1x1186 cell}

 Cytoband: {1x1186 cell}

 Definition: {1x1186 cell}

 Entrez_Gene_ID: {1x1186 cell}

 GI: {1x1186 cell}

 ILMN_Gene: {1x1186 cell}

 Obsolete_Probe_Id: {1x1186 cell}

 Ontology_Component: {1x1186 cell}

 Ontology_Function: {1x1186 cell}

 Ontology_Process: {1x1186 cell}

 Probe_Chr_Orientation: {1x1186 cell}

 Probe_Coordinates: {1x1186 cell}

 Probe_Id: {1x1186 cell}

 Probe_Sequence: {1x1186 cell}

 Probe_Start: {1x1186 cell}

 Probe_Type: {1x1186 cell}

 Protein_Product: {1x1186 cell}

 RefSeq_ID: {1x1186 cell}

 Reporter_Composite_map: ''

 Reporter_Group_Name: ''

 Reporter_Group_id: ''

 Search_Key: {1x1186 cell}

 Source: {1x1186 cell}

 Source_Reference_ID: {1x1186 cell}

 Species: {1x1186 cell}

 Symbol: {1x1186 cell}

 Synonyms: {1x1186 cell}

 Transcript: {1x1186 cell}

1 Alphabetical List

1-986

 Unigene_ID: {1x1186 cell}

The output structure indicates that there are 1,186 targets located on chromosome 12.

See Also
ilmnbsread

 ilmnbsread

1-987

ilmnbsread
Read gene expression data exported from Illumina BeadStudio software

Syntax

IlmnStruct = ilmnbsread(File)

IlmnStruct = ilmnbsread(File, ...'Columns', ColumnsValue, ...)

IlmnStruct = ilmnbsread(File, ...'HeaderOnly', HeaderOnlyValue, ...)

IlmnStruct = ilmnbsread(File, ...'CleanColNames',

CleanColNamesValue, ...)

Input Arguments

File String specifying a file name or a path and file name of
a tab-delimited file or comma-separated expression data
file exported from Illumina BeadStudio software. If you
specify only a file name, that file must be on the MATLAB
search path or in the current folder.

ColumnsValue Cell array that specifies the column names to read.
Default is all column names.

HeaderOnlyValue Controls the population of only the Header,
ColumnNames, and TextColumnNames fields in
IlmnStruct. Choices are true or false (default).

CleanColNamesValue Controls the conversion of any ColumnNames containing
spaces or characters that cannot be used as MATLAB
variable names, to valid MATLAB variable names. Choices
are true or false (default).

Output Arguments

IlmnStruct MATLAB structure containing data exported from
Illumina BeadStudio software.

1 Alphabetical List

1-988

Description

IlmnStruct = ilmnbsread(File) reads File, a tab-delimited or comma-separated
expression data file exported from the Illumina BeadStudio software, and creates
IlmnStruct, a MATLAB structure containing the following fields.

Field Description

Header String containing a description of the data.
TargetID Cell array containing unique identifiers for targets on an

Illumina gene expression microarray.
ColumnNames Cell array containing names of the columns that contain

numeric data in the tab-delimited file exported from the
Illumina BeadStudio software.

Data Matrix containing numeric microarray data for each target on
an Illumina gene expression microarray.

Note: ColumnNames and Data have the same number of
columns.

TextColumnNames Cell array containing names of the columns that contain
nonnumeric data in the tab-delimited file exported from the
Illumina BeadStudio software. This field can be empty.

TextData Cell array containing nonnumeric microarray data (such as
annotations) for each target on an Illumina gene expression
microarray. This field can be empty.

Note: TextColumnNames and TextData have the same
number of columns.

IlmnStruct = ilmnbsread(File, ...'PropertyName', PropertyValue, ...)

calls ilmnbsread with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

 ilmnbsread

1-989

IlmnStruct = ilmnbsread(File, ...'Columns', ColumnsValue, ...) reads
the data only from the columns specified by ColumnsValue, a cell array of column
names. Default behavior is to read data from all columns.

IlmnStruct = ilmnbsread(File, ...'HeaderOnly', HeaderOnlyValue, ...)

controls the population of only the Header, ColumnNames, and TextColumnNames fields
in IlmnStruct. Choices are true or false (default).

IlmnStruct = ilmnbsread(File, ...'CleanColNames',

CleanColNamesValue, ...) controls the conversion of any ColumnNames containing
spaces or characters that cannot be used as MATLAB variable names, to valid MATLAB
variable names. Choices are true or false (default).

Tip Use the 'CleanColNames' property if you plan to use the ColumnNames field as
variable names.

Examples

Note: The gene expression file, TumorAdjacent-probe-raw.txt used in the following
example is not provided with the Bioinformatics Toolbox software.

Read the contents of a tab-delimited file exported from the Illumina BeadStudio software
into a MATLAB structure.

ilmnStruct = ilmnbsread('TumorAdjacent-probe-raw.txt')

ilmnStruct =

 Header: [1x1 struct]

 TargetID: {22184x1 cell}

 ColumnNames: {1x37 cell}

 Data: [22184x37 double]

 TextColumnNames: {1x23 cell}

 TextData: {22184x23 cell}

See Also
affyread | agferead | celintensityread | galread | geoseriesread |
geosoftread | gprread | ilmnbslookup | imageneread | magetfield | sptread

1 Alphabetical List

1-990

imageneread
Read microarray data from ImaGene Results file

Syntax

imagenedata = imageneread('File')

imagenedata = imageneread(..., 'CleanColNames',

CleanColNamesValue, ...)

Arguments

File ImaGene® Results formatted file. Enter a file name or a
path and file name.

CleanColNamesValue Controls the conversion of any ColumnNames containing
spaces or characters that cannot be used as MATLAB
variable names, to valid MATLAB variable names. Choices
are true or false (default).

Description

imagenedata = imageneread('File') reads ImaGene results data from File and
creates imagenedata, a MATLAB structure containing the following fields.

Field

HeaderAA

Data

Blocks

Rows

Columns

Fields

IDs

 imageneread

1-991

Field

ColumnNames

Indices

Shape

imagenedata = imageneread(..., 'PropertyName', PropertyValue, ...)

calls imageneread with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

imagenedata = imageneread(..., 'CleanColNames',

CleanColNamesValue, ...) controls the conversion of any ColumnNames containing
spaces or characters that cannot be used as MATLAB variable names, to valid MATLAB
variable names. Choices are true or false (default).

The field Indices of the structure contains indices that you can use for plotting heat
maps of the data with the function image or imagesc.

For more details on the ImaGene format and example data, see the ImaGene
documentation.

Examples

In the following example, the file cy3.txt is not provided.

1 Read in a sample ImaGene Results file. Note that the example file, cy3.txt, is not
provided with the Bioinformatics Toolbox software.

cy3Data = imageneread('cy3.txt');

2 Plot the signal mean.

maimage(cy3Data,'Signal Mean');

3 Read in a sample ImaGene Results file. Note that the example file, cy5.txt, is not
provided with the Bioinformatics Toolbox software.

cy5Data = imageneread('cy5.txt');

4 Create a loglog plot of the signal median from two ImaGene Results files.

1 Alphabetical List

1-992

sigMedianCol = find(strcmp('Signal Median',cy3Data.ColumnNames));

cy3Median = cy3Data.Data(:,sigMedianCol);

cy5Median = cy5Data.Data(:,sigMedianCol);

maloglog(cy3Median,cy5Median,'title','Signal Median');

See Also
gprread | ilmnbsread | maboxplot | maimage | sptread

 int2aa

1-993

int2aa

Convert amino acid sequence from integer to letter representation

Syntax

SeqChar = int2aa(SeqInt)

SeqChar = int2aa(SeqInt, 'Case', CaseValue)

Input Arguments

SeqInt Row vector of integers specifying an amino acid sequence. For valid
integers, see the table Mapping Amino Acid Integers to Letter Codes.
Integers are arbitrarily assigned to IUB/IUPAC letters.

CaseValue String specifying the case of the returned string. Choices are 'upper'
(default) or 'lower'.

Output Arguments

SeqChar Amino acid sequence specified by a string of single-letter codes.

Description

SeqChar = int2aa(SeqInt) converts SeqInt, a row vector of integers specifying
an amino acid sequence, to SeqChar, a string of single-letter codes specifying the same
amino acid sequence. For valid integers, see the table Mapping Amino Acid Integers to
Letter Codes.

SeqChar = int2aa(SeqInt, 'Case', CaseValue) specifies the case of the returned
string. Choices are 'upper' (default) or 'lower'.

1 Alphabetical List

1-994

Mapping Amino Acid Integers to Letter Codes

Amino Acid Integer Code

Alanine 1 A

Arginine 2 R

Asparagine 3 N

Aspartic acid (Aspartate) 4 D

Cysteine 5 C

Glutamine 6 Q

Glutamic acid (Glutamate) 7 E

Glycine 8 G

Histidine 9 H

Isoleucine 10 I

Leucine 11 L

Lysine 12 K

Methionine 13 M

Phenylalanine 14 F

Proline 15 P

Serine 16 S

Threonine 17 T

Tryptophan 18 W

Tyrosine 19 Y

Valine 20 V

Asparagine or Aspartic acid (Aspartate) 21 B

Glutamine or Glutamic acid (Glutamate) 22 Z

Unknown amino acid (any amino acid) 23 X

Translation stop 24 *

Gap of indeterminate length 25 -

Unknown (any integer not in table) 0 or ≥ 26 ?

 int2aa

1-995

Examples

Convert an amino acid sequence from integer to letter representation.

s = int2aa([13 1 17 11 1 21])

s =

MATLAB

See Also
aa2int | aminolookup | int2nt | isotopicdist | nt2int

1 Alphabetical List

1-996

int2nt

Convert nucleotide sequence from integer to letter representation

Syntax

SeqChar = int2nt(SeqInt)

SeqChar = int2nt(SeqInt, ...'Alphabet', AlphabetValue, ...)

SeqChar = int2nt(SeqInt, ...'Unknown', UnknownValue, ...)

SeqChar = int2nt(SeqInt, ...'Case', CaseValue, ...)

Input Arguments

SeqInt Row vector of integers specifying a nucleotide sequence. For valid
integers, see the table Mapping Nucleotide Integers to Letter
Codes. Integers are arbitrarily assigned to IUB/IUPAC letters.

AlphabetValue String specifying a nucleotide alphabet. Choices are:

• 'DNA' (default) — Uses the symbols A, C, G, and T.
• 'RNA' — Uses the symbols A, C, G, and U.

UnknownValue Character to represent unknown nucleotides, that is 0 or integers
≥ 17. Choices are any character other than the nucleotide
characters A, C, G, T, and U and the ambiguous nucleotide
characters N, R, Y, K, M, S, W, B, D, H, and V. Default is *.

CaseValue String specifying the case of the returned character string.
Choices are 'upper' (default) or 'lower'.

Output Arguments

SeqChar Nucleotide sequence specified by a character string of codes.

 int2nt

1-997

Description

SeqChar = int2nt(SeqInt) converts SeqInt, a row vector of integers specifying
a nucleotide sequence, to SeqChar, a string of codes specifying the same nucleotide
sequence. For valid codes, see the table Mapping Nucleotide Integers to Letter Codes.

Mapping Nucleotide Integers to Letter Codes

Nucleotide Integer Code

Adenosine 1 A

Cytidine 2 C

Guanine 3 G

Thymidine 4 T

Uridine (if 'Alphabet' set to 'RNA') 4 U

Purine (A or G) 5 R

Pyrimidine (T or C) 6 Y

Keto (G or T) 7 K

Amino (A or C) 8 M

Strong interaction (3 H bonds) (G or C) 9 S

Weak interaction (2 H bonds) (A or T) 10 W

Not A (C or G or T) 11 B

Not C (A or G or T) 12 D

Not G (A or C or T) 13 H

Not T or U (A or C or G) 14 V

Any nucleotide (A or C or G or T or U) 15 N

Gap of indeterminate length 16 -

Unknown (any integer not in table) 0 or ≥ 17 * (default)

SeqChar = int2nt(SeqInt, ...PropertyName', PropertyValue, ...) calls
int2nt with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

1 Alphabetical List

1-998

SeqChar = int2nt(SeqInt, ...'Alphabet', AlphabetValue, ...) specifies a
nucleotide alphabet. AlphabetValue can be 'DNA', which uses the symbols A, C, G, and
T, or 'RNA', which uses the symbols A, C, G, and U. Default is 'DNA'.

SeqChar = int2nt(SeqInt, ...'Unknown', UnknownValue, ...) specifies the
character to represent unknown nucleotides, that is 0 or integers ≥ 17. UnknownValue
can be any character other than the nucleotide characters A, C, G, T, and U and the
ambiguous nucleotide characters N, R, Y, K, M, S, W, B, D, H, and V. Default is *.

SeqChar = int2nt(SeqInt, ...'Case', CaseValue, ...) specifies the case of
the returned character string. CaseValue can be 'upper' (default) or 'lower'.

Examples

• Convert a nucleotide sequence from integer to letter representation.

s = int2nt([1 2 4 3 2 4 1 3 2])

s =

ACTGCTAGC

• Convert a nucleotide sequence from integer to letter representation and define # as
the symbol for unknown numbers 17 and greater.

si = [1 2 4 20 2 4 40 3 2];

s = int2nt(si, 'unknown', '#')

s =

ACT#CT#GC

See Also
aa2int | baselookup | int2aa | nt2int

 isdag (biograph)

1-999

isdag (biograph)
Test for cycles in biograph object

Syntax

isdag(BGObj)

Arguments

BGObj Biograph object created by biograph (object constructor).

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

isdag(BGObj) returns logical 1 (true) if an N-by-N adjacency matrix extracted
from a biograph object, BGObj, is a directed acyclic graph (DAG) and logical 0 (false)
otherwise. In the N-by-N sparse matrix, all nonzero entries indicate the presence of an
edge.

More About
• “biograph object”

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

1 Alphabetical List

1-1000

See Also
biograph | allshortestpaths | isomorphism | maxflow | shortestpath |
traverse | graphisdag | conncomp | isspantree | minspantree | topoorder

 isempty

1-1001

isempty
Class: bioma.data.ExptData
Package: bioma.data

Determine whether ExptData object is empty

Syntax

TF = isempty(EDObj)

Description

TF = isempty(EDObj) returns logical 1 (true) if EDObj is an empty ExptData object.
Otherwise, it returns logical 0 (false). An empty ExptData object contains no data
elements.

Input Arguments

EDObj

Object of the bioma.data.ExptData class.

Default:

Examples

Construct an ExptData object, and then check to see if it is empty:
% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Determine if ExptData object is empty

1 Alphabetical List

1-1002

isempty(EDObj)

See Also
bioma.data.ExptData

How To
• “Representing Expression Data Values in ExptData Objects”

 isempty

1-1003

isempty
Class: bioma.data.MetaData
Package: bioma.data

Determine whether MetaData object is empty

Syntax

TF = isempty(MDObj)

Description

TF = isempty(MDObj) returns logical 1 (true) if MDObj is an empty MetaData object.
Otherwise, it returns logical 0 (false). An empty MetaData object contains no variable
names, values, or descriptions.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

Examples

Construct a MetaData object, and then check to see if it is empty:
% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Determine if MetaData object is empty

isempty(MDObj2)

1 Alphabetical List

1-1004

See Also
bioma.data.MetaData

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

 isempty

1-1005

isempty
Class: bioma.data.MIAME
Package: bioma.data

Determine whether MIAME object is empty

Syntax

TF = isempty(MIAMEObj)

Description

TF = isempty(MIAMEObj) returns logical 1 (true) if MIAMEObj is an empty MIAME
object. Otherwise, it returns logical 0 (false). All properties are empty in an empty
MIAME object.

Input Arguments

MIAMEObj

Object of the bioma.data.MIAME class.

Default:

Examples

Construct a MIAME object, and then check to see if it is empty:

% Create a MATLAB structure containing GEO Series data

geoStruct = getgeodata('GSE4616');

% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MIAME object

MIAMEObj = MIAME(geoStruct);

1 Alphabetical List

1-1006

% Determine if MIAME object is empty

isempty(MIAMEObj)

See Also
bioma.data.MIAME

How To
• “Representing Experiment Information in a MIAME Object”

 isequal (DataMatrix)

1-1007

isequal (DataMatrix)
Test DataMatrix objects for equality

Syntax

TF = isequal(DMObj1, DMObj2)

TF = isequal(DMObj1, DMObj2, DMObj3, ...)

Input Arguments

DMObj1, DMObj2,
DMObj3

DataMatrix objects, such as created by DataMatrix (object
constructor).

Output Arguments

TF Logical value indicating if inputs are numerically equal (have
the same contents), have the same size (same NRows and NCols
properties), and have the same RowNames and ColNames
properties. NaNs are not considered equal to each other.

Description

TF = isequal(DMObj1, DMObj2) returns logical 1 (true) if the input DataMatrix
objects, DMObj1 and DMObj2, meet the following:

• Are numerically equal (have the same contents)
• Have the same size (same NRows and NCols properties)
• Have the same RowNames and ColNames properties

Otherwise, it returns logical 0 (false). DMObj1 and DMObj2 do not have to have the
same Name property. NaNs are not considered equal to each other.

1 Alphabetical List

1-1008

TF = isequal(DMObj1, DMObj2, DMObj3, ...) returns logical 1 (true) if all input
DataMatrix objects, DMObj1, DMObj2, DMObj3, etc. meet the following:

• Are numerically equal (have the same contents)
• Have the same size (same NRows and NCols properties)
• Have the same RowNames and ColNames properties

Otherwise, it returns logical 0 (false). The input DataMatrix objects do not have to have
the same Name property. NaNs are not considered equal to each other.

More About
• “DataMatrix object”

See Also
DataMatrix | isequaln

 isequaln (DataMatrix)

1-1009

isequaln (DataMatrix)
Test DataMatrix objects for equality, treating NaNs as equal

Syntax

TF = isequaln(DMObj1, DMObj2)

TF = isequaln(DMObj1, DMObj2, DMObj3, ...)

Input Arguments

DMObj1, DMObj2,
DMObj3

DataMatrix objects, such as created by DataMatrix (object
constructor).

Output Arguments

TF Logical value indicating if inputs are numerically equal (have
the same contents), have the same size (same NRows and NCols
properties), and have the same RowNames and ColNames
properties. NaNs are considered equal to each other.

Description

TF = isequaln(DMObj1, DMObj2) returns logical 1 (true) if the input DataMatrix
objects, DMObj1 and DMObj2, meet the following:

• Are numerically equal (have the same contents)
• Have the same size (same NRows and NCols properties)
• Have the same RowNames and ColNames properties

Otherwise, it returns logical 0 (false). DMObj1 and DMObj2 do not need to have the
same Name property. NaNs are considered equal to each other.

1 Alphabetical List

1-1010

TF = isequaln(DMObj1, DMObj2, DMObj3, ...) returns logical 1 (true) if all
input DataMatrix objects, DMObj1, DMObj2, DMObj3, etc. meet the following:

• Are numerically equal (have the same contents)
• Have the same size (same NRows and NCols properties)
• Have the same RowNames and ColNames properties

Otherwise, it returns logical 0 (false). The input DataMatrix objects do not need to have
the same Name property. NaNs are considered equal to each other.

More About
• “DataMatrix object”

See Also
DataMatrix | isequal

 isequalwithequalnans (DataMatrix)

1-1011

isequalwithequalnans (DataMatrix)
Test DataMatrix objects for equality, treating NaNs as equal

Syntax

TF = isequalwithequalnans(DMObj1, DMObj2)

TF = isequalwithequalnans(DMObj1, DMObj2, DMObj3, ...)

Input Arguments

DMObj1, DMObj2,
DMObj3

DataMatrix objects, such as created by DataMatrix (object
constructor).

Output Arguments

TF Logical value indicating if inputs are numerically equal (have
the same contents), have the same size (same NRows and NCols
properties), and have the same RowNames and ColNames
properties. NaNs are considered equal to each other.

Description

TF = isequalwithequalnans(DMObj1, DMObj2) returns logical 1 (true) if the input
DataMatrix objects, DMObj1 and DMObj2, meet the following:

• Are numerically equal (have the same contents)
• Have the same size (same NRows and NCols properties)
• Have the same RowNames and ColNames properties

Otherwise, it returns logical 0 (false). DMObj1 and DMObj2 do not have to have the
same Name property. NaNs are considered equal to each other.

1 Alphabetical List

1-1012

TF = isequalwithequalnans(DMObj1, DMObj2, DMObj3, ...) returns logical 1
(true) if all input DataMatrix objects, DMObj1, DMObj2, DMObj3, etc. meet the following:

• Are numerically equal (have the same contents)
• Have the same size (same NRows and NCols properties)
• Have the same RowNames and ColNames properties

Otherwise, it returns logical 0 (false). The input DataMatrix objects do not have to have
the same Name property. NaNs are considered equal to each other.

More About
• “DataMatrix object”

See Also
DataMatrix | isequal

 isoelectric

1-1013

isoelectric
Estimate isoelectric point for amino acid sequence

Syntax

pI = isoelectric(SeqAA)

[pI Charge] = isoelectric(SeqAA)

isoelectric(..., 'PropertyName', PropertyValue,...)

isoelectric(..., 'PKVals', PKValsValue)

isoelectric(..., 'Charge', ChargeValue)

isoelectric(..., 'Chart', ChartValue)

Arguments

SeqAA Amino acid sequence. Enter a character string or a vector of integers
from the table Mapping Amino Acid Letter Codes to Integers.
Examples: 'ARN' or [1 2 3].

PKValsValue String specifying a file name or path and file name of a PK file
containing a table of pK values for amino acids, which .isoelectric
uses to estimate the isoelectric point (pI) of an amino acid sequence.
For an example of a PK file format, type edit Emboss.pK in the
MATLAB command line.

ChargeValue Property to select a specific pH for estimating charge. Enter a
number between 0 and 14. Default is 7.2.

ChartValue Controls the plotting a graph of charge versus pH. Enter true or
false.

Description

pI = isoelectric(SeqAA) returns the estimated isoelectric point (pI) for an amino
acid sequence using the following pK values:

N_term 8.6

1 Alphabetical List

1-1014

K 10.8

R 12.5

H 6.5

D 3.9

E 4.1

C 8.5

Y 10.1

C_term 3.6

The isoelectric point is the pH at which the protein has a net charge of zero.

[pI Charge] = isoelectric(SeqAA) returns the estimated isoelectric point (pI)
for an amino acid sequence and the estimated charge for a given pH (default is typical
intracellular pH 7.2).

The estimates are skewed by the underlying assumptions that all amino acids are fully
exposed to the solvent, that neighboring peptides have no influence on the pK of any
given amino acid, and that the constitutive amino acids, as well as the N- and C-termini,
are unmodified. Cysteine residues participating in disulfide bridges also affect the true pI
and are not considered here. By default, isoelectric uses the EMBOSS amino acid pK
table, or you can substitute other values using the property PKVals.

• If the sequence contains ambiguous amino acid characters (b z * –), isoelectric
ignores the characters and displays a warning message.

Warning: Symbols other than the standard 20 amino acids

appear in the sequence.

• If the sequence contains undefined amino acid characters (i j o) , isoelectric
ignores the characters and displays a warning message.

Warning: Sequence contains unknown characters. These will

be ignored.

isoelectric(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

isoelectric(..., 'PKVals', PKValsValue) uses pK values stored in a
PKValValues, a PK file, to estimate the isoelectric point (pI) of an amino acid sequence.
For an example of a PK file format, type edit Emboss.pK in the MATLAB command
line.

isoelectric(..., 'Charge', ChargeValue) returns the estimated charge of a
sequence for a given pH (ChargeValue).

 isoelectric

1-1015

isoelectric(..., 'Chart', ChartValue) when ChartValue is true, returns a
graph plotting the charge of the protein versus the pH of the solvent.

Examples

% Get a sequence from PDB.

pdbSeq = getpdb('1CIV', 'SequenceOnly', true)

% Estimate its isoelectric point.

isoelectric(pdbSeq)

% Plot the charge against the pH for a short polypeptide sequence.

isoelectric('PQGGGGWGQPHGGGWGQPHGGGGWGQGGSHSQG', 'CHART', true)

% Get the Rh blood group D antigen from NCBI and calculate

% its charge at pH 7.3 (typical blood pH).

gpSeq = getgenpept('AAB39602')

[pI Charge] = isoelectric(gpSeq, 'Charge', 7.38)

See Also
aacount | molweight

1 Alphabetical List

1-1016

isomorphism (biograph)
Find isomorphism between two biograph objects

Syntax

[Isomorphic, Map] = isomorphism(BGObj1, BGObj2)

[Isomorphic, Map] = isomorphism(BGObj1,

BGObj2,'Directed', DirectedValue)

Arguments

BGObj1 Biograph object created by biograph (object constructor).
BGObj2 Biograph object created by biograph (object constructor).
DirectedValue Property that indicates whether the graphs are directed or

undirected. Enter false when both BGObj1 and BGObj2 produce
undirected graphs. In this case, the upper triangles of the sparse
matrices extracted from BGObj1 and BGObj2 are ignored. Default
is true, meaning that both graphs are directed.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[Isomorphic, Map] = isomorphism(BGObj1, BGObj2) returns logical 1 (true)
in Isomorphic if two N-by-N adjacency matrices extracted from biograph objects
BGObj1 and BGObj2 are isomorphic graphs, and logical 0 (false) otherwise. A graph
isomorphism is a 1-to-1 mapping of the nodes in the graph from BGObj1 and the nodes in
the graph from BGObj2 such that adjacencies are preserved. Return value Isomorphic
is Boolean. When Isomorphic is true, Map is a row vector containing the node indices
that map from BGObj2 to BGObj1. When Isomorphic is false, the worst-case time
complexity is O(N!), where N is the number of nodes.

 isomorphism (biograph)

1-1017

[Isomorphic, Map] = isomorphism(BGObj1,

BGObj2,'Directed', DirectedValue) indicates whether the graphs are directed
or undirected. Set DirectedValue to false when both BGObj1 and BGObj2 produce
undirected graphs. In this case, the upper triangles of the sparse matrices extracted from
BGObj1 and BGObj2 are ignored. The default is true, meaning that both graphs are
directed.

More About
• “biograph object”

References

[1] Fortin, S. (1996). The Graph Isomorphism Problem. Technical Report, 96-20, Dept. of
Computer Science, University of Alberta, Edomonton, Alberta, Canada.

[2] McKay, B.D. (1981). Practical Graph Isomorphism. Congressus Numerantium 30,
45-87.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | allshortestpaths | isdag | maxflow | shortestpath | traverse |
graphisomorphism | conncomp | isspantree | minspantree | topoorder

1 Alphabetical List

1-1018

isotopicdist
Calculate high-resolution isotope mass distribution and density function

Syntax

[MD, Info, DF] = isotopicdist(SeqAA)

[MD, Info, DF] = isotopicdist(Compound)

[MD, Info, DF] = isotopicdist(Formula)

isotopicdist(..., 'NTerminal', NTerminalValue, ...)

isotopicdist(..., 'CTerminal', CTerminalValue, ...)

isotopicdist(..., 'Resolution', ResolutionValue, ...)

isotopicdist(..., 'FFTResolution', FFTResolutionValue, ...)

isotopicdist(..., 'FFTRange', FFTRangeValue, ...)

isotopicdist(..., 'FFTLocation', FFTLocationValue, ...)

isotopicdist(..., 'NoiseThreshold', NoiseThresholdValue, ...)

isotopicdist(..., 'ShowPlot', ShowPlotValue, ...)

Description

[MD, Info, DF] = isotopicdist(SeqAA) analyzes a peptide sequence and
returns a matrix containing the expected mass distribution; a structure containing the
monoisotopic mass, average mass, most abundant mass, nominal mass, and empirical
formula; and a matrix containing the expected density function.

[MD, Info, DF] = isotopicdist(Compound) analyzes a compound specified by a
numeric vector or matrix.

[MD, Info, DF] = isotopicdist(Formula) analyzes a compound specified by an
empirical chemical formula represented by the structure Formula. The field names in
Formula must be valid element symbols and are case sensitive. The respective values
in Formula are the number of atoms for each element. Formula can also be an array of
structures that specifies multiple formulas. The field names can be in any order within a
structure. However, if there are multiple structures, the order must be the same in each.

isotopicdist(..., 'PropertyName', PropertyValue, ...) calls
isotopicdist with optional properties that use property name/property value pairs.

 isotopicdist

1-1019

You can specify one or more properties in any order. Enclose each PropertyName in
single quotation marks. Each PropertyName is case insensitive. These property name/
property value pairs are as follows:

isotopicdist(..., 'NTerminal', NTerminalValue, ...) modifies the N-
terminal of the peptide.

isotopicdist(..., 'CTerminal', CTerminalValue, ...) modifies the C-
terminal of the peptide.

isotopicdist(..., 'Resolution', ResolutionValue, ...) specifies the
approximate resolution of the instrument, given as the Gaussian width (in daltons) at
full width at half height (FWHH).

isotopicdist(..., 'FFTResolution', FFTResolutionValue, ...) specifies
the number of data points per dalton, to compute the fast Fourier transform (FFT)
algorithm.

isotopicdist(..., 'FFTRange', FFTRangeValue, ...) specifies the absolute
range (window size) in daltons for the FFT algorithm and output density function.

isotopicdist(..., 'FFTLocation', FFTLocationValue, ...) specifies the
location of the FFT range (window) defined by FFTRangeValue. It specifies this location
by setting the location of the lower limit of the range, relative to the location of the
monoisotopic peak, which is computed by isotopicdist.

isotopicdist(..., 'NoiseThreshold', NoiseThresholdValue, ...) removes
points in the mass distribution that are smaller than 1/NoiseThresholdValue times
the most abundant mass.

isotopicdist(..., 'ShowPlot', ShowPlotValue, ...) controls the display of a
plot of the mass distribution.

Input Arguments

SeqAA

Peptide sequence specified by either a:

• String of single-letter codes
• Cell array of strings that specifies multiple peptide sequences

1 Alphabetical List

1-1020

Tip You can use the getgenpept and genpeptread functions to retrieve peptide
sequences from the GenPept database or a GenPept-formatted file. You can then use
the cleave function to perform an insilico digestion on a peptide sequence. The cleave
function creates a cell array of strings representing peptide fragments, which you can
submit to the isotopicdist function.

Default:

Compound

Compound specified by either a:

• Numeric vector of form [C H N O S], where C, H, N, O, and S are nonnegative
numbers that represent the number of atoms of carbon, hydrogen, nitrogen, oxygen,
and sulfur respectively in a compound.

• M-by-5 numeric matrix that specifies multiple compounds, with each row
corresponding to a compound and each column corresponding to an atom.

Default:

Formula

Chemical formula specified by either a:

• Structure whose field names are valid element symbols and case sensitive. Their
respective values are the number of atoms for each element.

• Array of structures that specifies multiple formulas.

Note: If Formula is a single structure, the order of the fields does not matter. If Formula
is an array of structures, then the order of the fields must be the same in each structure.

Default:

NTerminalValue

Modification for the N-terminal of the peptide, specified by either:

• One of the strings 'none', 'amine' (default), 'formyl', or 'acetyl'

 isotopicdist

1-1021

• Custom modification specified by an empirical formula, represented by a structure.
The structure must have field names that are valid element symbols and case
sensitive. Their respective values are the number of atoms for each element.

CTerminalValue

Modification for the C-terminal of the peptide, specified by either:

• One of the strings 'none', 'freeacid' (default), or 'amide'
• Custom modification specified by an empirical formula, represented by a structure.

The structure must have field names that are valid element symbols and case
sensitive. Their respective values are the number of atoms for each element.

ResolutionValue

Value in daltons specifying the approximate resolution of the instrument, given as the
Gaussian width at full width half height (FWHH).

Default: 1/16 Da

FFTResolutionValue

Value specifying the number of data points per dalton, used to compute the FFT
algorithm.

Default: 1000

FFTRangeValue

Value specifying the absolute range (window size) in daltons for the FFT algorithm
and output density function. By default, this value is automatically estimated based on
the weight of the molecule. The actual FFT range used internally by isotopicdist is
further increased such that FFTRangeValue * FFTResolutionValue is a power of
two.

Tip Increase the FFTRangeValue if the signal represented by the DF output appears to
be truncated.

Tip Ultrahigh resolution allows you to resolve micropeaks that have the same nominal
mass, but slightly different exact masses. To achieve ultrahigh resolution, increase

1 Alphabetical List

1-1022

FFTResolutionValue and reduce ResolutionValue, but ensure that FFTRangeValue
* FFTResolutionValue is within the available memory.

Default:

FFTLocationValue

Fraction that specifies the location of the FFT range (window) defined by
FFTRangeValue. It specifies this location by setting the location of the lower limit of
the FFT range, relative to the location of the monoisotopic peak, which is computed by
isotopicdist. The location of the lower limit of the FFT range is set to the mass of the
monoistopic peak - (FFTLocationValue * FFTRangeValue).

Tip You may need to shift the FFT range to the left in rare cases where a compound
contains an element, such as Iron or Argon, whose most abundant isotope is not the
lightest one.

Default: 1/16

NoiseThresholdValue

Value that removes points in the mass distribution that are smaller than
1/NoiseThresholdValue times the most abundant mass.

Default: 1e6

ShowPlotValue

Controls the display of a plot of the isotopic mass distribution. Choices are true, false,
or I, which is an integer specifying a compound. If set to true, the first compound is
plotted. Default is:

• false — When you specify return values.
• true — When you do not specify return values.

Default:

 isotopicdist

1-1023

Output Arguments

MD

Mass distribution represented by a two-column matrix in which each row corresponds
to an isotope. The first column lists the isotopic mass, and the second column lists the
probability for that mass.

Info

Structure containing mass information for the peptide sequence or compound in the
following fields:

• NominalMass

• MonoisotopicMass

• ObservedAverageMass — Estimated from the DF signal output, using instrument
resolution specified by the 'Resolution' property.

• CalculatedAverageMass — Calculated directly from the input formula, assuming
perfect instrument resolution.

• MostAbundantMass

• Formula — Structure containing the number of atoms of each element.

DF

Density function represented by a two-column matrix in which each row corresponds to
an m/z value. The first column lists the mass, and the second column lists the relative
intensity of the signal at that mass.

Examples

Calculate and display the isotopic mass distribution of the peptide sequence MATLAP with
an Acetyl N-terminal and an Amide C-terminal:

MD = isotopicdist('MATLAP','nterm','Acetyl','cterm','Amide', ...

 'showplot',true)

MD =

 643.3363 0.6676

 644.3388 0.2306

1 Alphabetical List

1-1024

 645.3378 0.0797

 646.3386 0.0181

 647.3396 0.0033

 648.3409 0.0005

 649.3423 0.0001

 650.3439 0.0000

 651.3455 0.0000

Calculate and display the isotopic mass distribution of Glutamine (C5H10N2O3):

MD = isotopicdist([5 10 2 3 0],'showplot',true)

MD =

 146.0691 0.9328

 147.0715 0.0595

 148.0733 0.0074

 149.0755 0.0004

 150.0774 0.0000

 isotopicdist

1-1025

Display the isotopic mass distribution of the "averagine" model, whose molecular formula
represents the statistical occurrences of amino acids from all known proteins:

isotopicdist([4.9384 7.7583 1.3577 1.4773 0.0417])

1 Alphabetical List

1-1026

More About

Average Mass

Sum of the average atomic masses of the constituent elements in a molecule.

Monoisotopic Mass

Sum of the masses of the atoms in a molecule using the unbound, ground-state, rest mass
of the principle (most abundant) isotope for each element instead of the isotopic average
mass.

Most Abundant Mass

Mass of the molecule with the most-highly represented isotope distribution, based on the
natural abundance of the isotopes.

 isotopicdist

1-1027

Nominal Mass

Sum of the integer masses (ignoring the mass defect) of the most abundant isotope of
each element in a molecule.

References

[1] Rockwood, A. L., Van Orden, S. L., and Smith, R. D. (1995). Rapid Calculation of
Isotope Distributions. Anal. Chem. 67:15, 2699–2704.

[2] Rockwood, A. L., Van Orden, S. L., and Smith, R. D. (1996). Ultrahigh Resolution
Isotope Distribution Calculations. Rapid Commun. Mass Spectrum 10, 54–59.

[3] Senko, M.W., Beu, S. C., and McLafferty, F. W. (1995). Automated assignment of
charge states from resolved isotopic peaks for multiply charged ions. J. Am. Soc.
Mass Spectrom. 6, 52–56.

[4] Senko, M.W., Beu, S. C., and McLafferty, F. W. (1995). Determination of monoisotopic
masses and ion populations for large biomolecules from resolved isotopic
distributions. J. Am. Soc. Mass Spectrom. 6, 229–233.

See Also
cleave | getgenpept | genpeptread | int2aa | nt2aa | aminolookup |
cleavelookup | molweight

1 Alphabetical List

1-1028

isspantree (biograph)
Determine if tree created from biograph object is spanning tree

Syntax

TF = isspantree(BGObj)

Arguments

BGObj Biograph object created by biograph (object constructor).

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

TF = isspantree(BGObj) returns logical 1 (true) if the N-by-N adjacency matrix
extracted from a biograph object, BGObj, is a spanning tree, and logical 0 (false)
otherwise. A spanning tree must touch all the nodes and must be acyclic. The lower
triangle of the N-by-N adjacency matrix represents an undirected graph, and all nonzero
entries indicate the presence of an edge.

More About
• “biograph object”

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

 isspantree (biograph)

1-1029

See Also
biograph | allshortestpaths | isdag | maxflow | shortestpath | traverse |
graphisspantree | conncomp | isomorphism | minspantree | topoorder

1 Alphabetical List

1-1030

jcampread
Read JCAMP-DX-formatted files

Syntax

JCAMPStruct = jcampread(File)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a JCAMP-DX-formatted
file (ASCII text file). If you specify only a file name, that file must
be on the MATLAB search path or in the current folder.

• MATLAB character array that contains the text of a JCAMP-DX-
formatted file.

Output Arguments

JCAMPStruct MATLAB structure containing information from a JCAMP-DX-
formatted file.

Description

JCAMP-DX is a file format for infrared, NMR, and mass spectrometry data from the
Joint Committee on Atomic and Molecular Physical Data (JCAMP). jcampread supports
reading data from files saved with Versions 4.24, 5, or 6 of the JCAMP-DX format. For
more details, see:

http://www.jcamp-dx.org/

JCAMPStruct = jcampread(File) reads data from File, a JCAMP-DX-formatted
file, and creates JCAMPStruct, a MATLAB structure containing the following fields.

http://www.jcamp-dx.org/

 jcampread

1-1031

Field

Title

DataType

DataClass

Origin

Owner

Blocks

Notes

The Blocks field of the structure is an array of structures corresponding to each set of
data in the file. These structures have the following fields.

Field

XData

YData

XUnits

YUnits

Notes

Examples
1 Open a Web browser to

http://www.jcamp-dx.org/testdata.html

2 Download the testdata.zip file to your MATLAB Current Folder.

3 Extract isas_ms1.dx, a JCAMP-DX-formatted file, from the testdata.zip file to
your MATLAB Current Folder.

4 Read the data from the JCAMP-DX-formatted file, isas_ms1.dx, into the MATLAB
software

jcampStruct = jcampread('isas_ms1.dx')

jcampStruct =

http://www.jcamp-dx.org/testdata.html

1 Alphabetical List

1-1032

 Title: '2-Chlorphenol'

 DataType: 'MASS SPECTRUM'

 DataClass: 'PEAKTABLE'

 Origin: 'H. Mayer, ISAS Dortmund'

 Owner: 'COPYRIGHT (C) 1993 by ISAS Dortmund, FRG'

 Blocks: [1x1 struct]

 Notes: {8x2 cell}

5 Plot the mass spectrum.

data = jcampStruct.Blocks(1);

stem(data.XData,data.YData, '.', 'MarkerEdgeColor','w');

title(jcampStruct.Title);

xlabel(data.XUnits);

ylabel(data.YUnits);

 jcampread

1-1033

See Also
mslowess | mssgolay | msviewer | mzcdfread | mzxmlread | tgspcread

1 Alphabetical List

1-1034

joinseq
Join two sequences to produce shortest supersequence

Syntax
SeqNT3 = joinseq(SeqNT1, SeqNT2)

Arguments

SeqNT1, SeqNT2 Nucleotide sequences.

Description
SeqNT3 = joinseq(SeqNT1, SeqNT2) creates a new sequence that is the shortest
supersequence of SeqNT1 and SeqNT2. If there is no overlap between the sequences, then
SeqNT2 is concatenated to the end of SeqNT1. If the length of the overlap is the same at
both ends of the sequence, then the overlap at the end of SeqNT1 and the start of SeqNT2
is used to join the sequences.

If SeqNT1 is a subsequence of SeqNT2, then SeqNT2 is returned as the shortest
supersequence and vice versa.

Examples
Join two sequences that contain an overlap.

seq1 = 'ACGTAAA';

seq2 = 'AAATGCA';

joined = joinseq(seq1,seq2)

joined =

 ACGTAAATGCA

See Also
cat | strcat | strfind

 knnclassify

1-1035

knnclassify

Classify data using nearest neighbor method

Compatibility

knnclassify will be removed in a future release. Instead use fitcknn to
fit a knn classification model and classify data using the predict function of
ClassificationKNN object.

Syntax

Class = knnclassify(Sample, Training, Group)

Class = knnclassify(Sample, Training, Group, k)

Class = knnclassify(Sample, Training, Group, k, distance)

Class = knnclassify(Sample, Training, Group, k, distance, rule)

Arguments

Sample Matrix whose rows will be classified into groups. Sample must have
the same number of columns as Training.

Training Matrix used to group the rows in the matrix Sample. Training must
have the same number of columns as Sample. Each row of Training
belongs to the group whose value is the corresponding entry of Group.

Group Vector whose distinct values define the grouping of the rows in
Training.

k The number of nearest neighbors used in the classification. Default is
1.

distance String specifying the distance metric. Choices are:

• 'euclidean' — Euclidean distance (default)
• 'cityblock' — Sum of absolute differences

1 Alphabetical List

1-1036

• 'cosine' — One minus the cosine of the included angle between
points (treated as vectors)

• 'correlation' — One minus the sample correlation between
points (treated as sequences of values)

• 'hamming' — Percentage of bits that differ (suitable only for
binary data)

rule String to specify the rule used to decide how to classify the sample.
Choices are:

• 'nearest' — Majority rule with nearest point tie-break (default)
• 'random' — Majority rule with random point tie-break
• 'consensus' — Consensus rule

Description

Class = knnclassify(Sample, Training, Group) classifies the rows of the data
matrix Sample into groups, based on the grouping of the rows of Training. Sample and
Training must be matrices with the same number of columns. Group is a vector whose
distinct values define the grouping of the rows in Training. Each row of Training
belongs to the group whose value is the corresponding entry of Group. knnclassify
assigns each row of Sample to the group for the closest row of Training. Group can be
a numeric vector, a string array, or a cell array of strings. Training and Group must
have the same number of rows. knnclassify treats NaNs or empty strings in Group as
missing values, and ignores the corresponding rows of Training. Class indicates which
group each row of Sample has been assigned to, and is of the same type as Group.

Class = knnclassify(Sample, Training, Group, k) enables you to specify k,
the number of nearest neighbors used in the classification. Default is 1.

Class = knnclassify(Sample, Training, Group, k, distance) enables you to
specify the distance metric. Choices for distance are:

• 'euclidean' — Euclidean distance (default)
• 'cityblock' — Sum of absolute differences
• 'cosine' — One minus the cosine of the included angle between points (treated as

vectors)

 knnclassify

1-1037

• 'correlation' — One minus the sample correlation between points (treated as
sequences of values)

• 'hamming' — Percentage of bits that differ (suitable only for binary data)

Class = knnclassify(Sample, Training, Group, k, distance, rule)

enables you to specify the rule used to decide how to classify the sample. Choices for
rule are:

• 'nearest' — Majority rule with nearest point tie-break (default)
• 'random' — Majority rule with random point tie-break
• 'consensus' — Consensus rule

The default behavior is to use majority rule. That is, a sample point is assigned to the
class the majority of the k nearest neighbors are from. Use 'consensus' to require a
consensus, as opposed to majority rule. When using the 'consensus' option, points
where not all of the k nearest neighbors are from the same class are not assigned to one
of the classes. Instead the output Class for these points is NaN for numerical groups,
'' for string named groups, or undefined for categorical groups. When classifying to
more than two groups or when using an even value for k, it might be necessary to break
a tie in the number of nearest neighbors. Options are 'random', which selects a random
tiebreaker, and 'nearest', which uses the nearest neighbor among the tied groups to
break the tie. The default behavior is majority rule, with nearest tie-break.

Examples

Classifying Rows

The following example classifies the rows of the matrix sample:

sample = [.9 .8;.1 .3;.2 .6]

sample =

 0.9000 0.8000

 0.1000 0.3000

 0.2000 0.6000

training=[0 0;.5 .5;1 1]

training =

1 Alphabetical List

1-1038

 0 0

 0.5000 0.5000

 1.0000 1.0000

group = [1;2;3]

group =

 1

 2

 3

class = knnclassify(sample, training, group)

class =

 3

 1

 2

Row 1 of sample is closest to row 3 of training, so class(1) = 3. Row 2 of sample is
closest to row 1 of training, so class(2) = 1. Row 3 of sample is closest to row 2 of
training, so class(3) = 2.

Classifying Rows into One of Two Groups

The following example classifies each row of the data in sample into one of the two
groups in training. The following commands create the matrix training and the
grouping variable group, and plot the rows of training in two groups.

training = [mvnrnd([1 1], eye(2), 100); ...

 mvnrnd([-1 -1], 2*eye(2), 100)];

group = [repmat(1,100,1); repmat(2,100,1)];

gscatter(training(:,1),training(:,2),group,'rb','+x');

legend('Training group 1', 'Training group 2');

hold on;

 knnclassify

1-1039

The following commands create the matrix sample, classify its rows into two groups, and
plot the result.

sample = unifrnd(-5, 5, 100, 2);

% Classify the sample using the nearest neighbor classification

c = knnclassify(sample, training, group);

gscatter(sample(:,1),sample(:,2),c,'mc'); hold on;

legend('Training group 1','Training group 2', ...

 'Data in group 1','Data in group 2');

hold off;

1 Alphabetical List

1-1040

Classifying Rows Using the Three Nearest Neighbors

The following example uses the same data as in Classifying Rows into One of Two
Groups, but classifies the rows of sample using three nearest neighbors instead of one.
gscatter(training(:,1),training(:,2),group,'rb','+x');

hold on;

c3 = knnclassify(sample, training, group, 3);

gscatter(sample(:,1),sample(:,2),c3,'mc','o');

legend('Training group 1','Training group 2','Data in group 1','Data in group 2');

 knnclassify

1-1041

If you compare this plot with the one in Classifying Rows into One of Two Groups, you
see that some of the data points are classified differently using three nearest neighbors.

References

[1] Mitchell, T. (1997). Machine Learning, (McGraw-Hill).

See Also
classperf | fitcknn | crossvalind | knnimpute | classify | svmclassify |
svmtrain

1 Alphabetical List

1-1042

knnimpute
Impute missing data using nearest-neighbor method

Syntax

knnimpute(Data)

knnimpute(Data, k)

knnimpute(..., 'Distance', DistanceValue, ...)

knnimpute(..., 'DistArgs', DistArgsValue, ...)

knnimpute(..., 'Weights', WeightsValues, ...)

knnimpute(..., 'Median', MedianValue, ...)

Arguments

Data Matrix
k The number of nearest neighbors used. The default is 1.

Description

knnimpute(Data) replaces NaNs in Data with the corresponding value from the
nearest-neighbor column. The nearest-neighbor column is the closest column in
Euclidean distance. If the corresponding value from the nearest-neighbor column is also
NaN, the next nearest column is used.

knnimpute(Data, k) replaces NaNs in Data with a weighted mean of the k nearest-
neighbor columns. The weights are inversely proportional to the distances from the
neighboring columns.

knnimpute(..., 'PropertyName', PropertyValue, ...) calls knnimpute with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

knnimpute(..., 'Distance', DistanceValue, ...) computes nearest-neighbor
columns using the distance metric distfun. The choices for DistanceValue are:

 knnimpute

1-1043

'euclidean' Euclidean distance (default).
'seuclidean' Standardized Euclidean distance — each coordinate in the sum

of squares is inversely weighted by the sample variance of that
coordinate.

'cityblock' City block distance.
'mahalanobis' Mahalanobis distance.
'minkowski' Minkowski distance with exponent 2.
'cosine' One minus the cosine of the included angle.
'correlation' One minus the sample correlation between observations, treated as

sequences of values.
'hamming' Hamming distance — the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient — the percentage of nonzero

coordinates that differ.
'chebychev' Chebychev distance (maximum coordinate difference).
function handle A handle to a distance function, specified using @, for example,

@distfun.

See pdist for more details.

knnimpute(..., 'DistArgs', DistArgsValue, ...) passes arguments
(DistArgsValue) to the function distfun. DistArgsValue can be a single value or a
cell array of values.

knnimpute(..., 'Weights', WeightsValues, ...) lets you specify the weights
used in the weighted mean calculation. w should be a vector of length k.

knnimpute(..., 'Median', MedianValue, ...) when MedianValue is true, uses
the median of the k nearest neighbors instead of the weighted mean.

Examples

Example 1

A = [1 2 5;4 5 7;NaN -1 8;7 6 0]

1 Alphabetical List

1-1044

A =

 1 2 5

 4 5 7

 NaN -1 8

 7 6 0

Note that A(3,1) = NaN. Because column 2 is the closest column to column 1 in
Euclidean distance, knnimpute imputes the (3,1) entry of column 1 to be the
corresponding entry of column 2, which is -1.

knnimpute(A)

ans =

 1 2 5

 4 5 7

 -1 -1 8

 7 6 0

Example 2

The following example loads the data set yeastdata and imputes missing values in the
array yeastvalues:

load yeastdata

% Remove data for empty spots

emptySpots = strcmp('EMPTY',genes);

yeastvalues(emptySpots,:) = [];

genes(emptySpots) = [];

% Impute missing values

imputedValues = knnimpute(yeastvalues);

References

[1] Speed, T. (2003). Statistical Analysis of Gene Expression Microarray Data (Chapman
& Hall/CRC).

[2] Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., and Botstein, D. (1999).
“Imputing missing data for gene expression arrays”, Technical Report, Division of
Biostatistics, Stanford University.

 knnimpute

1-1045

[3] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., and Altman, R. (2001). Missing value estimation methods for DNA
microarrays. Bioinformatics 17(6), 520–525.

See Also
knnclassify | pdist | isnan | nanmean | nanmedian

1 Alphabetical List

1-1046

ldivide (DataMatrix)
Left array divide DataMatrix objects

Syntax

DMObjNew = ldivide(DMObj1, DMObj2)

DMObjNew = DMObj1 .\ DMObj2

DMObjNew = ldivide(DMObj1, B)

DMObjNew = DMObj1 .\ B

DMObjNew = ldivide(B, DMObj1)

DMObjNew = B .\ DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by left array division.

Description

DMObjNew = ldivide(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 .
\ DMObj2 performs an element-by-element left array division of the DataMatrix objects
DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object. In
other words, ldivide divides each element in DMObj2 by the corresponding element in
DMObj1. DMObj1 and DMObj2 must have the same size (number of rows and columns),
unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns),
row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is
a scalar; then they are the same as DMObj2.

 ldivide (DataMatrix)

1-1047

DMObjNew = ldivide(DMObj1, B) or the equivalent DMObjNew = DMObj1 .\ B
performs an element-by-element left array division of the DataMatrix object DMObj1 and
B, a numeric or logical array, and places the results in DMObjNew, another DataMatrix
object. In other words, ldivide divides each element in B by the corresponding element
in DMObj1. DMObj1 and B must have the same size (number of rows and columns), unless
B is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

DMObjNew = ldivide(B, DMObj1) or the equivalent DMObjNew = B .\ DMObj1
performs an element-by-element left array division of B, a numeric or logical array, and
the DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix
object. In other words, ldivide divides each element in DMObj1 by the corresponding
element in B.DMObj1 and B must have the same size (number of rows and columns),
unless B is a scalar. The size (number of rows and columns), row names, and column
names for DMObjNew are the same as DMObj1.

Note: Arithmetic operations between a scalar DataMatrix object and a nonscalar array
are not supported.

MATLAB calls DMObjNew = ldivide(X, Y) for the syntax DMObjNew = X .\ Y
when X or Y is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | times | rdivide

1 Alphabetical List

1-1048

le (DataMatrix)
Test DataMatrix objects for less than or equal to

Syntax

T = le(DMObj1, DMObj2)

T = DMObj1 <= DMObj2

T = le(DMObj1, B)

T = DMObj1 <= B

T = le(B, DMObj1)

T = B <= DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

T Logical matrix of the same size as DMObj1 and DMObj2 or
DMObj1 and B. It contains logical 1 (true) where elements in the
first input are less than or equal to the corresponding element in
the second input, and logical 0 (false) otherwise.

Description

T = le(DMObj1, DMObj2) or the equivalent T = DMObj1 <= DMObj2 compares
each element in DataMatrix object DMObj1 to the corresponding element in DataMatrix
object DMObj2, and returns T, a logical matrix of the same size as DMObj1 and DMObj2,
containing logical 1 (true) where elements in DMObj1 are less than or equal to the
corresponding element in DMObj2, and logical 0 (false) otherwise. DMObj1 and DMObj2

 le (DataMatrix)

1-1049

must have the same size (number of rows and columns), unless one is a scalar (1-by-1
DataMatrix object). DMObj1 and DMObj2 can have different Name properties.

T = le(DMObj1, B) or the equivalent T = DMObj1 <= B compares each element in
DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array,
and returns T, a logical matrix of the same size as DMObj1 and B, containing logical 1
(true) where elements in DMObj1 are less than or equal to the corresponding element in
B, and logical 0 (false) otherwise. DMObj1 and B must have the same size (number of rows
and columns), unless one is a scalar.

T = le(B, DMObj1) or the equivalent T = B <= DMObj1 compares each element in B,
a numeric or logical array, to the corresponding element in DataMatrix object DMObj1,
and returns T, a logical matrix of the same size as B and DMObj1, containing logical
1 (true) where elements in B are less than or equal to the corresponding element in
DMObj1, and logical 0 (false) otherwise. B and DMObj1 must have the same size (number
of rows and columns), unless one is a scalar.

MATLAB calls T = le(X, Y) for the syntax T = X <= Y when X or Y is a DataMatrix
object.

More About
• “DataMatrix object”

See Also
DataMatrix | ge

1 Alphabetical List

1-1050

localalign
Return local optimal and suboptimal alignments between two sequences

Syntax

AlignStruct = localalign(Seq1, Seq2)

AlignStruct = localalign(Seq1, Seq2, ...'NumAln', NumAlnValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'MinScore',

MinScoreValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'Percent',

PercentValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'DoAlignment',

DoAlignmentValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'Alphabet',

AlphabetValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'ScoringMatrix',

ScoringMatrixValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'Scale', ScaleValue, ...)

AlignStruct = localalign(Seq1, Seq2, ...'GapOpen',

GapOpenValue, ...)

Description

AlignStruct = localalign(Seq1, Seq2) returns information about the first
optimal (highest scoring) local alignment between two sequences in a MATLAB
structure.

AlignStruct = localalign(Seq1, Seq2, ...'PropertyName',

PropertyValue, ...) calls localalign with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Enclose
each PropertyName in single quotation marks. Each PropertyName is case insensitive.
These property name/property value pairs are as follows:

AlignStruct = localalign(Seq1, Seq2, ...'NumAln', NumAlnValue, ...)

returns information about one or more nonintersecting, local alignments (optimal and
suboptimal). It limits the number of alignments to return by specifying the number of

 localalign

1-1051

local alignments to return. It returns the alignments in decreasing order according to
their score.

AlignStruct = localalign(Seq1, Seq2, ...'MinScore',

MinScoreValue, ...) returns information about nonintersecting, local alignments
(optimal and suboptimal), whose score is greater than MinScoreValue.

AlignStruct = localalign(Seq1, Seq2, ...'Percent',

PercentValue, ...) returns information about one or more nonintersecting local
alignments (optimal and suboptimal), whose scores are within PercentValue percent of
the highest score. It returns the alignments in decreasing order according to their score.

AlignStruct = localalign(Seq1, Seq2, ...'DoAlignment',

DoAlignmentValue, ...) specifies whether to include the pairwise alignments in the
Alignment field of the output structure. Choices are true (default) or false.

AlignStruct = localalign(Seq1, Seq2, ...'Alphabet',

AlphabetValue, ...) specifies the type of sequences. Choices are 'AA' (default) or
'NT'.

AlignStruct = localalign(Seq1, Seq2, ...'ScoringMatrix',

ScoringMatrixValue, ...) specifies the scoring matrix to use for the local
alignment.

AlignStruct = localalign(Seq1, Seq2, ...'Scale', ScaleValue, ...)

specifies a scale factor applied to the output scores, thereby controlling the units of the
output scores. Choices are any positive value. Default is 1, which does not change the
units of the output score.

AlignStruct = localalign(Seq1, Seq2, ...'GapOpen',

GapOpenValue, ...) specifies the penalty for opening a gap in the alignment. Choices
are any positive value. Default is 8.

Input Arguments

Seq1

First amino acid or nucleotide sequence specified by any of the following:

• Character string of letters representing amino acids or nucleotides, such as returned
by int2aa or int2nt

1 Alphabetical List

1-1052

• Vector of integers representing amino acids or nucleotides, such as returned by
aa2int or nt2int

• MATLAB structure containing a Sequence field, such as returned by fastaread,
fastqread, emblread, getembl, genbankread, getgenbank, getgenpept,
genpeptread, getpdb, pdbread, or sffread

Tip For help with letter and integer representations of amino acids and nucleotides, see
Amino Acid Lookup or Nucleotide Lookup.

Default:

Seq2

Second amino acid or nucleotide sequence, which localalign aligns with Seq1.

Default:

NumAlnValue

Positive scalar (< or = 2^12) specifying the number of alignments to return. localalign
returns the top NumAlnValue local, nonintersecting alignments (optimal and
suboptimal). If the number of optimal alignments is greater than NumAlnValue, then
localalign returns the first NumAlnValue alignments based on their order in the trace
back matrix.

Note: If you specify a NumAlnValue, you cannot specify a MinScoreValue or
PercentValue.

Tip Use NumAlnValue to return multiple alignments when you are aligning low
complexity sequences and must consider several local alignments.

Default: 1

MinScoreValue

Positive scalar specifying the minimum score of local, nonintersecting alignments
(optimal and suboptimal) to return.

 localalign

1-1053

Note: If you specify a MinScoreValue, you cannot specify a NumAlnValue or
PercentValue.

Tip Use MinScoreValue to return suboptimal alignments, for example when you are
interested in accounting for sequencing errors or imperfect scoring matrices.

Default:

PercentValue

Positive scalar between 0 and 100 that limits the return of local, nonintersecting
alignments (optimal and suboptimal) to those alignments with a score within
PercentValue percent of the highest score. For example, if the highest score is 10.5
and you specify 5 for PercentValue, then localalign determines a minimum score of
10.5 – (10.5 * 0.05) = 9.975. It returns all alignments with a score of 9.975 or
higher.

Note: If you specify a PercentValue, you cannot specify a NumAlnValue or
MinScoreValue.

Tip Use PercentValue to return optimal and suboptimal alignments when you do not
know how similar the two sequences are or how well they score against a given scoring
matrix.

Default:

DoAlignmentValue

Controls the inclusion of the pairwise alignments in the Alignment field of the output
structure. Choices are true (default) or false.

Default:

AlphabetValue

String specifying the type of sequences. Choices are 'AA' (default) or 'NT'.

1 Alphabetical List

1-1054

Default:

ScoringMatrixValue

Either of the following:

• String specifying the scoring matrix to use for the local alignment. Choices for amino
acid sequences are:

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

• 'BLOSUM50' — When AlphabetValue equals 'AA'
• 'NUC44' — When AlphabetValue equals 'NT'

Note: The previous scoring matrices, provided with the software, also include a
structure containing a scale factor that converts the units of the output score to bits.
You can also use the 'Scale' property to specify an additional scale factor to convert
the output score from bits to another unit.

• Matrix representing the scoring matrix to use for the local alignment, such as
returned by the blosum, pam, dayhoff, gonnet, or nuc44 function.

Note: If you use a scoring matrix that you created or was created by one of the
previous functions, the matrix does not include a scale factor. The output score is
returned in the same units as the scoring matrix. You can use the 'Scale' property
to specify a scale factor to convert the output score to another unit.

Note: If you need to compile localalign into a stand-alone application or software
component using MATLAB Compiler™, use a matrix instead of a string for
ScoringMatrixValue.

 localalign

1-1055

Default:

ScaleValue

Positive value that specifies a scale factor that is applied to the output scores, thereby
controlling the units of the output scores.

For example, if the output score is initially determined in bits, and you enter log(2) for
ScaleValue, then localalign returns Score in nats.

Default is 1, which does not change the units of the output score.

Note: If the 'ScoringMatrix' property also specifies a scale factor, then localalign
uses it first to scale the output score. It then applies the scale factor specified by
ScaleValue to rescale the output score.

Tip Before comparing alignment scores from multiple alignments, ensure that the scores
are in the same units. Use the 'Scale' property to control the units of the output scores.

Default:

GapOpenValue

Positive value specifying the penalty for opening a gap in the alignment.

Default: 8

Output Arguments

AlignStruct

MATLAB structure or array of structures containing information about the local optimal
and suboptimal alignments between two sequences. Each structure represents an
optimal or suboptimal alignment and contains the following fields.

Field Description

Score Score for the local optimal or suboptimal alignment.

1 Alphabetical List

1-1056

Field Description

Start 1-by-2 vector of indices indicating the starting point in each sequence
for the alignment.

Stop 1-by-2 vector of indices indicating the stopping point in each sequence
for the alignment.

Alignment 3-by-N character array showing the two sequences, Seq1 and Seq2, in
the first and third rows. It also shows symbols representing the optimal
or suboptimal local alignment between the two sequences in the second
row.

Examples

Limit the number of alignments to return between two sequences by specifying the
number of alignments:

% Create variables containing two amino acid sequences.

Seq1 = 'VSPAGMASGYDPGKA';

Seq2 = 'IPGKATREYDVSPAG';

% Use the NumAln property to return information about the

% top three local alignments.

struct1 = localalign(Seq1, Seq2, 'numaln', 3)

struct1 =

 Score: [3x1 double]

 Start: [3x2 double]

 Stop: [3x2 double]

 Alignment: {3x1 cell}

% View the scores of the first and second alignments.

struct1.Score(1:2)

ans =

 11.0000

 9.6667

% View the first alignment.

struct1.Alignment{1}

 localalign

1-1057

ans =

VSPAG

|||||

VSPAG

Limit the number of alignments to return between two sequences by specifying a
minimum score:

% Create variables containing two amino acid sequences.

Seq1 = 'VSPAGMASGYDPGKA';

Seq2 = 'IPGKATREYDVSPAG';

% Use the MinScore property to return information about

% only local alignments with a score greater than 8.

% Use the DoAlignment property to exclude the actual alignments.

struct2 = localalign(Seq1,Seq2,'minscore',8,'doalignment',false)

struct2 =

 Score: [2x1 double]

 Start: [2x2 double]

 Stop: [2x2 double]

Limit the number of alignments to return between two sequences by specifying a
percentage from the maximum score:

% Create variables containing two amino acid sequences.

Seq1 = 'VSPAGMASGYDPGKA';

Seq2 = 'IPGKATREYDVSPAG';

% Use the Percent property to return information about only

% local alignments with a score within 15% of the maximum score.

struct3 = localalign(Seq1, Seq2, 'percent', 15)

struct3 =

 Score: [2x1 double]

 Start: [2x2 double]

 Stop: [2x2 double]

 Alignment: {2x1 cell}

Specify a scoring matrix and gap opening penalty when aligning two sequences:

1 Alphabetical List

1-1058

% Create variables containing two nucleotide sequences.

Seq1 = 'CCAATCTACTACTGCTTGCAGTAC';

Seq2 = 'AGTCCGAGGGCTACTCTACTGAAC';

% Create a scoring matrix with a match score of 10 and a mismatch

% score of -9

sm = [10 -9 -9 -9;

 -9 10 -9 -9;

 -9 -9 10 -9;

 -9 -9 -9 10];

% Use the ScoringMatrix and GapOpen properties when returning

% information about the top three local alignments.

struct4 = localalign(Seq1, Seq2, 'alpha', 'nt', ...

 'scoringmatrix', sm, 'gapopen', 20, 'numaln', 3)

struct4 =

 Score: [3x1 double]

 Start: [3x2 double]

 Stop: [3x2 double]

 Alignment: {3x1 cell}

More About

Nonintersecting Alignments

Alignments having no matches or mismatches in common.

Optimal Alignment

An alignment with the highest score.

Suboptimal Alignment

An alignment with a score less than the highest score.
• “Retrieve Sequence Information from a Public Database”
• “View and Align Multiple Sequences”
• Amino Acid Lookup
• Nucleotide Lookup

 localalign

1-1059

• http://www.ncbi.nlm.nih.gov/
• http://www.expasy.ch/sprot/
• http://www.rcsb.org/pdb/home/home.do
• http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

cmd=show&f=main&m=main&s=main

References

[1] Barton, G. (1993). An efficient algorithm to locate all locally optimal alignments
between two sequences allowing for gaps. CABIOS 9, 729–734.

See Also
nwalign | swalign | showalignment | blosum | pam | dayhoff | gonnet | nuc44

Tutorials
• Aligning Pairs of Sequences

http://www.ncbi.nlm.nih.gov/
http://www.expasy.ch/sprot/
http://www.rcsb.org/pdb/home/home.do
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-1060

lt (DataMatrix)
Test DataMatrix objects for less than

Syntax

T = lt(DMObj1, DMObj2)

T = DMObj1 < DMObj2

T = lt(DMObj1, B)

T = DMObj1 < B

T = lt(B, DMObj1)

T = B < DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

T Logical matrix of the same size as DMObj1 and DMObj2 or
DMObj1 and B. It contains logical 1 (true) where elements in the
first input are less than the corresponding element in the second
input, and logical 0 (false) otherwise.

Description

T = lt(DMObj1, DMObj2) or the equivalent T = DMObj1 < DMObj2 compares each
element in DataMatrix object DMObj1 to the corresponding element in DataMatrix
object DMObj2, and returns T, a logical matrix of the same size as DMObj1 and DMObj2,
containing logical 1 (true) where elements in DMObj1 are less than the corresponding
element in DMObj2, and logical 0 (false) otherwise. DMObj1 and DMObj2 must have

 lt (DataMatrix)

1-1061

the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix
object). DMObj1 and DMObj2 can have different Name properties.

T = lt(DMObj1, B) or the equivalent T = DMObj1 < B compares each element in
DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array,
and returns T, a logical matrix of the same size as DMObj1 and B, containing logical
1 (true) where elements in DMObj1 are less than the corresponding element in B, and
logical 0 (false) otherwise. DMObj1 and B must have the same size (number of rows and
columns), unless one is a scalar.

T = lt(B, DMObj1) or the equivalent T = B < DMObj1 compares each element in B, a
numeric or logical array, to the corresponding element in DataMatrix object DMObj1, and
returns T, a logical matrix of the same size as B and DMObj1, containing logical 1 (true)
where elements in B are less than the corresponding element in DMObj1, and logical 0
(false) otherwise. B and DMObj1 must have the same size (number of rows and columns),
unless one is a scalar.

MATLAB calls T = lt(X, Y) for the syntax T = X < Y when X or Y is a DataMatrix
object.

More About
• “DataMatrix object”

See Also
DataMatrix | gt

1 Alphabetical List

1-1062

maboxplot

Create box plot for microarray data

Syntax

maboxplot(MAData)

maboxplot(MAData, ColumnName)

maboxplot(MAStruct, FieldName)

H = maboxplot(...)

[H, HLines] = maboxplot(...)

maboxplot(..., 'Title', TitleValue, ...)

maboxplot(..., 'Notch', NotchValue, ...)

maboxplot(..., 'Symbol', SymbolValue, ...)

maboxplot(..., 'Orientation', OrientationValue, ...)

maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...)

maboxplot(..., 'BoxPlot', BoxPlotValue, ...)

Arguments

MAData DataMatrix object, numeric array, or a structure containing
a field called Data. The values in the columns of MAData
will be used to create box plots. If a DataMatrix object, the
column names are used as labels in the box plot.

ColumnName An array of column names corresponding to the data in
MAData used as labels in the box plot.

MAStruct A microarray data structure.
FieldName A field within the microarray data structure, MAStruct.

The values in the field FieldName will be used to create box
plots.

TitleValue String to use as the title for the plot. The default title is
FieldName.

NotchValue Logical specifying the type of boxes drawn. Choices are:

 maboxplot

1-1063

• true — Notched boxes
• false — Square boxes

Default is false.
OrientationValue String specifying the orientation of the box plot. Choices are:

• 'Vertical'

• 'Horizontal' (default)
WhiskerLengthValue Value specifying the maximum length of the whiskers

as a function of the interquartile range (IQR). The
whisker extends to the most extreme data value within
WhiskerLengthValue*IQR of the box. Default = 1.5. If
WhiskerLengthValue equals 0, then maboxplot displays
all data values outside the box, using the plotting symbol
Symbol.

BoxPlotValue A cell array of property name/property value pairs to pass to
the Statistics Toolbox boxplot function, which creates the
box plot. For valid pairs, see the boxplot function.

Description

maboxplot(MAData) displays a box plot of the values in the columns of MAData.
MAData can be a DataMatrix object, numeric array, or a structure containing a field
called Data, containing microarray data.

maboxplot(MAData, ColumnName) labels the box plot column names.

maboxplot(MAStruct, FieldName) displays a box plot of the values in the field
FieldName in the microarray data structure MAStruct. If MAStruct is block based,
maboxplot creates a box plot of the values in the field FieldName for each block.

Note: If you provide MAStruct, without providing FieldName, maboxplot uses the
Signal element in the ColumnNames field of MAStruct, if Affymetrixdata, or the first
element in the ColumnNames field of MAStruct, otherwise.

H = maboxplot(...) returns the handle of the box plot axes.

1 Alphabetical List

1-1064

[H, HLines] = maboxplot(...) returns the handles of the lines used to separate the
different blocks in the image.

maboxplot(..., 'PropertyName', PropertyValue, ...) calls maboxplot with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

maboxplot(..., 'Title', TitleValue, ...) allows you to specify the title of the
plot. The default TitleValue is FieldName.

maboxplot(..., 'Notch', NotchValue, ...) if NotchValue is true, draws
notched boxes. The default is false to show square boxes.

maboxplot(..., 'Symbol', SymbolValue, ...) allows you to specify the symbol
used for outlier values. The default Symbol is '+'.

maboxplot(..., 'Orientation', OrientationValue, ...) allows you to specify
the orientation of the box plot. The choices are 'Vertical' and 'Horizontal'. The
default is 'Vertical'.

maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...) allows you to
specify the whisker length for the box plot. WhiskerLengthValue defines the maximum
length of the whiskers as a function of the interquartile range (IQR) (default = 1.5). The
whisker extends to the most extreme data value within WhiskerLength*IQR of the box.
If WhiskerLengthValue equals 0, then maboxplot displays all data values outside the
box, using the plotting symbol Symbol.

maboxplot(..., 'BoxPlot', BoxPlotValue, ...) allows you to specify
arguments to pass to the boxplot function, which creates the box plot. BoxPlotValue
is a cell array of property name/property value pairs. For valid pairs, see the boxplot
function.

Examples

Display Box Plots for Microarray Data

This example shows how to display box plots for microarray data.

Load the MAT-file, provided with the Bioinformatics Toolbox™ software, that contains
yeast data. This MAT-file includes three variables: yeastvalues , a matrix of gene

 maboxplot

1-1065

expression data, genes , a cell array of GenBank® accession numbers for labeling the
rows in yeastvalues, and times , a vector of time values for labeling the columns in
yeastvalues.

load yeastdata

Show the box plot of gene expression data.

maboxplot(yeastvalues,times);

xlabel('Sample Times');

Use the gprread function to create a structure containing microarray data, and plot the
data using name-value pair arguments of the maboxplot function.

madata = gprread('mouse_a1wt.gpr');

1 Alphabetical List

1-1066

maboxplot(madata,'F635 Median - B635','TITLE', 'Cy5 Channel FG - BG');

See Also
magetfield | maimage | mairplot | maloglog | malowess | manorm |
mavolcanoplot | boxplot

 mafdr

1-1067

mafdr

Estimate false discovery rate (FDR) for multiple hypothesis testing

Syntax

FDR = mafdr(PValues)

[FDR, Q] = mafdr(PValues)

[FDR, Q, Pi0] = mafdr(PValues)

[FDR, Q, Pi0, R2] = mafdr(PValues)

FDR = mafdr(PValues, ...'BHFDR', BHFDRValue, ...)

... = mafdr(PValues, ...'Lambda', LambdaValue, ...)

... = mafdr(PValues, ...'Method', MethodValue, ...)

... = mafdr(PValues, ...'Showplot', ShowplotValue, ...)

Input Arguments

PValues Either of the following:

• Column vector of p-values for each feature (for example, gene) in
a data set, such as returned by mattest.

• DataMatrix object containing p-values for each feature (for
example, gene) in a data set, such as returned by mattest.

BHFDRValue Controls the use of the linear step-up (LSU) procedure originally
introduced by Benjamini and Hochberg, 1995 (instead of the
procedure introduced by Storey, 2002). Choices are true or false
(default).

Note: If you set BHFDRValue to true, then:

• Lambda and Method properties are ignored.

• There can be only one output argument, FDR.

1 Alphabetical List

1-1068

LambdaValue Specifies lambda, λ, the tuning parameter used to estimate
the a priori probability that the null hypothesis, ˆ ()p l0 , is true.
LambdaValue can be either:

• A single value that is > 0 and < 1.
• A vector of four or more values. Each value must be > 0 and <

1.

Tip The series of values can be expressed by a colon operator
with the form [first:incr:last], where first is the first
value in the series, incr is the increment, and last is the last
value in the series.

Default LambdaValue is the series of values [0.01:0.01:0.95].

Note: If you set LambdaValue to a single value, the Method
property is ignored.

If you set LambdaValue to a vector of values, mafdr chooses the
optimal value using the method specified by the Method property.

MethodValue String that specifies a method to choose lambda, λ, the tuning
parameter, from LambdaValue, when it is a vector. Choices are:

• 'bootstrap' (default)
• 'polynomial'

Note: MethodValue must be 'polynomial' to return the fourth
output argument, R2.

 mafdr

1-1069

ShowplotValue Property to display two plots:

• Plot of the estimated a priori probability that the null
hypothesis, ˆ ()p l0 , is true versus the tuning parameter, lambda,
λ, with a cubic polynomial fitting curve

• Plot of q-values versus p-values

Choices are true or false (default).

Note: If you set the BHFDR property to true, only the second plot
displays.

Output Arguments

FDR One of the following:

• Column vector of positive FDR (pFDR) values (if PValues is a
column vector).

• DataMatrix object containing positive FDR (pFDR) values and
the same row names as PValues (if PValues is a DataMatrix
object).

Q Column vector of q-values, which are measures of hypothesis
testing error for each observation in PValues.

Pi0 Estimated a priori probability that the null hypothesis, p̂0 , is true.
R2 Square of the correlation coefficient.

Description

FDR = mafdr(PValues) estimates a positive FDR (pFDR) value for each value in
PValues, a column vector or DataMatrix object containing p-values for each feature (for
example, gene) in a data set, using the procedure introduced by Storey, 2002. FDR is a
column vector or a DataMatrix object containing positive FDR (pFDR) values.

1 Alphabetical List

1-1070

[FDR, Q] = mafdr(PValues) also returns a q-value for each p-value in PValues,
using the procedure introduced by Storey, 2002. Q is a column vector containing
measures of hypothesis testing error for each observation in PValues.

[FDR, Q, Pi0] = mafdr(PValues) also returns Pi0, the estimated a priori
probability that the null hypothesis, p̂0 , is true, using the procedure introduced by
Storey, 2002.

[FDR, Q, Pi0, R2] = mafdr(PValues) also returns R2, the square of the
correlation coefficient, using the procedure introduced by Storey, 2002, and the
polynomial method to choose the tuning parameter, lambda, λ.

... = mafdr(PValues, ...'PropertyName', PropertyValue, ...) calls mafdr
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

FDR = mafdr(PValues, ...'BHFDR', BHFDRValue, ...) controls the use of the
linear step-up (LSU) procedure originally introduced by Benjamini and Hochberg, 1995
(instead of the procedure introduced by Storey, 2002), to estimate an FDR-adjusted p-
value for each value in PValues. Choices are true or false (default).

Note: If you set BHFDRValue to true, then:

• Lambda and Method properties are ignored.

• There can be only one output argument, FDR.

... = mafdr(PValues, ...'Lambda', LambdaValue, ...) specifies lambda, λ,
the tuning parameter used to estimate the a priori probability that the null hypothesis,
ˆ ()p l0 , is true. LambdaValue can be either:

• A single value that is > 0 and < 1.
• A vector of four or more values. Each value must be > 0 and < 1.

 mafdr

1-1071

Tip The series of values can be expressed by a colon operator with the form
[first:incr:last], where first is the first value in the series, incr is the
increment, and last is the last value in the series.

Default LambdaValue is the series of values [0.01:0.01:0.95].

Note: If you set LambdaValue to a single value, the Method property is ignored.

If you set LambdaValue to a vector of values, mafdr chooses the optimal value using the
method specified by the Method property.

... = mafdr(PValues, ...'Method', MethodValue, ...) specifies a method to
choose lambda, λ, the tuning parameter, from LambdaValue, when it is a vector. Choices
are bootstrap (default) or polynomial.

Note: MethodValue must be 'polynomial' to return the fourth output argument, R2.

... = mafdr(PValues, ...'Showplot', ShowplotValue, ...) controls the
display of two plots:

• Plot of the estimated a priori probability that the null hypothesis, ˆ ()p l0 , is true versus
the tuning parameter, lambda, λ, with a cubic polynomial fitting curve

• Plot of q-values versus p-values

Choices are true or false (default).

Note: If you set the BHFDR property to true, only the second plot displays.

1 Alphabetical List

1-1072

Examples
1 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains

Affymetrix data from a prostate cancer study, specifically probe intensity data
from Affymetrix HG-U133A GeneChip arrays. The two variables in the MAT-file,
dependentData and independentData, are two matrices of gene expression values
from two experimental conditions.

load prostatecancerexpdata

2 Use the mattest function to calculate p-values for the gene expression values in the
two matrices.
pvalues = mattest(dependentData, independentData, 'permute', true);

 mafdr

1-1073

3 Use the mafdr function to calculate positive FDR values and q-values for the gene
expression values in the two matrices and plot the data.
[fdr, q] = mafdr(pvalues, 'showplot', true);

The prostatecancerexpdata.mat file used in this example contains data from Best et
al., 2005.

References

[1] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

[2] Storey, J.D. (2002). A direct approach to false discovery rates. Journal of the Royal
Statistical Society 64(3), 479–498.

[3] Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide
studies. Proc Nat Acad Sci 100(16), 9440–9445.

[4] Storey, J.D., Taylor, J.E., and Siegmund, D. (2004). Strong control conservative point
estimation and simultaneous conservative consistency of false discovery rates: A
unified approach. Journal of the Royal Statistical Society 66, 187–205.

[5] Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society 57, 289–300.

See Also
affygcrma | gcrma | affyrma | mairplot | maloglog | mapcaplot | mattest |
mavolcanoplot | rmasummary

1 Alphabetical List

1-1074

magetfield
Extract data from microarray structure

Syntax

magetfield(MAStruct, FieldName)

Arguments

MAStruct Microarray structure.
FieldName A column in MAStruct.

Description

magetfield(MAStruct, FieldName) extracts data for FieldName, a column in
MAStruct, microarray structure.

The benefit of this function is to hide the details of extracting a column of data from a
structure created with one of the microarray reader functions (gprread, agferead,
sptread, imageneread).

Examples
maStruct = gprread('mouse_a1wt.gpr');

cy5data = magetfield(maStruct,'F635 Median');

cy3data = magetfield(maStruct,'F532 Median');

mairplot(cy5data,cy3data,'title','R vs G IR plot');

See Also
agferead | gprread | ilmnbsread | imageneread | maboxplot | mairplot |
maloglog | malowess | sptread

 maimage

1-1075

maimage

Spatial image for microarray data

Syntax

maimage(X, FieldName)

H = maimage(...)

[H, HLines] = maimage(...)

maimage(..., 'PropertyName', PropertyValue,...)

maimage(..., 'Title', TitleValue)

maimage(..., 'ColorBar', ColorBarValue)

maimage(..., 'HandleGraphicsPropertyName' PropertyValue)

Arguments

X A microarray data structure.
FieldName A field in the microarray data structure X.
TitleValue A string to use as the title for the plot. The default title is

FieldName.
ColorBarValue Property to control displaying a color bar in the Figure window.

Enter either true or false. The default value is false.

Description

maimage(X, FieldName) displays an image of field FieldName from microarray data
structure X. Microarray data can be GenPix Results (GPR) format. After creating the
image, click a data point to display the value and ID, if known.

H = maimage(...) returns the handle of the image.

[H, HLines] = maimage(...) returns the handles of the lines used to separate the
different blocks in the image.

1 Alphabetical List

1-1076

maimage(..., 'PropertyName', PropertyValue,...) defines optional properties
using property name/value pairs.

maimage(..., 'Title', TitleValue) allows you to specify the title of the plot. The
default title is FieldName.

maimage(..., 'ColorBar', ColorBarValue), when ColorBarValue is true, a
color bar is shown. If ColorBarValue is false, no color bar is shown. The default is for
the color bar to be shown.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue) allows you to
pass optional Handle Graphics® property name/value pairs to the function. For example,
a name/value pair for color could be maimage(..., 'color' 'r').

Examples

Generate Spatial Image for Microarray Data

This example shows how to generate spatial images for microarray data.

Read in a sample GPR file.

madata = gprread('mouse_a1wt.gpr');

Plot the median foreground intensity for the 635 nm channel.

maimage(madata,'F635 Median')

 maimage

1-1077

Alternatively, create a similar plot using more basic graphics commands.

F635Median = magetfield(madata,'F635 Median');

figure

imagesc(F635Median(madata.Indices));

1 Alphabetical List

1-1078

Change the colormap and add a color bar.

colormap bone

colorbar

 maimage

1-1079

See Also
maboxplot | magetfield | mairplot | maloglog | malowess | imagesc

1 Alphabetical List

1-1080

mainvarsetnorm
Perform rank invariant set normalization on gene expression values from two
experimental conditions or phenotypes

Syntax

NormDataY = mainvarsetnorm(DataX, DataY)

NormDataY = mainvarsetnorm(..., 'Thresholds', ThresholdsValue, ...)

NormDataY = mainvarsetnorm(..., 'Exclude', ExcludeValue, ...)

NormDataY = mainvarsetnorm(..., 'Percentile', PercentileValue, ...)

NormDataY = mainvarsetnorm(..., 'Iterate', IterateValue, ...)

NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...)

NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...)

NormDataY = mainvarsetnorm(..., 'Showplot', ShowplotValue, ...)

Arguments

DataX Vector of gene expression values from a single experimental
condition or phenotype, where each row corresponds to a gene.
These data points are used as the baseline.

DataY Vector of gene expression values from a single experimental
condition or phenotype, where each row corresponds to a gene.
These data points will be normalized using the baseline.

ThresholdsValue Vector that sets the thresholds for the lowest average rank
and the highest average rank between the two data sets.
The average rank for each data point is determined by first
converting the values in DataX and DataY to ranks, then
averaging the two ranks for each data point. Then, the
threshold for each data point is determined by interpolating
between the threshold for the lowest average rank and the
threshold for the highest average rank.

Note: These individual thresholds are used to determine
the rank invariant set, which is a set of data points, each

 mainvarsetnorm

1-1081

having a proportional rank difference (prd) smaller than its
predetermined threshold. For more information on the rank
invariant set, see “Description” on page 1-1082.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is
the threshold for the lowest average rank and HT is threshold
for the highest average rank. Select these two thresholds
empirically to limit the spread of the invariant set, but
allow enough data points to determine the normalization
relationship. Values must be between 0 and 1. Default is
[0.03, 0.07].

ExcludeValue Property to filter the invariant set of data points, by excluding
the data points whose average rank (between DataX and
DataY) is in the highest N ranked averages or lowest N ranked
averages.

PercentileValue Property to stop the iteration process when the number of
data points in the invariant set reaches N percent of the total
number of input data points. Default is 1.

Note: If you do not use this property, the iteration process
continues until no more data points are eliminated.

IterateValue Property to control the iteration process for determining
the invariant set of data points. Enter true to repeat the
process until either no more data points are eliminated, or a
predetermined percentage of data points (PercentileValue)
is reached. Enter false to perform only one iteration of the
process. Default is true.

Tip Select false for smaller data sets, typically less than 200
data points.

MethodValue Property to select the smoothing method used to normalize
the data. Enter 'lowess' or 'runmedian'. Default is
'lowess'.

1 Alphabetical List

1-1082

SpanValue Property to set the window size for the smoothing method. If
SpanValue is less than 1, the window size is that percentage
of the number of data points. If SpanValue is equal to or
greater than 1, the window size is of size SpanValue. Default
is 0.05, which corresponds to a window size equal to 5% of
the total number of data points in the invariant set.

ShowplotValue Property to control the plotting of a pair of M-A scatter plots
(before and after normalization). M is the ratio between
DataX and DataY. A is the average of DataX and DataY.
Enter true to create the pair of M-A scatter plots. Default is
false.

Description

NormDataY = mainvarsetnorm(DataX, DataY) normalizes the values in DataY, a
vector of gene expression values, to a reference vector, DataX, using the invariant set
method. NormDataY is a vector of normalized gene expression values from DataY.

Specifically, mainvarsetnorm:

• Determines the proportional rank difference (prd) for each pair of ranks, RankX and
RankY, from the two vectors of gene expression values, DataX and DataY.
prd = abs(RankX - RankY)

• Determines the invariant set of data points by selecting data points whose
proportional rank differences (prd) are below threshold, which is a predetermined
threshold for a given data point (defined by the ThresholdsValue property). It
optionally repeats the process until either no more data points are eliminated, or a
predetermined percentage of data points is reached.
The invariant set is data points with a prd < threshold.

• Uses the invariant set of data points to calculate the lowess or running median
smoothing curve, which is used to normalize the data in DataY.

Note: If DataX or DataY contains NaN values, then NormDataY will also contain NaN
values at the corresponding positions.

Tip mainvarsetnorm is useful for correcting for dye bias in two-color microarray data.

 mainvarsetnorm

1-1083

NormDataY = mainvarsetnorm(..., 'PropertyName', PropertyValue, ...)

calls mainvarsetnorm with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

NormDataY = mainvarsetnorm(..., 'Thresholds', ThresholdsValue, ...)

sets the thresholds for the lowest average rank and the highest average rank between
the two data sets. The average rank for each data point is determined by first converting
the values in DataX and DataY to ranks, then averaging the two ranks for each data
point. Then, the threshold for each data point is determined by interpolating between the
threshold for the lowest average rank and the threshold for the highest average rank.

Note: These individual thresholds are used to determine the rank invariant set, which
is a set of data points, each having a proportional rank difference (prd) smaller than
its predetermined threshold. For more information on the rank invariant set, see
“Description” on page 1-1082.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold for the
lowest average rank and HT is threshold for the highest average rank. Select these two
thresholds empirically to limit the spread of the invariant set, but allow enough data
points to determine the normalization relationship. Values must be between 0 and 1.
Default is [0.03, 0.07].

NormDataY = mainvarsetnorm(..., 'Exclude', ExcludeValue, ...) filters
the invariant set of data points, by excluding the data points whose average rank
(between DataX and DataY) is in the highest N ranked averages or lowest N ranked
averages.

NormDataY = mainvarsetnorm(..., 'Percentile', PercentileValue, ...)

stops the iteration process when the number of data points in the invariant set reaches N
percent of the total number of input data points. Default is 1.

Note: If you do not use this property, the iteration process continues until no more data
points are eliminated.

1 Alphabetical List

1-1084

NormDataY = mainvarsetnorm(..., 'Iterate', IterateValue, ...)

controls the iteration process for determining the invariant set of data points. When
IterateValue is true, mainvarsetnorm repeats the process until either no more data
points are eliminated, or a predetermined percentage of data points (PercentileValue)
is reached. When IterateValue is false, performs only one iteration of the process.
Default is true.

Tip Select false for smaller data sets, typically less than 200 data points.

NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...) selects
the smoothing method for normalizing the data. When MethodValue is 'lowess',
mainvarsetnorm uses the lowess method. When MethodValue is 'runmedian',
mainvarsetnorm uses the running median method. Default is 'lowess'.

NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...) sets the window
size for the smoothing method. If SpanValue is less than 1, the window size is that
percentage of the number of data points. If SpanValue is equal to or greater than 1, the
window size is of size SpanValue. Default is 0.05, which corresponds to a window size
equal to 5% of the total number of data points in the invariant set.

NormDataY = mainvarsetnorm(..., 'Showplot', ShowplotValue, ...)

determines whether to plot a pair of M-A scatter plots (before and after normalization).
M is the ratio between DataX and DataY. A is the average of DataX and DataY. When
ShowplotValue is true, mainvarsetnorm plots the M-A scatter plots. Default is
false.

Examples

Normalize Microarray Data

This example illustrates how to correct for dye bias or scanning differences between two
channels of data from a two-color microarray experiment.

Read microarray data from a sample GPR file.

maStruct = gprread('mouse_a1wt.gpr');

Extract gene expression values from two different experimental conditions.

 mainvarsetnorm

1-1085

cy5data = magetfield(maStruct, 'F635 Median');

cy3data = magetfield(maStruct, 'F532 Median');

Normalize cy3data using cy5data as reference and plot the results.

Normcy3data = mainvarsetnorm(cy5data, cy3data, 'showplot', true);

Under perfect experimental conditions, data points with equal expression values would
fall along the M = 0 line, which represents a gene expression ratio of 1. However, dye bias
caused the measured values in one channel to be higher than the other channel, as seen

1 Alphabetical List

1-1086

in the Before normalization plot. Normalization corrected the variance, as seen in the
After normalization plot.

References

[1] Tseng, G.C., Oh, Min-Kyu, Rohlin, L., Liao, J.C., and Wong, W.H. (2001) Issues in
cDNA microarray analysis: quality filtering, channel normalization, models of
variations and assessment of gene effects. Nucleic Acids Research. 29, 2549-2557.

[2] Hoffmann, R., Seidl, T., and Dugas, M. (2002) Profound effect of normalization on
detection of differentially expressed genes in oligonucleotide microarray data
analysis. Genome Biology. 3(7): research 0033.1-0033.11.

See Also
affyinvarsetnorm | malowess | manorm | quantilenorm

 mairplot

1-1087

mairplot

Create intensity versus ratio scatter plot of microarray data

Syntax

mairplot(DataX, DataY)

[Intensity, Ratio] = mairplot(DataX, DataY)

[Intensity, Ratio, H] = mairplot(DataX, DataY)

... = mairplot(..., 'Type', TypeValue, ...)

... = mairplot(..., 'LogTrans', LogTransValue, ...)

... = mairplot(..., 'FactorLines', FactorLinesValue, ...)

... = mairplot(..., 'Title', TitleValue, ...)

... = mairplot(..., 'Labels', LabelsValue, ...)

... = mairplot(..., 'Normalize', NormalizeValue, ...)

... = mairplot(..., 'LowessOptions', LowessOptionsValue, ...)

... = mairplot(..., 'Showplot', ShowplotValue, ...)

... = mairplot(..., 'PlotOnly', PlotOnlyValue, ...)

Input Arguments

DataX, DataY DataMatrix object or vector of gene expression values
where each row corresponds to a gene. For example, in
a two-color microarray experiment, DataX could be cy3
intensity values and DataY could be cy5 intensity values.

TypeValue String that specifies the plot type. Choices are 'IR' (plots
log10 of the product of the DataX and DataY intensities
versus log2 of the intensity ratios) or 'MA' (plots (1/2)log2
of the product of the DataX and DataY intensities versus
log2 of the intensity ratios). Default is 'IR'.

LogTransValue Controls the conversion of data in X and Y from natural
scale to log2 scale. Set LogTransValue to false, when the
data is already log2 scale. Default is true, which assumes
the data is natural scale.

1 Alphabetical List

1-1088

FactorLinesValue Adds lines to the plot showing a factor of N change. Default
is 2, which corresponds to a level of 1 and -1 on a log2 scale.

Tip You can also change the factor lines interactively, after
creating the plot.

TitleValue String that specifies a title for the plot.
LabelsValue Cell array of labels for the data. If labels are defined, then

clicking a point on the plot shows the label corresponding to
that point.

NormalizeValue Controls the display of lowess normalized ratio values.
Enter true to display to lowess normalized ratio values.
Default is false.

Tip You can also normalize the data from the MAIR Plot
window, after creating the plot.

LowessOptionsValue Cell array of one, two, or three property name/value pairs
in any order that affect the lowess normalization. Choices
for property name/value pairs are:

• 'Order', OrderValue

• 'Robust', RobustValue

• 'Span', SpanValue

For more information on the preceding property name/
value pairs, see malowess.

ShowplotValue Controls the display of the scatter plot. Choices are true
(default) or false.

PlotOnlyValue Controls the display of the scatter plot without user
interface components. Choices are true or false (default).

Note: If you set the 'PlotOnly' property to true, you can
still display labels for data points by clicking a data point,
and you can still adjust the horizontal fold change lines by
click-dragging the lines.

 mairplot

1-1089

Output Arguments

Intensity DataMatrix object or vector containing intensity values for
the microarray gene expression data, calculated as:

• log10 of the product of the DataX and DataY intensities
(when Type is 'IR')

• (1/2)log2 of the product of the DataX and DataY
intensities (when Type is 'MA')

Note: If DataX or DataY is a DataMatrix object, then
Intensity is also a DataMatrix object with the same
properties.

Ratio DataMatrix object or vector containing ratios of
the microarray gene expression data, calculated as
log2(DataX./DataY).

Note: If DataX or DataY is a DataMatrix object, then
Ratio is also a DataMatrix object with the same
properties.

H Handle of the plot.

Description

mairplot(DataX, DataY) creates a scatter plot that plots log10 of the product of the
DataX and DataY intensities versus log2 of the intensity ratios.

[Intensity, Ratio] = mairplot(DataX, DataY) returns the intensity and ratio
values. If you set 'Normalize' to true, the returned ratio values are normalized.

[Intensity, Ratio, H] = mairplot(DataX, DataY) returns the handle of the
plot.

... = mairplot(..., 'PropertyName', PropertyValue, ...) calls mairplot
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single

1 Alphabetical List

1-1090

quotation marks and is case insensitive. These property name/property value pairs are as
follows:

... = mairplot(..., 'Type', TypeValue, ...) specifies the plot type. Choices
are 'IR' (plots log10 of the product of the DataX and DataY intensities versus log2 of
the intensity ratios) or 'MA' (plots (1/2)log2 of the product of the DataX and DataY
intensities versus log2 of the intensity ratios). Default is 'IR'.

... = mairplot(..., 'LogTrans', LogTransValue, ...) controls the
conversion of data in X and Y from natural to log 2 scale. Set LogTransValue to false,
when the data is already log 2 scale. Default is true, which assumes the data is natural
scale.

... = mairplot(..., 'FactorLines', FactorLinesValue, ...) adds lines to
the plot showing a factor of N change. Default is 2, which corresponds to a level of 1 and
-1 on a log2 scale.

Tip You can also change the factor lines interactively, after creating the plot.

... = mairplot(..., 'Title', TitleValue, ...) specifies a title for the plot.

... = mairplot(..., 'Labels', LabelsValue, ...) specifies a cell array of
labels for the data. If labels are defined, then clicking a point on the plot shows the label
corresponding to that point.

... = mairplot(..., 'Normalize', NormalizeValue, ...) controls the display
of lowess normalized ratio values. Enter true to display to lowess normalized ratio
values. Default is false.

Tip You can also normalize the data from the MAIR Plot window, after creating the plot.

... = mairplot(..., 'LowessOptions', LowessOptionsValue, ...) lets
you specify up to three property name/value pairs (in any order) that affect the lowess
normalization. Choices for property name/value pairs are:

• 'Order', OrderValue

• 'Robust', RobustValue

 mairplot

1-1091

• 'Span', SpanValue

For more information on the previous three property name/value pairs, see the
malowess function.

... = mairplot(..., 'Showplot', ShowplotValue, ...) controls the display of
the scatter plot. Choices are true (default) or false.

... = mairplot(..., 'PlotOnly', PlotOnlyValue, ...) controls the display of
the scatter plot without user interface components. Choices are true or false (default).

Note: If you set the 'PlotOnly' property to true, you can still display labels for data
points by clicking a data point, and you can still adjust the horizontal fold change lines by
click-dragging the lines.

Following is an IR plot of normalized data.

1 Alphabetical List

1-1092

Following is an MA plot of unnormalized data.

The intensity versus ratio scatter plot displays the following:

• log10 (Intensity) versus log2 (Ratio) scatter plot of genes.
• Two horizontal fold change lines at a fold change level of 2, which corresponds to a

ratio of 1 and –1 on a log 2 (Ratio) scale. (Lines will be at different fold change levels,
if you used the 'FactorLines' property.)

• Data points for genes that are considered differentially expressed (outside of the fold
change lines) appear in orange.

After you display the intensity versus ratio scatter plot, you can interactively do the
following:

 mairplot

1-1093

• Adjust the horizontal fold change lines by click-dragging one line or entering a value
in the Fold Change text box, then clicking Update.

• Display labels for data points by clicking a data point.
• Select a gene from the Up Regulated or Down Regulated list to highlight the

corresponding data point in the plot. Press and hold Ctrl or Shift to select multiple
genes.

• Zoom the plot by selecting Tools > Zoom In or Tools > Zoom Out.
• View lists of significantly up-regulated and down-regulated genes, and optionally,

export the gene labels and indices to a structure in the MATLAB Workspace by
clicking Export.

• Normalize the data by clicking the Normalize button, then selecting whether to
show the normalized plot in a separate window. If you show the normalized plot in
a separate window, the Show smooth curve check box becomes available in the
original (unnormalized) plot.

Tip To select different lowess normalization options before normalizing, select Tools
> Set LOWESS Normalization Options, then enter options in the Options for
LOWESS dialog box.

Examples

1 Use the gprread function to create a structure containing microarray data.

maStruct = gprread('mouse_a1wt.gpr');

2 Use the magetfield function to extract the green (cy3) and red (cy5) signals from
the structure.

cy5data = magetfield(maStruct,'F635 Median');

cy3data = magetfield(maStruct,'F532 Median');

3 Create an intensity versus ratio scatter plot of the cy3 and cy5 data. Normalize the
data and add a title and labels:

mairplot(cy5data, cy3data, 'Normalize', true, ...

 'Title','Normalized R vs G IR plot', ...

 'Labels', maStruct.Names)

1 Alphabetical List

1-1094

4 Return intensity values and ratios without displaying the plot.

[intensities, ratios] = mairplot(cy5data, cy3data, 'Showplot', false);

5 Create a normalized MA plot of the cy3 and cy5 data without the user interface
components.

mairplot(cy5data, cy3data, 'Normalize', true, ...

 'Type','MA','PlotOnly',true)

 mairplot

1-1095

References

[1] Quackenbush, J. (2002). Microarray Data Normalization and Transformation. Nature
Genetics Suppl. 32, 496–501.

[2] Dudoit, S., Yang, Y.H., Callow, M.J., and Speed, T.P. (2002). Statistical Methods
for Identifying Differentially Expressed Genes in Replicated cDNA Microarray
Experiments. Statistica Sinica 12, 111–139.

See Also
maboxplot | magetfield | maimage | mainvarsetnorm | maloglog | malowess |
manorm | mattest | mavolcanoplot

1 Alphabetical List

1-1096

maloglog
Create loglog plot of microarray data

Syntax

maloglog(X, Y)

maloglog(X, Y, ...'FactorLines', N, ...)

maloglog(X, Y, ...'Title', TitleValue, ...)

maloglog(X, Y, ...'Labels', LabelsValues, ...)

maloglog(X, Y, ...'HandleGraphicsName', HGValue, ...)

H = maloglog(...)

Arguments

X, Y DataMatrix object or numeric array of microarray expression
values from a single experimental condition.

N Property to add two lines to the plot showing a factor of N change.
TitleValue A string to use as the title for the plot.
LabelsValue A cell array of labels for the data in X and Y. If you specify

LabelsValue, then clicking a data point in the plot shows the label
corresponding to that point.

Description

maloglog(X, Y) creates a loglog scatter plot of X versus Y. X and Y are DataMatrix
objects or numeric arrays of microarray expression values from two different
experimental conditions.

maloglog(X, Y, ...'PropertyName', PropertyValue, ...) calls maloglog
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

 maloglog

1-1097

maloglog(X, Y, ...'FactorLines', N, ...) adds two lines to the plot showing a
factor of N change.

maloglog(X, Y, ...'Title', TitleValue, ...) allows you to specify a title for
the plot.

maloglog(X, Y, ...'Labels', LabelsValues, ...) allows you to specify a cell
array of labels for the data. If LabelsValues is defined, then clicking a data point in the
plot shows the label corresponding to that point.

maloglog(X, Y, ...'HandleGraphicsName', HGValue, ...) allows you to pass
optional Handle Graphics property name/property value pairs to the function.

H = maloglog(...) returns the handle to the plot.

Examples
maStruct = gprread('mouse_a1wt.gpr');

Red = magetfield(maStruct,'F635 Median');

Green = magetfield(maStruct,'F532 Median');

maloglog(Red,Green,'title','Red vs Green');

% Add factorlines and labels

figure

maloglog(Red,Green,'title','Red vs Green',...

 'FactorLines',2,'LABELS',maStruct.Names);

% Now create a normalized plot

figure

maloglog(manorm(Red),manorm(Green),'title',...

 'Normalized Red vs Green','FactorLines',2,...

 'LABELS',maStruct.Names);

See Also
maboxplot | magetfield | mainvarsetnorm | maimage | mairplot | malowess |
manorm | mattest | mavolcanoplot | loglog

1 Alphabetical List

1-1098

malowess
Smooth microarray data using Lowess method

Syntax
YSmooth = malowess(X, Y)

YSmooth = malowess(X, Y, ...'Order', OrderValue, ...)

YSmooth = malowess(X, Y, ...'Robust', RobustValue, ...)

YSmooth = malowess(X, Y, ...'Span', SpanValue, ...)

Arguments

X, Y DataMatrix object or numeric vector containing scatter data.
OrderValue Property to select the order of the algorithm. Enter either 1 (linear fit)

or 2 (quadratic fit). The default order is 1.
RobustValue Property to select a robust fit. Enter either true or false.
SpanValue Property to specify the window size. The default value is 0.05 (5% of

total points in X)

Description
YSmooth = malowess(X, Y) smooths scatter data in X and Y using the Lowess
smoothing method. The default window size is 5% of the length of X. YSmooth is a
numeric vector or, if Y is a DataMatrix object, also a DataMatrix object with the same
properties as Y.

YSmooth = malowess(X, Y, ...'PropertyName', PropertyValue, ...) calls
malowess with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

YSmooth = malowess(X, Y, ...'Order', OrderValue, ...) chooses the order
of the algorithm. Note that the Curve Fitting Toolbox™ software refers to Lowess
smoothing of order 2 as Loess smoothing.

 malowess

1-1099

YSmooth = malowess(X, Y, ...'Robust', RobustValue, ...) uses a robust fit
when RobustValue is set to true. This option can take a long time to calculate.

YSmooth = malowess(X, Y, ...'Span', SpanValue, ...) modifies the window
size for the smoothing function. If SpanValue is less than 1, the window size is taken
to be a fraction of the number of points in the data. If SpanValue is greater than 1, the
window is of size SpanValue.

Examples
maStruct = gprread('mouse_a1wt.gpr');

cy5data = magetfield(maStruct, 'F635 Median');

cy3data = magetfield(maStruct, 'F532 Median');

[x,y] = mairplot(cy5data, cy3data);

drawnow

ysmooth = malowess(x,y);

hold on;

plot(x, ysmooth, 'rx')

ynorm = y - ysmooth;

See Also
affyinvarsetnorm | maboxplot | magetfield | maimage | mainvarsetnorm |
mairplot | maloglog | manorm | quantilenorm | robustfit

1 Alphabetical List

1-1100

manorm
Normalize microarray data

Syntax

XNorm = manorm(X)

XNorm = manorm(MAStruct, FieldName)

[XNorm, ColVal] = manorm(...)

manorm(..., 'Method', MethodValue, ...)

manorm(..., 'Extra_Args', Extra_ArgsValue, ...)

manorm(..., 'LogData', LogDataValue, ...)

manorm(..., 'Percentile', PercentileValue, ...)

manorm(..., 'Global', GlobalValue, ...)

manorm(..., 'StructureOutput', StructureOutputValue, ...)

manorm(..., 'NewColumnName', NewColumnNameValue, ...)

Arguments

X Numeric array or DataMatrix object of microarray data.
MAStruct Microarray structure.
FieldName Field.

Description

XNorm = manorm(X) scales the values in each column of X, a numeric array or
DataMatrix object of microarray data, by dividing by the mean column intensity. XNorm
is a vector, matrix, or DataMatrix object of normalized microarray data.

XNorm = manorm(MAStruct, FieldName) scales the data in MAStruct, a microarray
structure, for a field specified by FieldName, for each block or print-tip by dividing
each block by the mean column intensity. The output is a matrix with each column
corresponding to the normalized data for each block.

[XNorm, ColVal] = manorm(...) returns the values used to normalize the data.

 manorm

1-1101

manorm(..., 'PropertyName', PropertyValue, ...) calls manorm with optional
properties that use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single quotation marks
and is case insensitive. These property name/property value pairs are as follows:

manorm(..., 'Method', MethodValue, ...) allows you to choose the method for
scaling or centering the data. MethodValue can be 'Mean'(default), 'Median', 'STD'
(standard deviation), 'MAD' (median absolute deviation), or a function handle. If you
pass a function handle, then the function should ignore NaNs and must return a single
value per column of the input data.

manorm(..., 'Extra_Args', Extra_ArgsValue, ...) allows you to pass extra
arguments to the function MethodValue. Extra_ArgsValue must be a cell array.

manorm(..., 'LogData', LogDataValue, ...), when LogDataValue is true,
works with log ratio data in which case the mean (or MethodValue) of each column
is subtracted from the values in the columns, instead of dividing the column by the
normalizing value.

manorm(..., 'Percentile', PercentileValue, ...) only uses the percentile
(PercentileValue) of the data preventing large outliers from skewing the
normalization. If PercentileValue is a vector containing two values, then the range
from the PercentileValue(1) percentile to the PercentileValue(2) percentile is
used. The default value is 100, that is to use all the data in the data set.

manorm(..., 'Global', GlobalValue, ...) when GlobalValue is true,
normalizes the values in the data set by the global mean (or MethodValue) of the data,
as opposed to normalizing each column or block of the data independently.

manorm(..., 'StructureOutput', StructureOutputValue, ...), when
StructureOutputValue is true, the input data is a structure returns the input
structure with an additional data field for the normalized data.

manorm(..., 'NewColumnName', NewColumnNameValue, ...), when using
StructureOutput, allows you to specify the name of the column that is appended
to the list of ColumnNames in the structure. The default behavior is to prefix 'Block
Normalized' to the FieldName string.

Examples
maStruct = gprread('mouse_a1wt.gpr');

1 Alphabetical List

1-1102

% Extract some data of interest.

Red = magetfield(maStruct,'F635 Median');

Green = magetfield(maStruct,'F532 Median');

% Create a log-log plot.

maloglog(Red,Green,'factorlines',true)

% Center the data.

normRed = manorm(Red);

normGreen = manorm(Green);

% Create a log-log plot of the centered data.

figure

maloglog(normRed,normGreen,'title','Normalized','factorlines',true)

% Alternatively, you can work directly with the structure

normRedBs = manorm(maStruct,'F635 Median - B635');

normGreenBs = manorm(maStruct,'F532 Median - B532');

% Create a log-log plot of the centered data. This includes some

% zero values so turn off the warning.

figure

w = warning('off','Bioinfo:maloglog:ZeroValues');

warning('off','Bioinfo:maloglog:NegativeValues');

maloglog(normRedBs,normGreenBs,'title',...

 'Normalized Background-Subtracted Median Values',...

 'factorlines',true)

 warning(w);

See Also
affyinvarsetnorm | maboxplot | magetfield | mainvarsetnorm | mairplot |
maloglog | malowess | quantilenorm | rmasummary

 mapcaplot

1-1103

mapcaplot

Create Principal Component Analysis (PCA) plot of microarray data

Syntax

mapcaplot(Data)

mapcaplot(Data, Label)

Arguments

Data DataMatrix object or numeric array containing microarray expression
profile data. If a DataMatrix object, the row names are used as labels in
the plot, unless you provide labels with the second input Label.

Label Cell array of strings representing labels for the data points in the plot.

Description

mapcaplot(Data) creates 2-D scatter plots of principal components of Data, a
DataMatrix object or numeric array containing microarray expression profile data.

mapcaplot(Data, Label) uses the elements of the cell array of strings Label, instead
of the row numbers, to label the data points in the PCA plots.

1 Alphabetical List

1-1104

 mapcaplot

1-1105

Once you plot the principal components, you can:

• Select principal components for the x and y axes from the drop-down list boxes below
each scatter plot.

• Click a data point to display its label.
• Select a subset of data points by click-dragging a box around them. This will highlight

the points in the selected region and the corresponding points in the other axes. The
labels of the selected data points appear in the list box.

• Select a label in the list box to highlight the corresponding data point in the plot.
Press and hold Ctrl or Shift to select multiple data points.

• Export the gene labels and indices to a structure in the MATLAB workspace by
clicking Export.

Examples

Create Principal Component Analysis (PCA) Plot of Microarray Data

This example shows how to create a PCA plot of yeast microarray data.

This example uses data from an experiment (DeRisi et al., 1997) that used DNA
microarrays to study temporal gene expression of almost all genes in Saccharomyces
cerevisiae (yeast) during the metabolic shift from fermentation to respiration. Expression
levels were measured at seven time points during the diauxic shift.

Load the MAT-file, provided with Bioinformatics Toolbox™, that contains filtered yeast
microarray data.

load filteredyeastdata

This MAT-file includes three variables:

• yeastvalues — A matrix of gene expression data from Saccharomyces cerevisiae
(yeast) during the metabolic shift from fermentation to respiration

• genes — A cell array of GenBank® accession numbers for labeling the rows in
yeastvalues

• times — A vector of time values for labeling the columns in yeastvalues

Perform PCA on the expression data and plot the result.

1 Alphabetical List

1-1106

mapcaplot(yeastvalues, genes)

 mapcaplot

1-1107

References

[1] DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science 278, 680–686s.

1 Alphabetical List

1-1108

See Also
clustergram | mattest | mavolcanoplot | pca

 mattest

1-1109

mattest

Perform two-sample t-test to evaluate differential expression of genes from two
experimental conditions or phenotypes

Syntax

PValues = mattest(DataX, DataY)

[PValues, TScores] = mattest(DataX, DataY)

[PValues, TScores, DFs] = mattest(DataX, DataY)

... = mattest(..., 'VarType', VarTypeValue, ...)

... = mattest(..., 'Permute', PermuteValue, ...)

... = mattest(..., 'Bootstrap', BootstrapValue, ...)

... = mattest(..., 'Showhist', ShowhistValue, ...)

... = mattest(..., 'Showplot', ShowplotValue, ...)

... = mattest(..., 'Labels', LabelsValue, ...)

Input Arguments

DataX, DataY DataMatrix object or a matrix of gene expression values where
each row corresponds to a gene and each column corresponds to
a replicate. DataX and DataY must have the same number of
rows and are assumed to be normally distributed in each class
with equal variances.

DataX contains data from one experimental condition and
DataY contains data from a different experimental condition.
For example, DataX could be expression values from cancer
cells, and DataY could be expression values from normal cells.

VarTypeValue String that specifies the variance type of the test.
VarTypeValue can be 'equal' or 'unequal' (default). If
set to 'equal', mattest performs the test assuming the two
samples have equal variances. If set to 'unequal', mattest
performs the test assuming the two samples have unknown and
unequal variances.

1 Alphabetical List

1-1110

PermuteValue Controls whether permutation tests are run, and if so, how
many. Choices are true, false (default), or any integer greater
than 2. If set to true, the number of permutations is 1000.

BootstrapValue Controls whether bootstrap tests are run, and if so, how many.
Choices are true, false (default), or any integer greater than
2. If set to true, the number of bootstrap tests is 1000.

ShowhistValue Controls the display of histograms of t-score distributions and p-
value distributions. Choices are true or false (default).

ShowplotValue Controls the display of a normal t-score quantile plot. Choices
are true or false (default). In the t-score quantile plot, data
points with t-scores > (1 - 1/(2N)) or < 1/(2N) display with
red circles. N is the total number of genes.

LabelsValue Cell array of labels (typically gene names or probe set IDs) for
each row in DataX and DataY. The labels display if you click a
data point in the t-score quantile plot.

Output Arguments

PValues One of the following:

• Column vector of p-values for each gene in DataX and DataY
(if both inputs are matrices).

• DataMatrix object with row names the same as the first input
DataMatrix object and a column name of p-values (if at least
one input is a DataMatrix object).

TScores Column vector of t-scores for each gene in DataX and DataY.
DFs Column vector containing the degree of freedom for each gene in

DataX and DataY.

Description

PValues = mattest(DataX, DataY) performs an unpaired t-test for differential
expression with a standard two-tailed and two-sample t-test on every gene in DataX and
DataY and returns a p-value for each gene. DataX and DataY are either a DataMatrix

 mattest

1-1111

object or a matrix of gene expression values, in which each row corresponds to a gene,
and each column corresponds to a replicate. DataX contains data from one experimental
condition and DataY contains data from another experimental condition. DataX and
DataY must have the same number of rows and are assumed to be normally distributed
in each class. PValues is a column vector of p-values for each gene, or, if at least one of
the inputs is a DataMatrix object, a DataMatrix object with row names the same as the
first input DataMatrix object and a column name of p-values.

[PValues, TScores] = mattest(DataX, DataY) also returns a t-score for each
gene in DataX and DataY. TScores is a column vector of t-scores for each gene.

[PValues, TScores, DFs] = mattest(DataX, DataY) also returns DFs, a column
vector containing the degree of freedom for each gene across both data sets, DataX and
DataY.

... = mattest(..., 'PropertyName', PropertyValue, ...) calls mattest
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

... = mattest(..., 'VarType', VarTypeValue, ...) specifies the variance type
of the test. VarTypeValue can be 'equal' or 'unequal' (default). If set to 'equal',
mattest performs the test assuming the two samples have equal variances. If set to
'unequal', mattest performs the test assuming the two samples have unknown and
unequal variances.

... = mattest(..., 'Permute', PermuteValue, ...) controls whether
permutation tests are run, and if so, how many. PermuteValue can be true, false
(default), or any integer greater than 2. If set to true, the number of permutations is
1000.

... = mattest(..., 'Bootstrap', BootstrapValue, ...) controls whether
bootstrap tests are run, and if so, how many. BootstrapValue can be true, false
(default), or any integer greater than 2. If set to true, the number of bootstrap tests is
1000.

... = mattest(..., 'Showhist', ShowhistValue, ...) controls the display of
histograms of t-score distributions and p-value distributions. When ShowhistValue is
true, mattest displays histograms. Default is false.

1 Alphabetical List

1-1112

... = mattest(..., 'Showplot', ShowplotValue, ...) controls the display
of a normal t-score quantile plot. When ShowplotValue is true, mattest displays a
quantile-quantile plot. Default is false. In the t-score quantile plot, the black diagonal
line represents the sample quantile being equal to the theoretical quantile. Data
points of genes considered to be differentially expressed lie farther away from this line.
Specifically, data points with t-scores > (1 - 1/(2N)) or < 1/(2N) display with red
circles. N is the total number of genes.

 mattest

1-1113

... = mattest(..., 'Labels', LabelsValue, ...) controls the display of labels
when you click a data point in the t-score quantile plot. LabelsValue is a cell array of
labels (typically gene names or probe set IDs) for each row in DataX and DataY.

Examples

1 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains
Affymetrix data from a prostate cancer study, specifically probe intensity data
from Affymetrix HG-U133A GeneChip arrays. The two variables in the MAT-file,
dependentData and independentData, are two matrices of gene expression values
from two experimental conditions.

load prostatecancerexpdata

1 Alphabetical List

1-1114

2 Calculate the p-values and t-scores for the gene expression values in the two
matrices and display a normal t-score quantile plot.

[pvalues,tscores] = mattest(dependentData, independentData,...

 'showplot',true);

3 Calculate the p-values and t-scores again using permutation tests (1000
permutations) and displaying histograms of t-score distributions and p-value
distributions.

[pvalues,tscores] = mattest(dependentData,independentData,...

 'permute',true,'showhist',true,...

 'showplot',true);

4 Calculate the p-values and t-scores again using bootstrap tests (2000 tests) and
displaying histograms of t-score distributions and p-value distributions.

[pvalues,tscores] = mattest(dependentData,independentData,...

 'bootstrap',2000,'showhist',true,...

 'showplot',true);

 mattest

1-1115

1 Alphabetical List

1-1116

The prostatecancerexpdata.mat file used in this example contains data from Best et
al., 2005.

References

[1] Review Literature: Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and
Vingron, M. (2002). Variance stabilization applied to microarray data calibration
and to the quantification of differential expression. Bioinformatics 18 (Suppl. 1),
S96–S104.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,

 mattest

1-1117

Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affygcrma | affyrma | maboxplot | mafdr | mainvarsetnorm | mairplot |
maloglog | malowess | manorm | mavolcanoplot | rmasummary

1 Alphabetical List

1-1118

mavolcanoplot
Create significance versus gene expression ratio (fold change) scatter plot of microarray
data

Syntax

mavolcanoplot(DataX, DataY, PValues)

SigStructure = mavolcanoplot(DataX, DataY, PValues)

... mavolcanoplot(..., 'Labels', LabelsValue, ...)

... mavolcanoplot(..., 'LogTrans', LogTransValue, ...)

... mavolcanoplot(..., 'PCutoff', PCutoffValue, ...)

... mavolcanoplot(..., 'Foldchange', FoldchangeValue, ...)

... mavolcanoplot(..., 'PlotOnly', PlotOnlyValue, ...)

Input Arguments

DataX, DataY DataMatrix object, matrix, or vector of gene expression values
from a single experimental condition. If a DataMatrix object or
a matrix, each row is a gene, each column is a sample, and an
average expression value is calculated for each gene.

Note: If the values in DataX or DataY are natural scale, use
the LogTrans property to convert them to log 2 scale.

PValues Either of the following:

• Column vector of p-values for each feature (for example,
gene) in a data set, such as returned by mattest.

• DataMatrix object containing p-values for each feature (for
example, gene) in a data set, such as returned by mattest.

LabelsValue Cell array of labels (typically gene names or probe set IDs)
for the data. After creating the plot, you can click a data point
to display the label associated with it. If you do not provide a
LabelsValue, data points are labeled with row numbers from
DataX and DataY.

 mavolcanoplot

1-1119

LogTransValue Property to control the conversion of data in DataX and DataY
from natural scale to log 2 scale. Enter true to convert data to
log 2 scale, or false. Default is false, which assumes data is
already log 2 scale.

PCutoffValue Lets you specify a cutoff p-value to define data points that are
statistically significant. This value is displayed graphically as a
horizontal line on the plot. Default is 0.05, which is equivalent
to 1.3010 on the –log10 (p-value) scale.

Note: You can also change the p-value cutoff interactively after
creating the plot.

FoldchangeValue Lets you specify a ratio fold change to define data points that
are differentially expressed. Default is 2, which corresponds to
a ratio of 1 and –1 on a log2 (ratio) scale.

Note: You can also change the fold change interactively after
creating the plot.

PlotOnlyValue Controls the display of the volcano plot without user interface
components. Choices are true or false (default).

Note: If you set the 'PlotOnly' property to true, you can
still display labels for data points by clicking a data point, and
you can still adjust vertical fold change lines and the horizontal
p-value cutoff line by click-dragging the lines.

Output Arguments

SigStructure Structure containing information for genes that are considered
to be both statistically significant (above the p-value cutoff)
and significantly differentially expressed (outside of the fold
change values). The fields are listed below.

1 Alphabetical List

1-1120

Description

mavolcanoplot(DataX, DataY, PValues) creates a scatter plot of gene expression
data, plotting significance versus fold change of gene expression ratios of two data sets,
DataX and DataY. It plots significance as the –log10 (p-value) from the input, PValues.
DataX and DataY can be vectors, matrices, or DataMatrix objects. PValues is a clumn
vector or DataMatrix object.

SigStructure = mavolcanoplot(DataX, DataY, PValues) returns a structure
containing information for genes that are considered to be both statistically significant
(above the p-value cutoff) and significantly differentially expressed (outside of the fold
change values). The fields within SigStructure are sorted by p-value and include:

• Name

• PCutoff

• FCThreshold

• GeneLabels

• PValues

• FoldChanges

Note: The fields PValues and FoldChanges will be either vectors or DataMatrix objects
depending on the type of input PValues.

... mavolcanoplot(..., 'PropertyName', PropertyValue, ...) defines
optional properties that use property name/value pairs in any order. These property
name/value pairs are as follows:

... mavolcanoplot(..., 'Labels', LabelsValue, ...) lets you provide a
cell array of labels (typically gene names or probe set IDs) for the data. After creating
the plot, you can click a data point to display the label associated with it. If you do not
provide a LabelsValue, data points are labeled with row numbers from DataX and
DataY.

... mavolcanoplot(..., 'LogTrans', LogTransValue, ...) controls the
conversion of data from DataX and DataY to log2 scale. When LogTransValue is true,
mavolcanoplot converts data from natural to log2 scale. Default is false, which
assumes the data is already log2 scale.

 mavolcanoplot

1-1121

... mavolcanoplot(..., 'PCutoff', PCutoffValue, ...) lets you specify a p-
value cutoff to define data points that are statistically significant. This value displays
graphically as a horizontal line on the plot. Default is 0.05, which is equivalent to 1.3010
on the –log10 (p-value) scale.

Note: You can also change the p-value cutoff interactively after creating the plot.

... mavolcanoplot(..., 'Foldchange', FoldchangeValue, ...) lets you
specify a ratio fold change to define data points that are differentially expressed.
Fold changes display graphically as two vertical lines on the plot. Default is 2, which
corresponds to a ratio of 1 and –1 on a log2 (ratio) scale.

Note: You can also change the fold change interactively after creating the plot.

... mavolcanoplot(..., 'PlotOnly', PlotOnlyValue, ...) controls the
display of the volcano plot without user interface components. Choices are true or false
(default).

Note: If you set the 'PlotOnly' property to true, you can still display labels for data
points by clicking a data point, and you can still adjust vertical fold change lines and the
horizontal p-value cutoff line by click-dragging the lines.

1 Alphabetical List

1-1122

The volcano plot displays the following:

• –log10 (p-value) versus log2 (ratio) scatter plot of genes
• Two vertical fold change lines at a fold change level of 2, which corresponds to a ratio

of 1 and –1 on a log2 (ratio) scale. (Lines will be at different fold change levels, if you
used the 'Foldchange' property.)

• One horizontal line at the 0.05 p-value level, which is equivalent to 1.3010 on the
–log10 (p-value) scale. (The line will be at a different p-value level, if you used the
'PCutoff' property.)

• Data points for genes that are considered both statistically significant (above the p-
value line) and differentially expressed (outside of the fold changes lines) appear in
orange.

 mavolcanoplot

1-1123

After you display the volcano scatter plot, you can interactively:

• Adjust the vertical fold change lines by click-dragging one line or entering a value in
the Fold Change text box.

• Adjust the horizontal p-value cutoff line by click-dragging or entering a value in the p-
value Cutoff text box.

• Display labels for data points by clicking a data point.
• Select a gene from the Up Regulated or Down Regulated list to highlight the

corresponding data point in the plot. Press and hold Ctrl or Shift to select multiple
genes.

• Zoom the plot by selecting Tools > Zoom In or Tools > Zoom Out.
• View lists of significantly up-regulated and down-regulated genes and their associated

p-values, and optionally, export the labels, p-values, and fold changes to a structure in
the MATLAB Workspace by clicking Export.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
Affymetrix data variables, including dependentData and independentData, two
matrices of gene expression values from two experimental conditions.

load prostatecancerexpdata

2 Use the mattest function to calculate p-values for the gene expression values in the
two matrices.

pvalues = mattest(dependentData, independentData);

3 Using the two matrices, the pvalues calculated by mattest, and the probesetIDs
column vector of labels provided, use mavolcanoplot to create a significance versus
gene expression ratio scatter plot of the microarray data from the two experimental
conditions.

mavolcanoplot(dependentData, independentData, pvalues,...

'Labels', probesetIDs)

4 View the volcano plot without the user interface components.

mavolcanoplot(dependentData, independentData, pvalues,...

'Labels', probesetIDs,'Plotonly', true)

1 Alphabetical List

1-1124

The prostatecancerexpdata.mat file used in the previous example contains data
from Best et al., 2005.

References

[1] Cui, X., Churchill, G.A. (2003). Statistical tests for differential expression in cDNA
microarray experiments. Genome Biology 4, 210.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

 mavolcanoplot

1-1125

See Also
maboxplot | maimage | mainvarsetnorm | mairplot | maloglog | malowess |
manorm | mapcaplot | mattest

1 Alphabetical List

1-1126

max (DataMatrix)
Return maximum values in DataMatrix object

Syntax

M = max(DMObj1)

[M, Indices] = max(DMObj1)

[M, Indices, Names] = max(DMObj1)

... = max(DMObj1, [], Dim)

MA = max(DMObj1, DMObj2)

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

Note: DMObj1 and DMObj2 must be the same size, unless one is
a scalar.

Dim Scalar specifying the dimension of DMObj to return the
maximum values. Choices are:

• 1 — Default. Returns a row vector containing a maximum
value for each column.

• 2 — Returns a column vector containing a maximum value
for each row.

Output Arguments

M One of the following:

• Scalar specifying the maximum value in DMObj when it contains
vector of data

 max (DataMatrix)

1-1127

• Row vector containing the maximum value for each column in
DMObj (when Dim = 1)

• Column vector containing the maximum value for each row in
DMObj (when Dim = 2)

Indices Either of the following:

• Positive integer specifying the index of the maximum value in a
DataMatrix object containing a vector of data

• Vector containing the indices for the maximum value in each
column (if Dim = 1) or row (if Dim = 2) in a DataMatrix object
containing a matrix of data

Names Vector of the row names (if Dim = 1) or column names (if Dim = 2)
corresponding to the maximum value in each column or each row of a
DataMatrix object.

MA Numeric array created from the maximum elements in either of the
following:

• Two DataMatrix objects
• A DataMatrix object and a numeric array

Description

M = max(DMObj1) returns the maximum value(s) in DMObj1, a DataMatrix object. If
DMObj1 contains a vector of data, M is a scalar. If DMObj1 contains a matrix of data, M is a
row vector containing a maximum value in each column.

[M, Indices] = max(DMObj1) returns Indices, the indices of the maximum value(s)
in DMObj1, a DataMatrix object. If DMObj1 contains a vector of data, Indices is a
positive integer. If DMObj1 contains a matrix of data, Indices is a vector containing
the indices for the maximum value in each column (if Dim = 1) or row (if Dim = 2). If
there are multiple maximum values in a column or row, the index for the first value is
returned.

[M, Indices, Names] = max(DMObj1) returns Names, a vector of the row names
(if Dim = 1) or column names (if Dim = 2) corresponding to the maximum value in each
column or each row ofDMObj1, a DataMatrix object. If there are multiple maximum
values in a column or row, the row or column name for the first value is returned.

1 Alphabetical List

1-1128

... = max(DMObj1, [], Dim) specifies which dimension to return the maximum
values for, that is each column or each row in a DataMatrix object. If Dim = 1, returns
M, a row vector containing the maximum value in each column. If Dim = 2, returns M, a
column vector containing the maximum value in each row. Default Dim = 1.

MA = max(DMObj1, DMObj2) returns MA, a numeric array containing the larger of the
two values from each position of DMObj1 and DMObj2. DMObj1 and DMObj2 can both be
DataMatrix objects, or one can be a DataMatrix object and the other a numeric array.
They must be the same size, unless one is a scalar. MA has the same size (number of rows
and columns) as the first nonscalar input.

More About
• “DataMatrix object”

See Also
DataMatrix | sum | min

 maxflow (biograph)

1-1129

maxflow (biograph)
Calculate maximum flow in biograph object

Syntax

[MaxFlow, FlowMatrix, Cut] = maxflow(BGObj, SNode, TNode)

[...] = maxflow(BGObj, SNode, TNode, ...'Capacity',

CapacityValue, ...)

[...] = maxflow(BGObj, SNode, TNode, ...'Method', MethodValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).
SNode Node in a directed graph represented by an N-by-N adjacency

matrix extracted from biograph object, BGObj.
TNode Node in a directed graph represented by an N-by-N adjacency

matrix extracted from biograph object, BGObj.
CapacityValue Column vector that specifies custom capacities for the edges in

the N-by-N adjacency matrix. It must have one entry for every
nonzero value (edge) in the N-by-N adjacency matrix. The order
of the custom capacities in the vector must match the order
of the nonzero values in the N-by-N adjacency matrix when it
is traversed column-wise. By default, maxflow gets capacity
information from the nonzero entries in the N-by-N adjacency
matrix.

MethodValue String that specifies the algorithm used to find the minimal
spanning tree (MST). Choices are:

• 'Edmonds' — Uses the Edmonds and Karp algorithm, the
implementation of which is based on a variation called the
labeling algorithm. Time complexity is O(N*E^2), where N
and E are the number of nodes and edges respectively.

• 'Goldberg' — Default algorithm. Uses the Goldberg
algorithm, which uses the generic method known as preflow-

1 Alphabetical List

1-1130

push. Time complexity is O(N^2*sqrt(E)), where N and E
are the number of nodes and edges respectively.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[MaxFlow, FlowMatrix, Cut] = maxflow(BGObj, SNode, TNode) calculates the
maximum flow of a directed graph represented by an N-by-N adjacency matrix extracted
from a biograph object, BGObj, from node SNode to node TNode. Nonzero entries in the
matrix determine the capacity of the edges. Output MaxFlow is the maximum flow, and
FlowMatrix is a sparse matrix with all the flow values for every edge. FlowMatrix(X,Y)
is the flow from node X to node Y. Output Cut is a logical row vector indicating the nodes
connected to SNode after calculating the minimum cut between SNode and TNode. If
several solutions to the minimum cut problem exist, then Cut is a matrix.

Tip The algorithm that determines Cut, all minimum cuts, has a time complexity of
O(2^N), where N is the number of nodes. If this information is not needed, use the
maxflow method without the third output.

[...] = maxflow(BGObj, SNode, TNode, ...'PropertyName',

PropertyValue, ...) calls maxflow with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[...] = maxflow(BGObj, SNode, TNode, ...'Capacity',

CapacityValue, ...) lets you specify custom capacities for the edges.
CapacityValue is a column vector having one entry for every nonzero value (edge)
in the N-by-N adjacency matrix. The order of the custom capacities in the vector must
match the order of the nonzero values in the matrix when it is traversed column-wise. By
default, graphmaxflow gets capacity information from the nonzero entries in the matrix.

[...] = maxflow(BGObj, SNode, TNode, ...'Method', MethodValue, ...)

lets you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

 maxflow (biograph)

1-1131

• 'Edmonds' — Uses the Edmonds and Karp algorithm, the implementation of which
is based on a variation called the labeling algorithm. Time complexity is O(N*E^2),
where N and E are the number of nodes and edges respectively.

• 'Goldberg' — Default algorithm. Uses the Goldberg algorithm, which uses the
generic method known as preflow-push. Time complexity is O(N^2*sqrt(E)), where
N and E are the number of nodes and edges respectively.

More About
• “biograph object”

References

[1] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in the algorithmic
efficiency for network flow problems. Journal of the ACM 19, 248-264.

[2] Goldberg, A.V. (1985). A New Max-Flow Algorithm. MIT Technical Report MIT/LCS/
TM-291, Laboratory for Computer Science, MIT.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | allshortestpaths | isdag | isspantree | shortestpath | traverse
| graphmaxflow | conncomp | isomorphism | minspantree | topoorder

1 Alphabetical List

1-1132

mean (DataMatrix)

Return average or mean values in DataMatrix object

Syntax

M = mean(DMObj)

M = mean(DMObj, Dim)

M = mean(DMObj, Dim, IgnoreNaN)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Dim Scalar specifying the dimension of DMObj to calculate the means.
Choices are:

• 1 — Default. Returns mean values for elements in each
column.

• 2 — Returns mean values for elements in each row.
IgnoreNaN Specifies if NaNs should be ignored. Choices are true (default)

or false.

Output Arguments

M Either of the following:

• Row vector containing the mean values from elements in each
column in DMObj (when Dim = 1)

• Column vector containing the mean values from elements in
each row in DMObj (when Dim = 2)

 mean (DataMatrix)

1-1133

Description

M = mean(DMObj) returns the mean values of the elements in the columns of a
DataMatrix object, treating NaNs as missing values. M is a row vector containing the
mean values for elements in each column in DMObj.

M = mean(DMObj, Dim) returns the mean values of the elements in the columns or
rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns M, a row vector
containing the mean values for elements in each column in DMObj. If Dim = 2, returns M,
a column vector containing the mean values for elements in each row in DMObj. Default
Dim = 1.

M = mean(DMObj, Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN
can be true (default) or false.

More About
• “DataMatrix object”

See Also
DataMatrix | median | sum | max | min

1 Alphabetical List

1-1134

median (DataMatrix)

Return median values in DataMatrix object

Syntax

Med = median(DMObj)

Med = median(DMObj, Dim)

Med = median(DMObj, Dim, IgnoreNaN)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Dim Scalar specifying the dimension of DMObj to calculate the
medians. Choices are:

• 1 — Default. Returns median values for elements in each
column.

• 2 — Returns median values for elements in each row.
IgnoreNaN Specifies if NaNs should be ignored. Choices are true (default)

or false.

Output Arguments

Med Either of the following:

• Row vector containing the median values from elements in
each column in DMObj (when Dim = 1)

• Column vector containing the median values from elements
in each row in DMObj (when Dim = 2)

 median (DataMatrix)

1-1135

Description

Med = median(DMObj) returns the median values of the elements in the columns of a
DataMatrix object, treating NaNs as missing values. Med is a row vector containing the
median values for elements in each column in DMObj.

Med = median(DMObj, Dim) returns the median values of the elements in the columns
or rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns Med, a row vector
containing the median values for elements in each column in DMObj. If Dim = 2, returns
Med, a column vector containing the median values for elements in each row in DMObj.
Default Dim = 1.

Med = median(DMObj, Dim, IgnoreNaN) specifies if NaNs should be ignored.
IgnoreNaN can be true (default) or false.

More About
• “DataMatrix object”

See Also
DataMatrix | mean | min | max | sum

1 Alphabetical List

1-1136

metafeatures

Attractor metagene algorithm for feature engineering using mutual information-based
learning

Syntax

M = metafeatures(X)

[M,W] = metafeatures(X)

[M,W,GSorted] = metafeatures(X,G)

[M,W,GSorted,GSortedInd] = metafeatures(___)

[___] = metafeatures(___ ,Name,Value)

[___] = metafeatures(T)

[___] = metafeatures(T,Name,Value)

Description

M = metafeatures(X) returns the weighted sums of features M in X using the
attractor metagene algorithm described in [1].

M is a r-by-n matrix. r is the number of metafeatures identified during each repetition
of the algorithm. The default number of repetitions is 1. By default, only unique
metafeatures are returned in M. If multiple repetitions result in the same metafeature,
then just one copy is returned in M. n is the number of samples (patients or time points).

X is a p-by-n numeric matrix. p is the number of variables, features, or genes. In other
words, rows of X correspond to variables, such as measurements of gene expression for
different genes. Columns correspond to different samples, such as patients or time points.

[M,W] = metafeatures(X) returns a p-by-r matrix W containing metafeatures
weights. M = W'*X. p is the number of variables. r is the number of unique metafeatures
or the number of times the algorithm is repeated (the default is 1).

[M,W,GSorted] = metafeatures(X,G) uses a p-by-1 cell array of strings G
containing the variable names and returns a p-by-r cell array of variable names GSorted
sorted by the decreasing weight.

 metafeatures

1-1137

The ith column of GSorted lists the feature (variable) names in order of their
contributions to the ith metafeature.

[M,W,GSorted,GSortedInd] = metafeatures(___) returns the indices
GSortedInd such that GSorted = G(GSortedInd).

[___] = metafeatures(___ ,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

[___] = metafeatures(T) uses a p-by-n table T. Gene names are the row names of
the table. M = W'*T{:,:}.

[___] = metafeatures(T,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Note: It is possible that the number of metafeatures (r) returned in M can be fewer
than the number of replicates (repetitions). Even though you may have set the number
of replicates to a positive integer greater than 1, if each repetition returns the same
metafeature, then r is 1, and M is 1-by-n. This is because, by default, the function returns
only unique metafeatures. If you prefer to get all metafeatures, set 'ReturnUnique' to
false. A metafeature is considered unique if the Pearson correlation between it and all
previously found metafeatures is less than the 'UniqueTolerance' value (the default
value is 0.98).

Examples

Apply Attractor Metagene Algorithm to Gene Expression Data

Load the breast cancer gene expression data. The data was retrieved from the
Cancer Genome Atlas (TCGA) on May 20, 2014 and contains gene expression data of
17814 genes for 590 different patients. The expression data is stored in the variable
geneExpression. The gene names are stored in the variable geneNames.

load TCGA_Breast_Gene_Expression

The data has several NaN values.

sum(sum(isnan(geneExpression)))

1 Alphabetical List

1-1138

ans =

 1695

Use the k-nearest neighbor imputation method to replace missing data with the
corresponding value from an average of the k columns that are nearest.

geneExpression = knnimpute(geneExpression,3);

There are three common drivers of breast cancer: ERBB2, enstrogen, and progestrone.
metafeatures allows you to seed the starting weights to focus on the genes of
interest. In this case, set the weight for each of these genes to 1 in three different
rows of startValues. Each row corresponds to initial values for a different replicate
(repetition).

erbb = find(strcmp('ERBB2',geneNames));

estrogen = find(strcmp('ESR1',geneNames));

progestrone = find(strcmp('PGR',geneNames));

startValues = zeros(size(geneExpression,1),3);

startValues(erbb,1) = 1;

startValues(estrogen,2) = 1;

startValues(progestrone,3) = 1;

Apply the attractor metagene algorithm to the imputed data.

[meta, weights, genes_sorted] = metafeatures(geneExpression,geneNames,'start',startValues);

The variable meta has the value of three metagenes discovered for each sample. Plot
these three metagenes to gain insight into the nature of gene regulation across different
phenotypes of breast cancer.

plot3(meta(1,:),meta(2,:),meta(3,:),'o')

xlabel('ERBB2 metagene')

ylabel('Estrogen metagene')

zlabel('Progestrone metagene')

 metafeatures

1-1139

Based on the plot, observe the following.

• There is a group of points clustered together with low values for all three metagenes.
Based on mRNA levels, these could be triple-negative or basal type breast cancer.

• There is a group of points that have high estrogen receptor metagene expression and
span across both high and low progestrone metagene expression. There are no points
with high progestrone metagene expression and low estrogen metagene expression.
This is consistent with the observation that ER-/PR+ breast cancers are extremely
rare [3].

1 Alphabetical List

1-1140

• The remaining points are the ERBB2 positive cancers. They have less representation
in this data set than the hormone-driven and triple negative cancers.

Input Arguments
X — Data
numeric matrix

Data, specified as a numeric matrix. Rows of X correspond to variables, such as
measurements of gene expression. Columns correspond to different samples, such as
patients or time points.

G — Variable names
cell array of strings

Variable names, specified as a cell array of strings.

T — Data
table

Data, specified as a table. The row names of the table correspond to the names of
features or genes, and the columns represent different samples, such as patients or time
points.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'Alpha' — Tuning parameter for the number of metafeatures
5 (default) | positive scalar

Tuning parameter for the number of metafeatures, specified as the comma-separated
pair consisting of 'Alpha' and a string or positive number. This parameter controls the
nonlinearity of the function that calculates the weights as described in the “Attractor
Metagene Algorithm” on page 1-1144. As alpha increases, the number of metafeatures
tends to increase. This parameter is often the most important parameter to adjust in the
analysis of a data set.

 metafeatures

1-1141

Example: 'Alpha',3

'Start' — Option for choosing initial weights
'random' (default) | 'robust' | matrix

Option for choosing initial weights, specified as the comma-separated pair consisting of
'Alpha' and a string or matrix. This table summarizes the available options.

Option Description

'random' Initialize the weights to a vector of positive weights chosen uniformly
at random and scaled such that they sum to 1. Choose a different initial
weight vector for each replicate. This option is the default.

'robust' If X or T has n columns, run the algorithm n times. On the ith evaluation
of the algorithm, the weights are initialized to all zeros with the exception
of the ith weight, which is set to 1. This option is useful when you are
attempting to find all metafeatures of a data set.

matrix n-by-r matrix of initial weights. The algorithm runs r times. The weights
in the ith run of the algorithm are initialized to the ith column of the
matrix.

Example: 'Start','robust'

'Replicates' — Number of times to repeat the algorithm
1 (default) | positive integer

Number of times to repeat the algorithm, specified as the comma-separated pair
consisting of 'Replicates' and a positive integer. This option is valid only with the
'random' start option. The default is 1.

Example: 'Replicates',2

'ReturnUnique' — Unique metafeatures flag
true (default) | false

Unique metafeatures flag, specified as the comma-separated pair consisting of
'ReturnUnique' and true or false. If true, then only the unique metafeatures are
returned. The default is true.

This option is useful when the algorithm is repeated multiple times. By setting this
option to true, you choose to look at just the unique metafeatures since the same set of
metafeatures can be discovered for different initializations.

1 Alphabetical List

1-1142

A metafeature is considered unique if the Pearson correlation between it and all
previously found metafeatures is less than the 'UniqueTolerance' value (the default
value is 0.98).

To run the algorithm multiple times, set the 'Replicates' name-value pair argument
or the 'Start' option to 'robust' or a matrix with more than 1 row.

Example: 'ReturnUnique',false

'UniqueTolerance' — Tolerance for metafeature uniqueness
0.98 (default) | real number between 0 and 1

Tolerance for metafeature uniqueness, specified as the comma-separated pair consisting
of 'UniqueTolerance' and a real number between 0 and 1.

A metafeature is considered unique if the Pearson correlation between it and all
previously found metafeatures is less than the 'UniqueTolerance' value.

Example: 'UniqueTolerance',0.90

'Options' — Options for controlling the algorithm
[] (default) | structure

Options for controlling the algorithm, specified as the comma-separated pair consisting of
'Options' and a structure. This table summarizes these options.

Option Description

Display Level of output display. Choices are 'off' or 'iter'. The default is
'off'.

MaxIter Maximum number of iterations allowed. The default is 100.
Tolerance If M changes by less than the tolerance in an iteration, then the

algorithm stops. The default is 1e-6.
Streams A RandStream object. If you do not specify any streams, metafeatures

uses the default random stream.
UseParallel Logical value indicating whether to perform calculations in parallel if

a parallel pool and Parallel Computing Toolbox™ are available. For
problems with large data sets relative to the available system memory,
running in parallel can degrade performance. The default is false.

Example: 'Options',struct('Display','iter')

 metafeatures

1-1143

Output Arguments

M — Metafeatures
numeric matrix

Metafeatures, returned as a numeric matrix. It is an r-by-n matrix containing the
weighted sums of the features in X. r is the number of replicates performed by the
algorithm. n is the number of different samples such as time points or patients.

Note: It is possible that the number of metafeatures (r) returned in M can be fewer
than the number of replicates (repetitions). Even though you may have set the number
of replicates to a positive integer greater than 1, if each repetition returns the same
metafeature, then r is 1, and M is 1-by-n. This is because, by default, the function returns
only unique metafeatures. If you prefer to get all metafeatures, set 'ReturnUnique' to
false. A metafeature is considered unique if the Pearson correlation between it and all
previously found metafeatures is less than the 'UniqueTolerance' value (the default
value is 0.98).

W — Metafeatures weights
numeric matrix

Metafeatures weights, returned as a numeric matrix. It is a p-by-r matrix. p is the
number of variables. r is the number of replicates performed by the algorithm.

GSorted — Sorted variable names
cell array of strings

Sorted variable names, returned as a cell array of strings. It is a p-by-r cell array. The
names are sorted by decreasing weight. The ith column of the GSorted lists the variable
names in order of their contributions to ith metafeature.

If GSorted is requested without G or if T.Properties.RowNames is empty, then the
algorithm names each variable (feature) as Vari, which corresponds to the ith row of X.

GSortedInd — Index to GSorted
matrix

Index to GSorted, returned as a matrix of indices. It is a p-by-r matrix.
The indices satisfy GSorted = G(GSortedInd) or GSorted =
T.Properties.RowNames(GSortedInd).

1 Alphabetical List

1-1144

More About

Attractor Metagene Algorithm

The attractor metagene algorithm [1] is an iterative algorithm that converges to
metagenes with important features. A metagene is defined as any weighted sum of gene
expression using a nonlinear distance metric. The distance metric is a nonlinear variant
of mutual information using binning and splines as described in [2]. In fact, the use
of mutual information as a distance metric is one of major benefits of this algorithm
since mutual information is a robust information theoretic approach to determine
the statistical dependence between variables. Therefore, it is useful for analyzing
relationships among gene expression. Another advantage is that the results of the
algorithm tend to be more clearly linked with a phenotype defined by gene expression.

The algorithm is initialized by either random or user-specified weights and proceeds in
these steps.

1 The estimate of a metagene during the ith iteration of the algorithm is M W Gi i= * ,
where Wi is a vector of weights of size 1-by-p (number of genes), and G is the gene
expression matrix of size p-by-n (number of samples).

2 Update the weights by W J M Gj i i j, (,)
+

=1 , where Wj,i+1 is the jth element of Wi+1, Gj

is the jth row of G, and J is a similarity metric, which is defined as follows.

• If the Pearson correlation between Mi and Gj is greater than 0, then

J M G I M Gi j i j(,) (,)=
a , where I M Gi j(,) is the measure of mutual information

between two genes with minimum value 0 and maximum value 1, and α is any
nonnegative number.

• If the correlation is less than or equal to 0, then J M Gi j(,) = 0 .

The algorithm iterates until the change in Wi between iterations is less than the defined
tolerance, that is, W W tolerance

i i
- <

-1
 or the maximum number of iterations is

reached.

The Role of #

In the similarity metric of the algorithm, the parameter α controls the degree of
nonlinearity. As α increases, the number of metagenes tends to increase. If α is

 metafeatures

1-1145

sufficiently large, then each gene approximately becomes an attractor metagene. If α is
zero, then all weights remain equal to each other. Therefore, there is only one attractor
metagene representing the average of all genes.

Therefore, adjusting α for the data set under consideration is a key step in fine tuning the
algorithm. In the case of [1], using the TCGA data from several types of cancer to identify
attractor metagenes, α value of 5 resulted in between 50 and 150 attractor metagenes
discovered from the data.

References

[1] Cheng, W-Y., Ou Yang, T-H., and Anastassiou, D. (2013). Biomolecular events in
cancer revealed by attractor metagenes. PLoS Computational Biology 9(2):
e1002920.

[2] Daub, C., Steuer, R., Selbig, J., and Kloska, S. (2004). Estimating mutual information
using B-spline functions – an improved similarity measure for analysing gene
expression data. BMC Bioinformatics 5, 118.

[3] Hefti, M.M., Hu, R., Knoblauch, N.W., Collins, L.C., Haibe-Kains, B., Tamimi, R.M.,
and Beck, A.H. (2013). Estrogen receptor negative/progesterone receptor positive
breast cancer is not a reproducible subtype. Breast Cancer Research. 15:R68.

See Also
randfeatures | rankfeatures | relieff | sequentialfs

1 Alphabetical List

1-1146

microplateplot
Display visualization of microtiter plate

Syntax

microplateplot(Data)

Handle = microplateplot(...)

microplateplot(Data, ...'RowLabels', RowLabelsValue, ...)

microplateplot(Data, ...'ColumnLabels', ColumnLabelsValue, ...)

microplateplot(Data, ...'TextLabels', TextLabelsValue, ...)

microplateplot(Data, ...'TextFontSize', TextFontSizeValue, ...)

microplateplot(Data, ...'MissingValueColor',

MissingValueColorValue, ...)

microplateplot(Data, ...'ToolTipFormat', ToolTipFormatValue, ...)

Description

microplateplot(Data) displays an image of a microtiter plate with each well colored
according to intensity values, such as from a plate reader.

Handle = microplateplot(...) returns the handle to the axes of the plot.

microplateplot(..., 'PropertyName', PropertyValue, ...) calls
microplateplot with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Enclose each PropertyName in
single quotation marks. Each PropertyName is case insensitive. These property name/
property value pairs are as follows:

microplateplot(Data, ...'RowLabels', RowLabelsValue, ...) lets you
specify labels for the rows of data.

microplateplot(Data, ...'ColumnLabels', ColumnLabelsValue, ...) lets
you specify labels for the columns of data.

microplateplot(Data, ...'TextLabels', TextLabelsValue, ...) lets you
specify text to overlay of the wells in the image.

 microplateplot

1-1147

microplateplot(Data, ...'TextFontSize', TextFontSizeValue, ...) lets
you specify the font size of the text you specify with the 'TextLabels' property.

microplateplot(Data, ...'MissingValueColor',

MissingValueColorValue, ...) lets you specify the color of wells with missing
values (NaN values).

microplateplot(Data, ...'ToolTipFormat', ToolTipFormatValue, ...) lets
you specify the format of the text used in the well tooltips. The well tooltips display the
actual value from the input matrix when you click a well. ToolTipFormatValue is a
format string, such as used by the sprintf function. Default is 'Value: %.3f', which
specifies including three digits to the right of the decimal in fixed-point notation.

Input Arguments

Data

DataMatrix object or matrix containing intensity values, such as from a plate reader.

Tip For help importing data from a spreadsheet or data file into a MATLAB matrix, see
“Ways to Import Text Files”.

Note: The microplateplot function converts any nonnumeric symbols or characters in
the matrix to NaN values.

Default:

RowLabelsValue

Cell array of strings that specifies labels for the rows of data. Default is the first Nletters
of the alphabet, where N is the number of rows in Data. If there are more than 26 rows
in Data, then the default is AA, AB, ..., ZZ. If Data is a DataMatrix object, then the
default is the row labels of Data.

Default:

1 Alphabetical List

1-1148

ColumnLabelsValue

Cell array of strings that specifies labels for the columns of data. Default is 1, 2, ...,
M , where M is the number of columns in Data. If Data is a DataMatrix object, then the
default is the column labels of Data.

Default:

TextLabelsValue

Cell array of strings the same size as Data that specifies text to overlay on the wells of
the image.

Default:

TextFontSizeValue

Positive integer specifying the font size of the text you specify with the 'TextLabels'
property. Default font size is determined automatically based on the size of the Figure
window.

Default:

MissingValueColorValue

Three-element numeric vector of RGB values that specifies the color of wells with
missing values (NaN values). Default is [0, 0, 0], which defines black.

Default:

ToolTipFormatValue

Format string, such as used by the sprintf function, that specifies the format of the
text used in the well tooltips. The well tooltips display the actual value from the input
matrix when you click a well.

Default: 'Value: %.3f', which specifies including three digits to the right of the
decimal in fixed-point notation.

Output Arguments
Handle

Handle to the axes of the plot.

 microplateplot

1-1149

Tip Use the Handle output with the set function and the 'YDir' or 'XDir' property to
reverse the order of the A through H labels or 1 through 12 labels respectively. Note that
in the microplate plot, the default order for the A through H labels, or 'YDir' property, is
'reverse' (top to bottom), and the default order for the 1 through 12 labels, or 'XDir'
property, is 'normal' (left to right). For more information on the 'XDir' and 'YDir'
properties, see Axes Properties.

Examples

Creating a Plot of a Microplate, Changing the Colormap, Viewing Well Values, and Adding Text
Labels

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
two variables: assaydata, an 8-by-12 matrix of data values from a microtiter plate,
and whiteToRed, a 64-by-3 matrix that defines a colormap.

load microPlateAssay

2 Create a visualization of the data from the microtiter plate.

microplateplot(assaydata)

3 Change the visualization to use a white-to-red colormap, and then view a tooltip
displaying the value of well D6 by clicking the well.

colormap(whiteToRed)

1 Alphabetical List

1-1150

Notice that all wells in column 12 are black, indicating missing data.
4 Overlay an X on well E8.

a Create an empty cell array.

mask = cell(8,12);

b Add the string 'X' to the cell in the fifth row and eighth column of the array.

mask{5,8} = 'X';

c Pass the cell array to the microplateplot function using the 'TextLabels'
property.

microplateplot(assaydata,'TEXTLABELS',mask);

 microplateplot

1-1151

Changing the Order of Row Labels in the Plot

1 If you have not already done so, create a plot of a microplate by completing steps 1
through 3 in Creating a Plot of a Microplate, Changing the Colormap, Viewing Well
Values, and Adding Text Labels.

2 Return a handle to the axes of the plot, and then reverse the order of the row letter
labels.

h = microplateplot(assaydata);

set(h,'YDir','normal')

1 Alphabetical List

1-1152

Adding a Title and Axis Labels to the Plot

For information on adding a title and x-axis and y-axis labels to your plot, see “Add Text
to Graph Interactively” and .

Printing and Exporting the Plot

For information on printing or exporting your plot, see “Overview of Printing and
Exporting ” and “How to Print or Export”.

More About
• “Ways to Import Text Files”

 microplateplot

1-1153

• “Add Text to Graph Interactively”
• “Overview of Printing and Exporting ”
• “How to Print or Export”

See Also
imagesc | sprintf | set

1 Alphabetical List

1-1154

min (DataMatrix)
Return minimum values in DataMatrix object

Syntax
M = min(DMObj1)

[M, Indices] = min(DMObj1)

[M, Indices, Names] = min(DMObj1)

... = min(DMObj1, [], Dim)

MA = min(DMObj1, DMObj2)

Input Arguments
DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object

constructor).

Note: DMObj1 and DMObj2 must be the same size, unless one is
a scalar.

Dim Scalar specifying the dimension of DMObj to return the
minimum values. Choices are:

• 1 — Default. Returns a row vector containing a minimum
value for each column.

• 2 — Returns a column vector containing a minimum value
for each row.

Output Arguments
M One of the following:

• Scalar specifying the minimum value in DMObj when it contains
vector of data

• Row vector containing the minimum value for each column in
DMObj (when Dim = 1)

 min (DataMatrix)

1-1155

• Column vector containing the minimum value for each row in
DMObj (when Dim = 2)

Indices Either of the following:

• Positive integer specifying the index of the minimum value in a
DataMatrix object containing a vector of data

• Vector containing the indices for the minimum value in each column
(if Dim = 1) or row (if Dim = 2) in a DataMatrix object containing a
matrix of data

Names Vector of the row names (if Dim = 1) or column names (if Dim = 2)
corresponding to the minimum value in each column or each row of a
DataMatrix object.

MA Numeric array created from the minimum elements in either of the
following:

• Two DataMatrix objects
• A DataMatrix object and a numeric array

Description

M = min(DMObj1) returns the minimum value(s) in DMObj1, a DataMatrix object. If
DMObj1 contains a vector of data, M is a scalar. If DMObj1 contains a matrix of data, M is a
row vector containing a minimum value in each column.

[M, Indices] = min(DMObj1) returns Indices, the indices of the minimum value(s)
in DMObj1, a DataMatrix object. If DMObj1 contains a vector of data, Indices is a
positive integer. If DMObj1 contains a matrix of data, Indices is a vector containing the
indices for the minimum value in each column (if Dim = 1) or row (if Dim = 2). If there are
multiple minimum values in a column or row, the index for the first value is returned.

[M, Indices, Names] = min(DMObj1) returns Names, a vector of the row names
(if Dim = 1) or column names (if Dim = 2) corresponding to the minimum value in each
column or each row ofDMObj1, a DataMatrix object. If there is more than one minimum
value in a column or row, the row or column name for the first value is returned.

... = min(DMObj1, [], Dim) specifies which dimension to return the minimum
values for, that is each column or each row in a DataMatrix object. If Dim = 1, returns

1 Alphabetical List

1-1156

M, a row vector containing the minimum value in each column. If Dim = 2, returns M, a
column vector containing the minimum value in each row. Default Dim = 1.

MA = min(DMObj1, DMObj2) returns MA, a numeric array containing the smaller of the
two values from each position of DMObj1 and DMObj2. DMObj1 and DMObj2 can both be
DataMatrix objects, or one can be a DataMatrix object and the other a numeric array.
They must be the same size, unless one is a scalar. MA has the same size (number of rows
and columns) as the first nonscalar input.

More About
• “DataMatrix object”

See Also
DataMatrix | sum | max

 minspantree (biograph)

1-1157

minspantree (biograph)
Find minimal spanning tree in biograph object

Syntax

[Tree, pred] = minspantree(BGObj)

[Tree, pred] = minspantree(BGObj, R)

[Tree, pred] = minspantree(..., 'Method', MethodValue, ...)

[Tree, pred] = minspantree(..., 'Weights', WeightsValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).
R Scalar between 1 and the number of nodes.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[Tree, pred] = minspantree(BGObj) finds an acyclic subset of edges that connects
all the nodes in the undirected graph represented by an N-by-N adjacency matrix
extracted from a biograph object, BGObj, and for which the total weight is minimized.
Weights of the edges are all nonzero entries in the lower triangle of the N-by-N sparse
matrix. Output Tree is a spanning tree represented by a sparse matrix. Output pred is
a vector containing the predecessor nodes of the minimal spanning tree (MST), with the
root node indicated by 0. The root node defaults to the first node in the largest connected
component. This computation requires an extra call to the graphconncomp function.

[Tree, pred] = minspantree(BGObj, R) sets the root of the minimal spanning tree
to node R.

1 Alphabetical List

1-1158

[Tree, pred] = minspantree(..., 'PropertyName', PropertyValue, ...)

calls minspantree with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property name/property value
pairs are as follows:

[Tree, pred] = minspantree(..., 'Method', MethodValue, ...) lets you
specify the algorithm used to find the minimal spanning tree (MST). Choices are:

• 'Kruskal' — Grows the minimal spanning tree (MST) one edge at a time by
finding an edge that connects two trees in a spreading forest of growing MSTs. Time
complexity is O(E+X*log(N)), where X is the number of edges no longer than the
longest edge in the MST, and N and E are the number of nodes and edges respectively.

• 'Prim' — Default algorithm. Grows the minimal spanning tree (MST) one edge at
a time by adding a minimal edge that connects a node in the growing MST with any
other node. Time complexity is O(E*log(N)), where N and E are the number of nodes
and edges respectively.

Note: When the graph is unconnected, Prim's algorithm returns only the tree that
contains R, while Kruskal's algorithm returns an MST for every component.

[Tree, pred] = minspantree(..., 'Weights', WeightsValue, ...) lets
you specify custom weights for the edges. WeightsValue is a column vector having
one entry for every nonzero value (edge) in the N-by-N sparse matrix. The order of the
custom weights in the vector must match the order of the nonzero values in the N-by-N
sparse matrix when it is traversed column-wise. By default, minspantree gets weight
information from the nonzero entries in the N-by-N sparse matrix.

More About
• “biograph object”

References

[1] Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proceedings of the American Mathematical Society 7, 48-50.

 minspantree (biograph)

1-1159

[2] Prim, R. (1957). Shortest Connection Networks and Some Generalizations. Bell
System Technical Journal 36, 1389-1401.

[3] Siek, J.G. Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | allshortestpaths | isdag | isspantree | shortestpath | traverse
| graphminspantree | conncomp | isomorphism | maxflow | topoorder

1 Alphabetical List

1-1160

minus (DataMatrix)
Subtract DataMatrix objects

Syntax

DMObjNew = minus(DMObj1, DMObj2)

DMObjNew = DMObj1 - DMObj2

DMObjNew = minus(DMObj1, B)

DMObjNew = DMObj1 - B

DMObjNew = minus(B, DMObj1)

DMObjNew = B - DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by subtraction.

Description

DMObjNew = minus(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 -
DMObj2 performs an element-by-element subtraction of the DataMatrix object DMObj2
from the DataMatrix object DMObj1 and places the results in DMObjNew, another
DataMatrix object. DMObj1 and DMObj2 must have the same size (number of rows and
columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and
columns), row names, and column names for DMObjNew are the same as DMObj1, unless
DMObj1 is a scalar; then they are the same as DMObj2.

 minus (DataMatrix)

1-1161

DMObjNew = minus(DMObj1, B) or the equivalent DMObjNew = DMObj1 - B
performs an element-by-element subtraction of B, a numeric or logical array, from the
DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix
object. DMObj1 and B must have the same size (number of rows and columns), unless B
is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

DMObjNew = minus(B, DMObj1) or the equivalent DMObjNew = B - DMObj1
performs an element-by-element subtraction of the DataMatrix object DMObj1 from B,
a numeric or logical array, and places the results in DMObjNew, another DataMatrix
object. DMObj1 and B must have the same size (number of rows and columns), unless B
is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

Note: Arithmetic operations between a scalar DataMatrix object and a nonscalar array
are not supported.

MATLAB calls DMObjNew = minus(X, Y) for the syntax DMObjNew = X - Y when X
or Y is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | plus

1 Alphabetical List

1-1162

molweight
Calculate molecular weight of amino acid sequence

Syntax

molweight(SeqAA)

Arguments

SeqAA Amino acid sequence. Enter a character string or a vector of integers
from the tableAmino Acid Lookup. Examples: 'ARN', [1 2 3]. You
can also enter a structure with the field Sequence.

Description

molweight(SeqAA) calculates the molecular weight for the amino acid sequence SeqAA.

Examples

1 Retrieve an amino acid sequence from the NCBI GenPept database.

rhodopsin = getgenpept('NP_000530');

2 Calculate the molecular weight of the sequence.

rhodopsinMW = molweight(rhodopsin)

rhodopsinMW =

 3.8892e+004

See Also
aacount | atomiccomp | isoelectric | isotopicdist | proteinplot

 molviewer

1-1163

molviewer
Display and manipulate 3-D molecule structure

Syntax

molviewer

molviewer(File)

molviewer(pdbID)

molviewer(pdbStruct)

FigureHandle = molviewer(...)

Input Arguments

File String specifying one of the following:

• File name of a file on the MATLAB search path or in the
MATLAB Current Folder

• Path and file name
• URL pointing to a file (URL must begin with a protocol such as

http://, ftp://, or file://)

The referenced file is a molecule model file, such as a Protein Data
Bank (PDB)-formatted file (ASCII text file). Valid file types include:

• PDB
• MOL (MDL)
• SDF
• XYZ
• SMOL
• JVXL
• CIF/mmCIF

pdbID String specifying a unique identifier for a protein structure record
in the PDB database.

1 Alphabetical List

1-1164

Note: Each structure in the PDB database is represented by a
four-character alphanumeric identifier. For example, 4hhb is the
identifier for hemoglobin.

pdbStruct A structure containing a field for each PDB record, such as
returned by the getpdb or pdbread function.

Output Arguments

FigureHandle Figure handle to the Molecule Viewer.

Description
molviewer opens the Molecule Viewer app. You can display 3-D molecular structures by
selecting File > Open, File > Load PDB ID, or File > Open URL.

molviewer(File) reads the data in a molecule model file, File, and opens
the Molecule Viewer app displaying the 3-D molecular structure for viewing and
manipulation.

molviewer(pdbID) retrieves the structural data of a protein, pdbID, from the PDB
database and opens the Molecule Viewer app displaying the 3-D molecular structure for
viewing and manipulation.

molviewer(pdbStruct) reads the data from pdbStruct, a structure containing a field
for each PDB record, and opens the Molecule Viewer app displaying a 3-D molecular
structure for viewing and manipulation.

FigureHandle = molviewer(...) returns the figure handle to the Molecule Viewer
window.

Tip You can pass the FigureHandle to the evalrasmolscript function, which sends
RasMol script commands to the Molecule Viewer window.

Tip If you receive any errors related to memory or Java heap space, try increasing your
Java heap space as described at:

 http://www.mathworks.com/support/solutions/data/1-18I2C.html

http://www.mathworks.com/support/solutions/data/1-18I2C.html

 molviewer

1-1165

After displaying the 3-D molecule structure, you can:

• Hover the mouse over a subcomponent of the molecule to display an identification
label for it.

1 Alphabetical List

1-1166

• Spin and rotate the molecule at different angles by click-dragging it.
•

Spin the molecule in the x-z plane by clicking .
• Spin the molecule in the x-y plane by pressing and holding the Shift key, then click-

dragging left and right.
• Zoom in a stepless fashion by pressing and holding the Shift key, then click-dragging

up and down.
• Zoom in a stepwise fashion by clicking the figure, then turning the mouse scroll

wheel, or by clicking the following buttons:

 or
• Move the molecule by pressing and holding Ctrl + Alt, then click-dragging.
•

Change the background color between black and white by clicking .
•

Reset the molecule position by clicking .
•

Show or hide the Control Panel by clicking .
• Manipulate and annotate the 3-D structure by selecting options in the Control Panel

or, for a complete list of options, by right-clicking the Molecule Viewer window to
select commands:

 molviewer

1-1167

•
Display the Jmol Script Console by clicking .

1 Alphabetical List

1-1168

Examples

View the acetylsalicylic acid (aspirin) molecule, whose structural information is
contained in the Elsevier MDL molecule file aspirin.mol.

molviewer('aspirin.mol')

View the H5N1 influenza virus hemagglutinin molecule, whose structural information is
located at www.rcsb.org/pdb/files/2FK0.pdb.gz.

molviewer('http://www.rcsb.org/pdb/files/2FK0.pdb.gz')

View the molecule with a PDB identifier of 2DHB.

molviewer('2DHB')

View the molecule with a PDB identifier of 4hhb, and create a figure handle for the
Molecule Viewer.

FH = molviewer('4hhb')

http://www.rcsb.org/pdb/files/2FK0.pdb.gz

 molviewer

1-1169

Use the getpdb function to retrieve protein structure data from the PDB database and
create a MATLAB structure. Then view the protein molecule.

pdbstruct = getpdb('1vqx')

molviewer(pdbstruct)

See Also
evalrasmolscript | getpdb | pdbread | pdbsuperpose | pdbtransform |
pdbwrite

1 Alphabetical List

1-1170

msalign

Align peaks in signal to reference peaks

Syntax

IntensitiesOut = msalign(X, Intensities, RefX)

... = msalign(..., 'Rescaling', RescalingValue, ...)

... = msalign(..., 'Weights', WeightsValue, ...)

... = msalign(..., 'MaxShift', MaxShiftValue, ...)

... = msalign(..., 'WidthOfPulses', WidthOfPulsesValue, ...)

... = msalign(..., 'WindowSizeRatio', WindowSizeRatioValue, ...)

... = msalign(..., 'Iterations', IterationsValue, ...)

... = msalign(..., 'GridSteps', GridStepsValue, ...)

... = msalign(..., 'SearchSpace', SearchSpaceValue, ...)

... = msalign(..., 'ShowPlot', ShowPlotValue, ...)

[IntensitiesOut, RefXOut] = msalign(..., 'Group', GroupValue, ...)

Input Arguments

X Vector of separation-unit values for a set of signals with
peaks. The number of elements in the vector equals
the number of rows in the matrix Intensities. The
separation unit can quantify wavelength, frequency,
distance, time, or m/z depending on the instrument that
generates the signal data.

Intensities Matrix of intensity values for a set of peaks that share
the same separation-unit range. Each row corresponds to
a separation-unit value, and each column corresponds to
either a set of signals with peaks or a retention time. The
number of rows equals the number of elements in vector
X.

RefX Vector of separation-unit values of known reference
masses in a sample signal.

 msalign

1-1171

Tip For reference peaks, select compounds that are
not expected to have significant shifts among the
different signals. For example, in mass spectrometry,
select compounds that do not undergo structural
transformation, such as phosphorylation. Doing so
increases the accuracy of your alignment and lets you
detect compounds that exhibit structural transformations
among the sample signal.

RescalingValue Controls the rescaling of X. Choices are true (default)
or false. When false, the output signal is aligned
only to the reference peaks by using constant shifts. By
default, msalign estimates a rescaling factor, unless
RefX contains only one reference peak.

WeightsValue Vector of positive values, with the same number
of elements as RefX. The default vector is
ones(size(RefX)).

MaxShiftValue Two-element vector, in which the first element is negative
and the second element is positive, that specifies the
lower and upper limits of a range, in separation units,
relative to each peak. No peak shifts beyond these limits.
Default is [-100 100].

WidthOfPulsesValue Positive value that specifies the width, in separation
units, for all the Gaussian pulses used to build the
correlating synthetic signal. The point of the peak where
the Gaussian pulse reaches 60.65% of its maximum is
set to the width specified by WidthOfPulsesValue.
Default is 10.

WindowSizeRatioValue Positive value that specifies a scaling factor that
determines the size of the window around every
alignment peak. The synthetic signal is compared
to the input signal only within these regions, which
saves computation time. The size of the window is
given in separation-units by WidthOfPulsesValue *
WindowSizeRatioValue. Default is 2.5, which means
at the limits of the window, the Gaussian pulses have a
value of 4.39% of their maximum.

1 Alphabetical List

1-1172

IterationsValue Positive integer that specifies the number of refining
iterations. At every iteration, the search grid is scaled
down to improve the estimates. Default is 5.

GridStepsValue Positive integer that specifies the number of steps for the
search grid. At every iteration, the search area is divided
by GridStepsValue^2. Default is 20.

SearchSpaceValue String that specifies the type of search space. Choices are:

• 'regular' — Default. Evenly spaced lattice.
• 'latin' — Random Latin hypercube with

GridStepsValue^2 samples.
ShowPlotValue Controls the display of a plot of an original and aligned

signal over the reference masses specified by RefX.
Choices are true, false, or I, an integer specifying the
index of a signal in Intensities. If you set to true, the
first signal in Intensities is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

GroupValue Controls the creation of RefXOut, a new vector of
separation-unit values to be used as reference masses for
aligning the peaks. This vector is created by adjusting the
values in RefX, based on the sample data from multiple
signals in Intensities, such that the overall shifting
and scaling of the peaks is minimized. Choices are true
or false (default).

Tip Set GroupValue to true only if Intensities
contains data for a large number of signals, and you are
not confident of the separation-unit values used for your
reference peaks in RefX. Leave GroupValue set to false
if you are confident of the separation-unit values used for
your reference peaks in RefX.

 msalign

1-1173

Output Arguments

IntensitiesOut Matrix of intensity values for a set of peaks that share
the same separation-unit range. Each row corresponds to
a separation-unit value, and each column corresponds to
either a set of signals with peaks or a retention time. The
intensity values represent a shifting and scaling of the
data.

RefXOut Vector of separation-unit values of reference masses,
calculated from RefX and the sample data from multiple
signals in Intensities, when you set GroupValue to
true.

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

IntensitiesOut = msalign(X, Intensities, RefX) aligns the peaks in raw,
noisy signal data, represented by Intensities and X, to reference peaks, provided
by RefX. First, it creates a synthetic signal from the reference peaks using Gaussian
pulses centered at the separation-unit values specified by RefX. Then, it shifts and
scales the separation-unit scale to find the maximum alignment between the input
signals and the synthetic signal. (It uses an iterative multiresolution grid search until
it finds the best scale and shift factors for each signal.) Once the new separation-unit
scale is determined, the corrected signals are created by resampling their intensities at
the original separation-unit values, creating IntensitiesOut, a vector or matrix of
corrected intensity values. The resampling method preserves the shape of the peaks.

Tip The msalign function works best with three to five reference peaks that you know
will appear in the signal. If you use a single reference peak (internal standard), there is
a possibility of aligning sample peaks to the incorrect reference peaks as msalign both
scales and shifts the X vector. If using a single reference peak, you might need to only
shift the X vector. To do this, use IntensitiesOut = interp1(X, Intensities, X-

1 Alphabetical List

1-1174

(ReferencePeak-ExperimentalPeak). For more information, see Aligning a Mass
Spectrum with One Reference Peak.

... = msalign(..., 'PropertyName', PropertyValue, ...) calls msalign
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

... = msalign(..., 'Rescaling', RescalingValue, ...) controls the
rescaling of X. Choices are true (default) or false. When false, the output signal
is aligned only to the reference peaks by using constant shifts. By default, msalign
estimates a rescaling factor, unless RefX contains only one reference peak.

... = msalign(..., 'Weights', WeightsValue, ...) specifies the relative
weight for each mass in RefX, the vector of reference separation-unit values.
WeightsValue is a vector of positive values, with the same number of elements as RefX.
The default vector is ones(size(RefX)), which means each reference peak is weighted
equally, so that more intense reference peaks have a greater effect in the alignment
algorithm. If you have a less intense reference peak, you can increase its weight to
emphasize it more in the alignment algorithm.

... = msalign(..., 'MaxShift', MaxShiftValue, ...) specifies the lower
and upper limits of the range, in separation units, relative to each peak. No peak shifts
beyond these limits. MaxShiftValue is a two-element vector, in which the first element
is negative and the second element is positive. Default is [-100 100].

Note: Use these values to tune the robustness of the algorithm. Ideally, you should
keep the range within the maximum expected shift. If you try to correct larger shifts by
increasing the limits, you increase the possibility of picking incorrect peaks to align to
the reference masses.

... = msalign(..., 'WidthOfPulses', WidthOfPulsesValue, ...) specifies
the width, in separation units, for all the Gaussian pulses used to build the correlating
synthetic signal. The point of the peak where the Gaussian pulse reaches 60.65%
of its maximum is set to the width you specify with WidthOfPulsesValue. Choices
are any positive value. Default is 10. WidthOfPulsesValue may also be a function

 msalign

1-1175

handle. The function is evaluated at the respective separation-unit values and returns
a variable width for the pulses. Its evaluation should give reasonable values from 0 to
max(abs(Range)); otherwise, the function returns an error.

Note: Tuning the spread of the Gaussian pulses controls a tradeoff between robustness
(wider pulses) and precision (narrower pulses). However, the spread of the pulses is
unrelated to the shape of the observed peaks in the signal. The purpose of the pulse
spread is to drive the optimization algorithm.

... = msalign(..., 'WindowSizeRatio', WindowSizeRatioValue, ...)

specifies a scaling factor that determines the size of the window around every alignment
peak. The synthetic signal is compared to the sample signal only within these regions,
which saves computation time. The size of the window is given in separation units by
WidthOfPulsesValue * WindowSizeRatioValue. Choices are any positive value.
Default is 2.5, which means at the limits of the window, the Gaussian pulses have a
value of 4.39% of their maximum.

... = msalign(..., 'Iterations', IterationsValue, ...) specifies the
number of refining iterations. At every iteration, the search grid is scaled down to
improve the estimates. Choices are any positive integer. Default is 5.

... = msalign(..., 'GridSteps', GridStepsValue, ...) specifies the
number of steps for the search grid. At every iteration, the search area is divided by
GridStepsValue^2. Choices are any positive integer. Default is 20.

... = msalign(..., 'SearchSpace', SearchSpaceValue, ...) specifies the
type of search space. Choices are:

• 'regular' — Default. Evenly spaced lattice.
• 'latin' — Random Latin hypercube with GridStepsValue^2 samples.

... = msalign(..., 'ShowPlot', ShowPlotValue, ...) controls the display
of a plot of an original and aligned signal over the reference masses specified by
RefX. Choices are true, false, or I, an integer specifying the index of a signal in
Intensities. If set to true, the first signal in Intensities is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

1 Alphabetical List

1-1176

[IntensitiesOut, RefXOut] = msalign(..., 'Group', GroupValue, ...)

controls the creation of RefXOut, a new vector of separation-unit values to use as
reference masses for aligning the peaks. This vector is created by adjusting the values
in RefX, based on the sample data from multiple signals in Intensities, such that
the overall shifting and scaling of the peaks is minimized. Choices are true or false
(default).

Tip Set GroupValue to true only if Intensities contains data for a large number of
signals, and you are not confident of the separation-unit values used for your reference
peaks in RefX. Leave GroupValue set to false if you are confident of the separation-
unit values used for your reference peaks in RefX.

Examples

Aligning a Mass Spectrum with Three or More Reference Peaks

1 Load a MAT-file, included with the Bioinformatics Toolbox software, that contains
sample data, reference masses, and parameter data for synthetic peak width.

load sample_lo_res

R = [3991.4 4598 7964 9160];

W = [60 100 60 100];

2 Display a color image of the mass spectra before alignment.

msheatmap(MZ_lo_res,Y_lo_res,'markers',R,'range',[3000 10000])

title('before alignment')

 msalign

1-1177

3 Align spectra with reference masses and display a color image of mass spectra after
alignment.

YA = msalign(MZ_lo_res,Y_lo_res,R,'weights',W);

msheatmap(MZ_lo_res,YA,'markers',R,'range',[3000 10000])

title('after alignment')

1 Alphabetical List

1-1178

Aligning a Mass Spectrum with One Reference Peak

It is not recommended to use the msalign function if you have only one reference peak.
Instead, use the following procedure, which shifts the X input vector, but does not scale
it.

1 Load sample data and view the first sample spectrum.

load sample_lo_res

MZ = MZ_lo_res;

Y = Y_lo_res(:,1);

msviewer(MZ, Y)

 msalign

1-1179

2 Use the tall peak around 4000 m/z as the reference peak. To determine the reference

peak's m/z value, click , and then click-drag to zoom in on the peak. Right-click
in the center of the peak, and then click Add Marker to label the peak with its m/z
value.

1 Alphabetical List

1-1180

3 Shift a spectrum by the difference between RP, the known reference mass of 4000 m/
z, and SP, the experimental mass of 4051.14 m/z.

RP = 4000;

SP = 4051.14;

YOut = interp1(MZ, Y, MZ-(RP-SP));

4 Plot the original spectrum in red and the shifted spectrum in blue and zoom in on
the reference peak.

plot(MZ,Y,'r',MZ,YOut,'b:')

xlabel('Mass/Charge (M/Z)')

ylabel('Relative Intensity')

legend('Y','YOut')

axis([3600 4800 -2 60])

 msalign

1-1181

More About
• Preprocessing Raw Mass Spectrometry Data

References

[1] Monchamp, P., Andrade-Cetto, L., Zhang, J.Y., and Henson, R. (2007) Signal
Processing Methods for Mass Spectrometry. In Systems Bioinformatics: An
Engineering Case-Based Approach, G. Alterovitz and M.F. Ramoni, eds. (Artech
House Publishers).

1 Alphabetical List

1-1182

See Also
msbackadj | msheatmap | mspalign | mspeaks | msresample | msviewer

 msbackadj

1-1183

msbackadj

Correct baseline of signal with peaks

Syntax

Yout = msbackadj(X, Intensities)

Yout = msbackadj(X, Intensities, ...'WindowSize',

WindowSizeValue, ...)

Yout = msbackadj(X, Intensities, ...'StepSize', StepSizeValue, ...)

Yout = msbackadj(X, Intensities, ...'RegressionMethod',

RegressionMethodValue, ...)

Yout = msbackadj(X, Intensities, ...'EstimationMethod',

EstimationMethodValue, ...)

Yout = msbackadj(X, Intensities, ...'SmoothMethod',

SmoothMethodValue, ...)

Yout = msbackadj(X, Intensities, ...'QuantileValue',

QuantileValueValue, ...)

Yout = msbackadj(X, Intensities, ...'PreserveHeights',

PreserveHeightsValue, ...)

Yout = msbackadj(X, Intensities, ...'ShowPlot', ShowPlotValue, ...)

Arguments

X Vector of separation-unit values for a set of signals with peaks. The
number of elements in the vector equals the number of rows in the
matrix Intensities. The separation unit can quantify wavelength,
frequency, distance, time, or m/z depending on the instrument that
generates the signal data.

Intensities Matrix of intensity values for a set of peaks that share the same
separation-unit range. Each row corresponds to a separation-unit
value, and each column corresponds to either a set of signals with
peaks or a retention time. The number of rows equals the number of
elements in vector X.

1 Alphabetical List

1-1184

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

Yout = msbackadj(X, Intensities) adjusts the variable baseline of a raw signal
with peaks by following steps:

1 Estimates the baseline within multiple shifted windows of width 200 separation
units

2 Regresses the varying baseline to the window points using a spline approximation
3 Adjusts the baseline of the peak signals supplied by Intensities

Yout = msbackadj(X, Intensities, ...'PropertyName',

PropertyValue, ...) calls msbackadj with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

Yout = msbackadj(X, Intensities, ...'WindowSize',

WindowSizeValue, ...) specifies the width for the shifting window.
WindowSizeValue can also be a function handle. The function is evaluated at the
respective X values and returns a variable width for the windows. This option is useful
for cases where the resolution of the signal is dissimilar at different regions. The default
value is 200 (baseline point estimated for windows with a width of 200 separation units).

Note: The result of this algorithm depends on carefully choosing the window size and
the step size. Consider the width of your peaks in the signal and the presence of possible
drifts. If you have wider peaks toward the end of the signal, you may want to use
variable parameters.

Yout = msbackadj(X, Intensities, ...'StepSize', StepSizeValue, ...)

specifies the steps for the shifting window. The default value is 200 separation
units (baseline point is estimated for windows placed every 200 separation units).

 msbackadj

1-1185

StepSizeValue can also be a function handle. The function is evaluated at the
respective separation-unit values and returns the distance between adjacent windows.

Yout = msbackadj(X, Intensities, ...'RegressionMethod',

RegressionMethodValue, ...) specifies the method to regress the window estimated
points to a soft curve. Enter 'pchip' (shape-preserving piecewise cubic interpolation),
'linear' (linear interpolation), or 'spline' (spline interpolation). The default value is
'pchip'.

Yout = msbackadj(X, Intensities, ...'EstimationMethod',

EstimationMethodValue, ...) specifies the method for finding the likely baseline
value in every window. Enter 'quantile' (quantile value is set to 10%) or 'em'
(assumes a doubly stochastic model). With em, every sample is the independent and
identically distributed (i.i.d.) draw of any of two normal distributed classes (background
or peaks). Because the class label is hidden, the distributions are estimated with an
Expectation-Maximization algorithm. The ultimate baseline value is the mean of the
background class.

Yout = msbackadj(X, Intensities, ...'SmoothMethod',

SmoothMethodValue, ...) specifies the method for smoothing the curve of estimated
points and eliminating the effects of possible outliers. Enter 'none', 'lowess' (linear
fit), 'loess' (quadratic fit), 'rlowess' (robust linear), or 'rloess' (robust quadratic
fit). Default is 'none'.

Yout = msbackadj(X, Intensities, ...'QuantileValue',

QuantileValueValue, ...) specifies the quantile value. The default value is 0.10.

Yout = msbackadj(X, Intensities, ...'PreserveHeights',

PreserveHeightsValue, ...), when PreserveHeightsValue is true, sets the
baseline subtraction mode to preserve the height of the tallest peak in the signal. The
default value is false and peak heights are not preserved.

Yout = msbackadj(X, Intensities, ...'ShowPlot', ShowPlotValue, ...)

plots the baseline-estimated points, the regressed baseline, and the original signal.
When you call msbackadj without output arguments, the signal is plotted unless
ShowPlotValue is false. When ShowPlotValue is true, only the first signal in
Intensities is plotted. ShowPlotValue can also contain an index to one of the signals
in Intensities.

1 Alphabetical List

1-1186

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, that contains
some sample data.

load sample_lo_res

2 Adjust the baseline for a group of spectra and show only the third spectrum and its
estimated background.

 YB = msbackadj(MZ_lo_res,Y_lo_res,'SHOWPLOT',3);

3 Plot the estimated baseline for the fourth spectrum in Y_lo_res using an
anonymous function to describe an m/z dependent parameter.

 wf = @(mz) 200 + .001 .* mz;

 msbackadj(MZ_lo_res,Y_lo_res(:,4),'STEPSIZE',wf);

 msbackadj

1-1187

See Also
msalign | msheatmap | mslowess | msnorm | mspeaks | msresample | mssgolay |
msviewer

1 Alphabetical List

1-1188

msdotplot

Plot set of peak lists from LC/MS or GC/MS data set

Syntax

msdotplot(Peaklist, Times)

msdotplot(FigHandle, Peaklist, Times)

msdotplot(..., 'Quantile', QuantileValue)

PlotHandle = msdotplot(...)

Input Arguments

Peaklist Cell array of peak lists, where each element is a two-column
matrix with m/z values in the first column and ion intensity
values in the second column. Each element corresponds to a
spectrum or retention time.

Tip You can use the mzxml2peaks function to create the
Peaklist cell array.

Times Vector of retention times associated with an LC/MS or GC/MS
data set. The number of elements in Times equals the number of
elements in the cell array Peaklist.

Tip You can use the mzxml2peaks function to create the Times
vector.

FigHandle Handle to an open Figure window such as one created by the
msheatmap function.

QuantileValue Value that specifies a percentage. When peaks are ranked
by intensity, only those that rank above this percentage are
plotted. Choices are any value # 0 and # 1. Default is 0. For
example, setting QuantileValue = 0 plots all peaks, and setting
QuantileValue = 0.8 plots only the 20% most intense peaks.

 msdotplot

1-1189

Output Arguments

PlotHandle Handle to the line series object (figure plot).

Description

msdotplot(Peaklist, Times) plots a set of peak lists from a liquid chromatography/
mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set
represented by Peaklist, a cell array of peak lists, where each element is a two-column
matrix with m/z values in the first column and ion intensity values in the second column,
and Times, a vector of retention times associated with the spectra. Peaklist and Times
have the same number of elements. The data is plotted into any existing figure generated
by the msheatmap function; otherwise, the data is plotted into a new Figure window.

msdotplot(FigHandle, Peaklist, Times) plots the set of peak lists into the axes
contained in an open Figure window with the handle FigHandle.

Tip This syntax is useful to overlay a dot plot on top of a heat map of mass spectrometry
data created with the msheatmap function.

msdotplot(..., 'Quantile', QuantileValue) plots only the most intense peaks,
specifically those in the percentage above the specified QuantileValue. Choices are
any value # 0 and # 1. Default is 0. For example, setting QuantileValue = 0 plots all
peaks, and setting QuantileValue = 0.8 plots only the 20% most intense peaks.

PlotHandle = msdotplot(...) returns a handle to the line series object (figure
plot). You can use this handle as input to the get function to display a list of the plot's
properties. You can use this handle as input to the set function to change the plot's
properties, including showing and hiding points.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
LC/MS data variables, including peaks and ret_time. peaks is a cell array of peak
lists, where each element is a two-column matrix of m/z values and ion intensity

1 Alphabetical List

1-1190

values, and each element corresponds to a spectrum or retention time. ret_time is a
column vector of retention times associated with the LC/MS data set.

load lcmsdata

2 Create a dot plot with only the 5% most intense peaks.

msdotplot(ms_peaks,ret_time,'Quantile',0.95)

3 Resample the data, then create a heat map of the LC/MS data.

[MZ,Y] = msppresample(ms_peaks,5000);

msheatmap(MZ,ret_time,log(Y))

 msdotplot

1-1191

4 Overlay the dot plot on the heat map, and then zoom in to see the detail.

msdotplot(ms_peaks,ret_time)

axis([480 532 375 485])

1 Alphabetical List

1-1192

See Also
msheatmap | mspalign | mspeaks | msppresample | mzcdf2peaks | mzcdfread |
mzxml2peaks | mzxmlread

 msheatmap

1-1193

msheatmap
Create pseudocolor image of set of mass spectra

Syntax

msheatmap(MZ, Intensities)

msheatmap(MZ, Times, Intensities)

msheatmap(..., 'Midpoint', MidpointValue, ...)

msheatmap(..., 'Range', RangeValue, ...)

msheatmap(..., 'Markers', MarkersValue, ...)

msheatmap(..., 'SpecIdx', SpecIdxValue, ...)

msheatmap(..., 'Group', GroupValue, ...)

msheatmap(..., 'Resolution', ResolutionValue, ...)

Arguments

MZ Column vector of common mass/charge (m/z) values for a set of
spectra. The number of elements in the vector equals the number
of rows in the matrix Intensities.

Note: You can use the msppresample function to create the MZ
vector.

Times Column vector of retention times associated with a liquid
chromatography/mass spectrometry (LC/MS) or gas
chromatography/mass spectrometry (GC/MS) data set. The
number of elements in the vector equals the number of columns
in the matrix Intensities. The retention times are used to
label the y-axis of the heat map.

Tip You can use the mzxml2peaks function to create the Times
vector.

Intensities Matrix of intensity values for a set of mass spectra that share
the same m/z range. Each row corresponds to an m/z value, and

1 Alphabetical List

1-1194

each column corresponds to a spectrum or retention time. The
number of rows equals the number of elements in vector MZ.
The number of columns equals the number of elements in vector
Times.

Note: You can use the msppresample function to create the
Intensities matrix.

MidpointValue Value specifying a quantile of the ion intensity values to fall
below the midpoint of the colormap, meaning they do not
represent peaks. msheatmap uses a custom colormap where cool
colors represent nonpeak regions, white represents the midpoint,
and warm colors represent peaks. Choices are any value # 0 and
1. Default is:

• 0.99 — For LC/MS or GC/MS data or when input T is
provided. This means that 1% of the pixels are warm colors
and represent peaks.

• 0.95 — For non-LC/MS or non-GC/MS data or when input T
is not provided. This means that 5% of the pixels are warm
colors and represent peaks.

Tip You can also change the midpoint interactively after
creating the heat map by right-clicking the color bar, selecting
Interactive Colormap Shift, and then click-dragging the
cursor vertically on the color bar. This technique is useful when
comparing multiple heat maps.

RangeValue 1-by-2 vector specifying the m/z range for the x-axis of the heat
map. RangeValue must be within [min(MZ) max(MZ)]. Default
is the full range [min(MZ) max(MZ)].

MarkersValue Vector of m/z values to mark on the top horizontal axis of the
heat map. Default is [].

 msheatmap

1-1195

SpecIdxValue Either of the following:

• Vector of values with the same number of elements as
columns (spectra) in the matrix Intensities.

• Cell array of strings with the same number of elements as
columns (spectra) in the matrix Intensities.

Each value or string specifies a label for the corresponding
spectrum. These values or strings are used to label the y-axis of
the heat map.

Note: If input Times is provided, it is assumed that
Intensities contains LC/MS or GC/MS data, and
SpecIdxValue is ignored.

GroupValue Either of the following:

• Vector of values with the same number of elements as rows in
the matrix Intensities

• Cell array of strings with the same number of elements as
rows (spectra) in the matrix Intensities

Each value or string specifies a group to which the corresponding
spectrum belongs. The spectra are sorted and combined into
groups along the y-axis in the heat map.

Note: If input Times is provided, it is assumed that
Intensities contains LC/MS or GC/MS data, and GroupValue
is ignored.

ResolutionValue Value specifying the horizontal resolution of the heat map image.
Increase this value to enhance details. Decrease this value to
reduce memory usage. Default is:

• 0.5 — When MZ contains > 2,500 elements.
• 0.05 — When MZ contains <= 2,500 elements.

1 Alphabetical List

1-1196

Description

msheatmap(MZ, Intensities) displays a pseudocolor heat map image of the
intensities for the spectra in matrix Intensities.

msheatmap(MZ, Times, Intensities) displays a pseudocolor heat map image of the
intensities for the spectra in matrix Intensities, using the retention times in vector
Times to label the y-axis.

msheatmap(..., 'PropertyName', PropertyValue, ...) calls msheatmap with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

msheatmap(..., 'Midpoint', MidpointValue, ...) specifies a quantile of
the ion intensity values to fall below the midpoint of the colormap, meaning they do
not represent peaks. msheatmap uses a custom colormap where cool colors represent
nonpeak regions, white represents the midpoint, and warm colors represent peaks.
Choices are any value between 0 and 1. Default is:

• 0.99 — For LC/MS or GC/MS data or when input T is provided. This means that 1%
of the pixels are warm colors and represent peaks.

• 0.95 — For non-LC/MS or non-GC/MS data or when input T is not provided. This
means that 5% of the pixels are warm colors and represent peaks.

Tip You can also change the midpoint interactively after creating the heat map by right-
clicking the color bar, selecting Interactive Colormap Shift, then click-dragging the
cursor vertically on the color bar. This technique is useful when comparing multiple heat
maps.

msheatmap(..., 'Range', RangeValue, ...) specifies the m/z range for the x-
axis of the heat map. RangeValue is a 1-by-2 vector that must be within [min(MZ)
max(MZ)]. Default is the full range [min(MZ) max(MZ)].

msheatmap(..., 'Markers', MarkersValue, ...) places markers along the top
horizontal axis of the heat map for the m/z values specified in the vector MarkersValue.
Default is [].

 msheatmap

1-1197

msheatmap(..., 'SpecIdx', SpecIdxValue, ...) labels the spectra along the
y-axis in the heat map. The labels are specified by SpecIdxValue, a vector of values
or cell array of strings. The number of values or strings is the same as the number of
columns (spectra) in the matrix Intensities. Each value or string specifies a label for
the corresponding spectrum.

msheatmap(..., 'Group', GroupValue, ...) sorts and combines spectra into
groups along the y-axis in the heat map. The groups are specified by GroupValue, a
vector of values or cell array of strings. The number of values or strings is the same as
the number of rows in the matrix Intensities. Each value or string specifies a group to
which the corresponding spectrum belongs. Default is [1:numSpectra].

msheatmap(..., 'Resolution', ResolutionValue, ...) specifies the horizontal
resolution of the heat map image. Increase this value to enhance details. Decrease this
value to reduce memory usage. Default is:

• 0.5 — When MZ contains > 2,500 elements.
• 0.05 — When MZ contains <= 2,500 elements.

Examples

SELDI-TOF Data

1 Load SELDI-TOF sample data.

load sample_lo_res

2 Create a vector of four m/z values to mark along the top horizontal axis of the heat
map.

M = [3991.4 4598 7964 9160];

3 Display the heat map with m/z markers and a limited m/z range.

msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'range',[3000 10000])

1 Alphabetical List

1-1198

4 Display the heat map again grouping each spectrum into one of two groups.

TwoGroups = [1 1 2 2 1 1 2 2];

msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'group',TwoGroups)

 msheatmap

1-1199

Liquid Chromatography/Mass Spectrometry (LC/MS) Data

1 Load LC/MS sample data.

load lcmsdata

2 Resample the peak lists to create a vector of m/z values and a matrix of intensity
values.

[MZ, Intensities] = msppresample(ms_peaks, 5000);

3 Display the heat map showing mass spectra at different retention times.

msheatmap(MZ, ret_time, log(Intensities))

1 Alphabetical List

1-1200

See Also
msalign | msbackadj | msdotplot | mslowess | msnorm | mspalign | msresample
| mssgolay | msviewer

 mslowess

1-1201

mslowess

Smooth signal with peaks using nonparametric method

Syntax

Yout = mslowess(X, Intensities)

mslowess(..., 'Order', OrderValue, ...)

mslowess(..., 'Span', SpanValue, ...)

mslowess(..., 'Kernel', KernelValue, ...)

mslowess(..., 'RobustIterations', RobustIterationsValue, ...)

mslowess(..., 'ShowPlot', ShowPlotValue, ...)

Arguments

X Vector of separation-unit values for a set of signals with peaks. The
number of elements in the vector equals the number of rows in the
matrix Intensities. The separation unit can quantify wavelength,
frequency, distance, time, or m/z depending on the instrument that
generates the signal data.

Intensities Matrix of intensity values for a set of peaks that share the same
separation-unit range. Each row corresponds to a separation-unit
value, and each column corresponds to either a set of signals with
peaks or a retention time. The number of rows equals the number of
elements in vector X.

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

1 Alphabetical List

1-1202

Yout = mslowess(X, Intensities) smooths raw noisy signal data, Intensities,
using a locally weighted linear regression (Lowess) method with a default span of 10
samples.

Note: mslowess assumes the input vector, X, may not have uniformly spaced separation
units. Therefore, the sliding window for smoothing is centered using the closest samples
in terms of the X value and not in terms of the X index.

Note: When the input vector, X, does not have repeated values or NaN values, the
algorithm is approximately twice as fast.

mslowess(X, Intensities, ...'PropertyName', PropertyValue, ...) calls
mslowess with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

mslowess(..., 'Order', OrderValue, ...) specifies the order (OrderValue) of
the Lowess smoother. Enter 1 (linear polynomial fit or Lowess), 2 (quadratic polynomial
fit or Loess), or 0 (equivalent to a weighted local mean estimator and presumably faster
because only a mean computation is performed instead of a least-squares regression).
The default value is 1.

Note: Curve Fitting Toolbox software also refers to Lowess smoothing of order 2 as Loess
smoothing.

mslowess(..., 'Span', SpanValue, ...) specifies the window size for the
smoothing kernel. If SpanValue is greater than 1, the window is equal to SpanValue
number of samples independent of the separation-unit vector, X. The default value is 10
samples. Higher values will smooth the signal more at the expense of computation time.
If SpanValue is less than 1, the window size is taken to be a fraction of the number of
points in the data. For example, when SpanValue is 0.005, the window size is equal to
0.50% of the number of points in X.

mslowess(..., 'Kernel', KernelValue, ...) selects the function specified by
KernelValue for weighting the observed intensities. Samples close to the separation-

 mslowess

1-1203

unit location being smoothed have the most weight in determining the estimate.
KernelValue can be any of the following strings:

• 'tricubic' (default) — (1 - (dist/dmax).^3).^3
• 'gaussian' — exp(-(2*dist/dmax).^2)
• 'linear' — 1-dist/dmax

mslowess(..., 'RobustIterations', RobustIterationsValue, ...) specifies
the number of iterations (RobustValue) for a robust fit. If RobustIterationsValue
is 0 (default), no robust fit is performed. For robust smoothing, small residual values
at every span are outweighed to improve the new estimate. 1 or 2 robust iterations are
usually adequate, while larger values might be computationally expensive.

Note: For an X vector that has uniformly spaced separation units, a nonrobust smoothing
with OrderValue equal to 0 is equivalent to filtering the signal with the kernel vector.

mslowess(..., 'ShowPlot', ShowPlotValue, ...) plots the smoothed signal
over the original signal. When you call mslowess without output arguments, the signals
are plotted unless ShowPlotValue is false. When ShowPlotValue is true, only the
first signal in Intensities is plotted. ShowPlotValue can also contain an index to one
of the signals in Intensities.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, that contains
some sample data.

load sample_lo_res

2 Smooth the spectra and draw a figure of the first spectrum with original and
smoothed signals.

YS = mslowess(MZ_lo_res,Y_lo_res,'Showplot',true);

1 Alphabetical List

1-1204

3 Zoom in on a region of the figure to see the difference in the original and smoothed
signals.

axis([7350 7550 0.1 1.0])

 mslowess

1-1205

More About
• Preprocessing Raw Mass Spectrometry Data

See Also
msalign | msbackadj | msheatmap | msnorm | mspeaks | msresample | mssgolay
| msviewer

1 Alphabetical List

1-1206

msnorm
Normalize set of signals with peaks

Syntax

Yout = msnorm(X, Intensities)

[Yout, NormParameters] = msnorm(...)

msnorm(X, NewY, NormParameters)

msnorm(..., 'Quantile', QuantileValue, ...)

msnorm(..., 'Limits', LimitsValue, ...)

msnorm(..., 'Consensus', ConsensusValue, ...)

msnorm(..., 'Method', MethodValue, ...)

msnorm(..., 'Max', MaxValue, ...)

Arguments

X Vector of separation-unit values for a set of signals with peaks. The
number of elements in the vector equals the number of rows in the
matrix Intensities. The separation unit can quantify wavelength,
frequency, distance, time, or m/z depending on the instrument that
generates the signal data.

Intensities Matrix of intensity values for a set of peaks that share the same
separation-unit range. Each row corresponds to a separation-unit
value, and each column corresponds to either a set of signals with
peaks or a retention time. The number of rows equals the number of
elements in vector X.

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

 msnorm

1-1207

Yout = msnorm(X, Intensities) normalizes a group of signals with peaks by
standardizing the area under the curve (AUC) to the group median.

[Yout, NormParameters] = msnorm(...) returns a structure containing the
parameters to normalize another group of signals.

msnorm(X, NewY, NormParameters) uses the parameter information from a previous
normalization specified by NormParameters to normalize a new set of signals specified
by NewY using the same parameters to select the separation-unit positions and output
scale from the previous normalization. NormParameters is a structure created by
msnorm. If a consensus proportion, ConsensusValue, was given in the previous
normalization, no new separation-unit positions are selected, and normalization is
performed using the same separation-unit positions.

msnorm(..., 'PropertyName', PropertyValue, ...) calls msnorm with optional
properties that use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single quotation marks
and is case insensitive. These property name/property value pairs are as follows:

msnorm(..., 'Quantile', QuantileValue, ...) specifies a 1-by-2 vector with
the quantile limits for reducing the set of separation-unit values in X. For example, when
QuantileValue is [0.9 1], only the largest 10% of intensities in each signal are used
to compute the AUC. When QuantileValue is a scalar, the scalar value represents the
lower quantile limit and the upper quantile limit is set to 1. The default value is [0 1]
(use the whole area under the curve, AUC).

msnorm(..., 'Limits', LimitsValue, ...) specifies a 1-by-2 vector with a
separation-unit range for picking normalization points. This parameter is useful to
eliminate low-mass noise from the AUC calculation, for example the matrix noise that
appears in the low-mass region of SELDI mass spectrometers. Default is [0, max(X)].

msnorm(..., 'Consensus', ConsensusValue, ...) sets a consensus rule. To
be included in the AUC, a separation-unit position must have an intensity within
the quantile limits of at least part (specified by ConsensusValue) of the signals in
Intensities. The same separation-unit positions are used to normalize all the signals.
Enter a scalar from 0 to 1.

Tip Use the 'Consensus' property to eliminate low-intensity peaks and noise from the
normalization.

1 Alphabetical List

1-1208

msnorm(..., 'Method', MethodValue, ...) selects a method for normalizing the
AUC of every signal. Enter either 'Median' (default) or 'Mean'.

msnorm(..., 'Max', MaxValue, ...), after individually normalizing each signal,
scales each signal to an overall maximum intensity specified by MaxValue. MaxValue
is a scalar. If omitted, no postscaling is performed. If QuantileValue is [1 1], then a
single point (peak height of the tallest peak) is normalized to MaxValue.

Examples

AUC Normalization

This example shows how to normalize the area under the curve of every mass spectrum
from the mass spec data.

Load a MAT-file, included with the Bioinformatics Toolbox™ software, that contains
sample mass spec data, including MZ_lo_res, a vector of m/z values, and Y_lo_res, a
matrix of intensity values.

load sample_lo_res

Create a subset (four signals) of the data.

MZ = MZ_lo_res;

Y = Y_lo_res(:,[1 2 5 6]);

Plot the four spectra.

plot(MZ, Y)

axis([-1000 20000 -20 105])

xlabel('Mass-charge Ratio')

ylabel('Relative Ion Intensities')

title('Original Spectra')

 msnorm

1-1209

Normalize the area under the curve (AUC) of every spectrum to the median, eliminating
low-mass (m/z < 1,000) noise, and post-rescaling such that the maximum intensity is 100.
Plot the four spectra.

Y1 = msnorm(MZ,Y,'Limits',[1000 inf],'Max',100);

plot(MZ, Y1)

axis([-1000 20000 -20 105])

xlabel('Mass-charge Ratio')

ylabel('Relative Ion Intensities')

title('AUC Normalized Spectra')

1 Alphabetical List

1-1210

Maximum Intensity Normalization

This example shows how to normalize the ion intensity of every spectrum from the mass
spec data.

Load a MAT-file, included with the Bioinformatics Toolbox™ software, that contains
sample mass spec data, including MZ_lo_res, a vector of m/z values, and Y_lo_res, a
matrix of intensity values.

load sample_lo_res

Create a subset (four signals) of the data.

MZ = MZ_lo_res;

 msnorm

1-1211

Y = Y_lo_res(:,[1 2 5 6]);

Normalize the ion intensity of every spectrum to the maximum intensity of the single
highest peak from any of the spectra in the range above 1000 m/z. Plot the four spectra.

Y2 = msnorm(MZ,Y,'QUANTILE', [1 1],'LIMITS',[1000 inf]);

plot(MZ, Y2)

axis([-1000 20000 -20 105])

xlabel('Mass-charge Ratio')

ylabel('Relative Ion Intensities')

title('Maximum-Intensity Normalized Spectra')

Quantile Normalization

This example shows how to perform quantile normalization for mass spec data.

1 Alphabetical List

1-1212

Load a MAT-file, included with the Bioinformatics Toolbox™ software, that contains
sample mass spec data, including MZ_lo_res, a vector of m/z values, and Y_lo_res, a
matrix of intensity values.

load sample_lo_res

Create a subset (four signals) of the data.

MZ = MZ_lo_res;

Y = Y_lo_res(:,[1 2 5 6]);

Normalize using the data in the m/z regions where the intensities are within the fourth
quartile in at least 90% of the spectrograms. Note that you can use the normalization
parameters in the second output to normalize another set of data in the same m/z
regions. Plot the four spectra.

[Y3,S] = msnorm(MZ,Y,'Quantile',[0.75 1],'Consensus',0.9);

area(MZ,S.Xh.*1000,'LineStyle','None','FaceColor',[.8 .8 .8])

hold on

plot(MZ, Y3)

hold off

axis([-1000 20000 -20 105])

xlabel('Mass-charge Ratio')

ylabel('Relative Ion Intensities')

title('Fourth-quartile Normalized Spectra')

 msnorm

1-1213

Use the normalization parameters in the second output of the previous step to normalize
a different subset of data (four signals) using the data in the same m/z regions as the
previous data set. Plot the four spectra.

Y4 = msnorm(MZ,Y_lo_res(:,[3 4 7 8]),S);

area(MZ,S.Xh.*1000,'LineStyle','None','FaceColor',[.8 .8 .8])

hold on

plot(MZ, Y4)

hold off

axis([-1000 20000 -20 105])

xlabel('Mass-charge Ratio')

ylabel('Relative Ion Intensities')

title('Fourth-quartile Normalized Spectra')

1 Alphabetical List

1-1214

More About
• Preprocessing Raw Mass Spectrometry Data

See Also
msalign | msbackadj | msheatmap | mslowess | msresample | mssgolay |
msviewer

 mspalign

1-1215

mspalign

Align mass spectra from multiple peak lists from LC/MS or GC/MS data set

Syntax

[CMZ, AlignedPeaks] = mspalign(Peaklist)

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'Quantile',

QuantileValue, ...)

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'EstimationMethod',

EstimationMethodValue, ...)

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'CorrectionMethod',

CorrectionMethodValue, ...)

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'ShowEstimation',

ShowEstimationValue, ...)

Input Arguments

Peaklist Cell array of peak lists from a liquid chromatography/
mass spectrometry (LC/MS) or gas chromatography/mass
spectrometry (GC/MS) data set. Each element in the cell
array is a two-column matrix with m/z values in the first
column and ion intensity values in the second column.
Each element corresponds to a spectrum or retention
time.

Note: You can use the mzxml2peaks function or the
mspeaks function to create the Peaklist cell array.

QuantileValue Value that determines which peaks are selected by the
estimation method to create CMZ, the vector of common
m/z values. Choices are any value # 0 and # 1. Default
is 0.95.

EstimationMethodValue String specifying the method to estimate CMZ, the vector
of common mass/charge (m/z) values. Choices are:

1 Alphabetical List

1-1216

• histogram — Default method. Peak locations are
clustered using a kernel density estimation approach.
The peak ion intensity is used as a weighting factor.
The center of all the clusters conform to the CMZ
vector.

• regression — Takes a sample of the distances
between observed significant peaks and regresses
the inter-peak distance to create the CMZ vector with
similar inter-element distances.

CorrectionMethodValue String specifying the method to align each peak list to
the CMZ vector. Choices are:

• nearest-neighbor — Default method. For each
common peak in the CMZ vector, its counterpart
in each peak list is the peak that is closest to the
common peak's m/z value.

• shortest-path — For each common peak in the
CMZ vector, its counterpart in each peak list is
selected using the shortest path algorithm.

ShowEstimationValue Controls the display of an assessment plot relative to
the estimation method and the vector of common mass/
charge (m/z) values. Choices are true or false. Default
is either:

• false — When return values are specified.
• true — When return values are not specified.

Output Arguments

CMZ Vector of common mass/charge (m/z) values estimated by
the mspalign function.

AlignedPeaks Cell array of peak lists, with the same form as Peaklist,
but with corrected m/z values in the first column of each
matrix.

 mspalign

1-1217

Description

[CMZ, AlignedPeaks] = mspalign(Peaklist) aligns mass spectra from multiple
peak lists (centroided data), by first estimating CMZ, a vector of common mass/charge
(m/z) values estimated by considering the peaks in all spectra in Peaklist, a cell array
of peak lists, where each element corresponds to a spectrum or retention time. It then
aligns the peaks in each spectrum to the values in CMZ, creating AlignedPeaks, a cell
array of aligned peak lists.

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'PropertyName',

PropertyValue, ...) calls mspalign with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'Quantile',

QuantileValue, ...) determines which peaks are selected by the estimation method
to create CMZ, the vector of common m/z values. Choices are a scalar between 0 and 1.
Default is 0.95.

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'EstimationMethod',

EstimationMethodValue, ...) specifies the method used to estimate CMZ, the vector
of common mass/charge (m/z) values. Choices are:

• histogram — Default method. Peak locations are clustered using a kernel density
estimation approach. The peak ion intensity is used as a weighting factor. The center
of all the clusters conform to the CMZ vector.

• regression — Takes a sample of the distances between observed significant peaks
and regresses the inter-peak distance to create the CMZ vector with similar inter-
element distances.

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'CorrectionMethod',

CorrectionMethodValue, ...) specifies the method used to align each peak list to
the CMZ vector. Choices are:

• nearest-neighbor — Default method. For each common peak in the CMZ vector,
its counterpart in each peak list is the peak that is closest to the common peak's m/z
value.

• shortest-path — For each common peak in the CMZ vector, its counterpart in each
peak list is selected using the shortest path algorithm.

1 Alphabetical List

1-1218

[CMZ, AlignedPeaks] = mspalign(Peaklist, ...'ShowEstimation',

ShowEstimationValue, ...) controls the display of an assessment plot relative to
the estimation method and the estimated vector of common mass/charge (m/z) values.
Choices are true or false. Default is either:

• false — When return values are specified.
• true — When return values are not specified.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
liquid chromatography/mass spectrometry (LC/MS) data variables, including peaks
and ret_time. peaks is a cell array of peak lists, where each element is a two-
column matrix of m/z values and ion intensity values, and each element corresponds
to a spectrum or retention time. ret_time is a column vector of retention times
associated with the LC/MS data set.

load lcmsdata

2 Resample the unaligned data, display it in a heat map, and then overlay a dot plot.

[MZ,Y] = msppresample(ms_peaks,5000);

msheatmap(MZ,ret_time,log(Y))

 mspalign

1-1219

msdotplot(ms_peaks,ret_time)

3
Click the Zoom In button, and then click the dot plot two or three times to zoom
in and see how the dots representing peaks overlay the heat map image.

1 Alphabetical List

1-1220

4 Align the peak lists from the mass spectra using the default estimation and
correction methods.

[CMZ, aligned_peaks] = mspalign(ms_peaks);

5 Resample the unaligned data, display it in a heat map, and then overlay a dot plot.

[MZ2,Y2] = msppresample(aligned_peaks,5000);

msheatmap(MZ2,ret_time,log(Y2))

 mspalign

1-1221

msdotplot(aligned_peaks,ret_time)

6 Link the axes of the two heat plots and zoom in to observe the detail to compare the
unaligned and aligned LC/MS data sets.

linkaxes(findobj(0,'Tag','MSHeatMap'))

axis([480 532 375 485])

1 Alphabetical List

1-1222

 mspalign

1-1223

References

[1] Jeffries, N. (2005) Algorithms for alignment of mass spectrometry proteomic data.
Bioinfomatics 21:14, 3066–3073.

[2] Purvine, S., Kolker, N., and Kolker, E. (2004) Spectral Quality Assessment for High-
Throughput Tandem Mass Spectrometry Proteomics. OMICS: A Journal of
Integrative Biology 8:3, 255–265.

1 Alphabetical List

1-1224

See Also
msalign | msdotplot | msheatmap | mspeaks | msppresample | mzcdf2peaks |
mzxml2peaks

 mspeaks

1-1225

mspeaks

Convert raw peak data to peak list (centroided data)

Syntax

Peaklist = mspeaks(X, Intensities)

[Peaklist, PFWHH] = mspeaks(X, Intensities)

[Peaklist, PFWHH, PExt] = mspeaks(X, Intensities)

mspeaks(X, Intensities, ...'Base', BaseValue, ...)

mspeaks(X, Intensities, ...'Levels', LevelsValue, ...)

mspeaks(X, Intensities, ...'NoiseEstimator',

NoiseEstimatorValue, ...)

mspeaks(X, Intensities, ...'Multiplier', MultiplierValue, ...)

mspeaks(X, Intensities, ...'Denoising', DenoisingValue, ...)

mspeaks(X, Intensities, ...'PeakLocation', PeakLocationValue, ...)

mspeaks(X, Intensities, ...'FWHHFilter', FWHHFilterValue, ...)

mspeaks(X, Intensities, ...'OverSegmentationFilter',

OverSegmentationFilterValue, ...)

mspeaks(X, Intensities, ...'HeightFilter', HeightFilterValue, ...)

mspeaks(X, Intensities, ...'ShowPlot', ShowPlotValue, ...)

mspeaks(X, Intensities, ...'Style', StyleValue, ...)

Description

Peaklist = mspeaks(X, Intensities) finds relevant peaks in raw, noisy peak
signal data, and creates Peaklist, a two-column matrix, containing the separation-
axis value and intensity for each peak. X is a vector of separation-unit values for a set of
signals with peaks. Intensities is a matrix of intensity values for a set of peaks that
share the same separation-unit range.

[Peaklist, PFWHH] = mspeaks(X, Intensities) returns PFWHH, a two-column
matrix indicating the left and right locations of the full width at half height (FWHH)
markers for each peak. For any peak not resolved at FWHH, mspeaks returns the peak
shape extents instead. When Intensities includes multiple signals, then PFWHH is a
cell array of matrices.

1 Alphabetical List

1-1226

[Peaklist, PFWHH, PExt] = mspeaks(X, Intensities) returns PExt, a
two-column matrix indicating the left and right locations of the peak shape extents
determined after wavelet denoising. When Intensities includes multiple signals, then
PExt is a cell array of matrices.

mspeaks(X, Intensities, ...'PropertyName', PropertyValue, ...) calls
mspeaks with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Enclose each PropertyName in single
quotation marks. Each PropertyName is case insensitive. These property name/property
value pairs are as follows:

mspeaks(X, Intensities, ...'Base', BaseValue, ...) specifies the wavelet
base.

mspeaks(X, Intensities, ...'Levels', LevelsValue, ...) specifies the
number of levels for the wavelet decomposition.

mspeaks(X, Intensities, ...'NoiseEstimator',

NoiseEstimatorValue, ...) specifies the method to estimate the threshold, T, to
filter out noisy components in the first high-band decomposition (y_h).

mspeaks(X, Intensities, ...'Multiplier', MultiplierValue, ...)

specifies the threshold multiplier constant.

mspeaks(X, Intensities, ...'Denoising', DenoisingValue, ...) controls
the use of wavelet denoising to smooth the signal. Choices are true (default) or false.

mspeaks(X, Intensities, ...'PeakLocation', PeakLocationValue, ...)

specifies the proportion of the peak height to use to select the points used to compute the
centroid separation-axis value of the respective peak. PeakLocationValue must be a
value # 0 and # 1. Default is 1.0.

mspeaks(X, Intensities, ...'FWHHFilter', FWHHFilterValue, ...)

specifies the minimum full width at half height (FWHH), in separation units, for
reported peaks. Peaks with FWHH below this value are excluded from the output list
Peaklist.

mspeaks(X, Intensities, ...'OverSegmentationFilter',

OverSegmentationFilterValue, ...) specifies the minimum distance, in separation
units, between neighboring peaks. When the signal is not smoothed appropriately,
multiple maxima can appear to represent the same peak. Increase this filter value to join
oversegmented peaks into a single peak.

 mspeaks

1-1227

mspeaks(X, Intensities, ...'HeightFilter', HeightFilterValue, ...)

specifies the minimum height for reported peaks. Peaks with heights below this value are
excluded from the output list Peaklist.

mspeaks(X, Intensities, ...'ShowPlot', ShowPlotValue, ...) controls the
display of a plot of the original and the smoothed signal, with the peaks included in the
output matrix Peaklist marked.

mspeaks(X, Intensities, ...'Style', StyleValue, ...) specifies the style for
marking the peaks in the plot.

mspeaks finds peaks in data from any separation technique that produces signal
data, such as spectroscopy, nuclear magnetic resonance (NMR), electrophoresis,
chromatography, or mass spectrometry.

Input Arguments

X

Vector of separation-unit values for a set of signals with peaks. The number of elements
in the vector equals the number of rows in the matrix Intensities. The separation unit
can quantify wavelength, frequency, distance, time, or m/z depending on the instrument
that generates the signal data.

Default:

Intensities

Matrix of intensity values for a set of peaks that share the same separation-unit range.
Each row corresponds to a separation-unit value, and each column corresponds to either
a set of signals with peaks or a retention time. The number of rows equals the number of
elements in vector X.

Default:

BaseValue

Integer from 2 to 20 that specifies the wavelet base.

Default: 4

1 Alphabetical List

1-1228

LevelsValue

Integer from 1 to 12 that specifies the number of levels for the wavelet decomposition.

Default: 10

NoiseEstimatorValue

String or scalar that specifies the method to estimate the threshold, T, to filter out noisy
components in the first high-band decomposition (y_h). Choices are:

• mad — Default. Median absolute deviation, which calculates T =
sqrt(2*log(n))*mad(y_h) / 0.6745, where n = the number of rows in the
Intensities matrix.

• std — Standard deviation, which calculates T = std(y_h).
• A positive real value.

Default:

MultiplierValue

Positive real value that specifies the threshold multiplier constant.

Default: 1.0

DenoisingValue

Controls the use of wavelet denoising to smooth the signal. Choices are true (default) or
false.

Tip If your data was previously smoothed, for example, with the mslowess or mssgolay
function, you do not need to use wavelet denoising. Set this property to false.

Default:

PeakLocationValue

Value that specifies the proportion of the peak height to use to select the points to
compute the centroid separation-axis value of the respective peak. The value must be # 0
and # 1.

 mspeaks

1-1229

Note: When PeakLocationValue = 1.0, the peak location is at the maximum of the
peak. When PeakLocationValue = 0, mspeaks computes the peak location with all the
points from the closest minimum to the left of the peak to the closest minimum to the
right of the peak.

Default: 1.0

FWHHFilterValue

Positive real value that specifies the minimum full width at half height (FWHH), in
separation units, for reported peaks. Peaks with FWHH below this value are excluded
from the output list Peaklist.

Default: 0

OverSegmentationFilterValue

Positive real value that specifies the minimum distance, in separation units, between
neighboring peaks. When the signal is not smoothed appropriately, multiple maxima can
appear to represent the same peak. Increase this filter value to join oversegmented peaks
into a single peak.

Default: 0

HeightFilterValue

Positive real value that specifies the minimum height for reported peaks.

Default: 0

ShowPlotValue

Controls the display of a plot of the original signal and the smoothed signal, with the
peaks included in the output matrix Peaklist marked. Choices are true, false, or I,
an integer specifying the index of a spectrum in Intensities. If set to true, the first
spectrum in Intensities is plotted. Default is:

• false — When you specify return values.
• true — When you do not specify return values.

Default:

1 Alphabetical List

1-1230

StyleValue

String specifying the style for marking the peaks in the plot. Choices are:

• 'peak' (default) — Places a marker at the peak crest.
• 'exttriangle' — Draws a triangle using the peak crest and the extents.
• 'fwhhtriangle' — Draws a triangle using the peak crest and the FWHH points.
• 'extline' — Places a marker at the peak crest and vertical lines at the extents.
• 'fwhhline' — Places a marker at the peak crest and a horizontal line at FWHH.

Default:

Output Arguments

Peaklist

Two-column matrix where each row corresponds to a peak. The first column contains
separation-unit values (indicating the location of peaks along the separation axis). The
second column contains intensity values. When Intensities includes multiple signals,
then Peaklist is a cell array of matrices, each containing a peak list.

PFWHH

Two-column matrix indicating the left and right locations of the full width at half height
(FWHH) markers for each peak. For any peak not resolved at FWHH, mspeaks returns
the peak shape extents instead. When Intensities includes multiple signals, then
PFWHH is a cell array of matrices.

PExt

Two-column matrix indicating the left and right locations of the peak shape extents
determined after wavelet denoising. When Intensities includes multiple signals, then
PExt is a cell array of matrices.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, that contains
two mass spectrometry data variables, MZ_lo_res and Y_lo_res. MZ_lo_res is a

 mspeaks

1-1231

vector of m/z values for a set of spectra. Y_lo_res is a matrix of intensity values for
a set of mass spectra that share the same m/z range.

load sample_lo_res

2 Adjust the baseline of the eight spectra stored in Y_lo_res.

YB = msbackadj(MZ_lo_res,Y_lo_res);

3 Convert the raw mass spectrometry data to a peak list by finding the relevant peaks
in each spectrum.

P = mspeaks(MZ_lo_res,YB);

4 Plot the third spectrum in YB, the matrix of baseline-corrected intensity values, with
the detected peaks marked.

P = mspeaks(MZ_lo_res,YB,'SHOWPLOT',3);

5 Smooth the signal using the mslowess function. Then convert the smoothed data to
a peak list by finding relevant peaks and plot the third spectrum.

1 Alphabetical List

1-1232

YS = mslowess(MZ_lo_res,YB,'SHOWPLOT',3);

P = mspeaks(MZ_lo_res,YS,'DENOISING',false,'SHOWPLOT',3);

 mspeaks

1-1233

6 Use the cellfun function to remove all peaks with m/z values less than 2000 from
the eight peaks listed in output P. Then plot the peaks of the third spectrum (in red)
over its smoothed signal (in blue).

Q = cellfun(@(p) p(p(:,1)>2000,:),P,'UniformOutput',false);

figure

plot(MZ_lo_res,YS(:,3),'b',Q{3}(:,1),Q{3}(:,2),'rx')

xlabel('Mass/Charge (M/Z)')

ylabel('Relative Intensity')

axis([0 20000 -5 95])

1 Alphabetical List

1-1234

More About

Algorithms

mspeaks converts raw peak data to a peak list (centroided data) by:

1 Smoothing the signal using undecimated wavelet transform with Daubechies
coefficients

2 Assigning peak locations
3 Estimating noise
4 Eliminating peaks that do not satisfy specified criteria

 mspeaks

1-1235

References

[1] Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., and Kobayash, R. (2005)
Feature extraction and quantification for mass spectrometry in biomedical
applications using the mean spectrum. Bioinfomatics 21:9, 1764–1775.

[2] Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, G.L., Qu, Y., Potter, J.D.,
Winget, M., Thornquist, M., and Feng, Z. (2003) A data-analytic strategy for
protein biomarker discovery: profiling of high-dimensional proteomic data for
cancer detection. Biostatistics 4:3, 449–463.

[3] Donoho, D.L., and Johnstone, I.M. (1995) Adapting to unknown smoothness via
wavelet shrinkage. J. Am. Statist. Asso. 90, 1200–1224.

[4] Strang, G., and Nguyen, T. (1996) Wavelets and Filter Banks (Wellesley: Cambridge
Press).

[5] Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., Hung, M.C., and Kuerer,
H.M. (2005) Improved peak detection and quantification of mass spectrometry
data acquired from surface-enhanced laser desorption and ionization by denoising
spectra with the undecimated discrete wavelet transform. Proteomics 5(16),
4107–4117.

See Also
msbackadj | msdotplot | mslowess | mspalign | msppresample | mssgolay |
cellfun

Tutorials
• Preprocessing Raw Mass Spectrometry Data
• Visualizing and Preprocessing Hyphenated Mass Spectrometry Data Sets for

Metabolite and Protein/Peptide Profiling

1 Alphabetical List

1-1236

msppresample
Resample signal with peaks while preserving peaks

Syntax

[X, Intensities] = msppresample(Peaklist, N)

msppresample(Peaklist, N, ...'Range', RangeValue, ...)

msppresample(Peaklist, N, ...'FWHH', FWHHValue, ...)

msppresample(Peaklist, N, ...'ShowPlot', ShowPlotValue, ...)

Input Arguments

Peaklist Either of the following:

• Two-column matrix, where the first column contains separation-
unit values and the second column contains intensity values.
The separation unit can quantify wavelength, frequency,
distance, time, or m/z depending on the instrument that
generates the signal data.

• Cell array of peak lists, where each element is a two-column
matrix of separation-unit values and intensity values, and each
element corresponds to a signal or retention time.

Tip You can use the mzxml2peaks function or the mspeaks
function to create the Peaklist matrix or cell array.

N Integer specifying the number of equally spaced points (separation-
unit values) in the resampled signal.

RangeValue 1-by-2 vector specifying the minimum and maximum separation-
unit values for the output matrix Intensities. RangeValue must
be within [min(inputSU) max(inputSU)], where inputSU is
the concatenated separation-unit values from the input Peaklist.
Default is the full range [min(inputSU) max(inputSU)].

FWHHValue Value that specifies the full width at half height (FWHH) in
separation units. The FWHH is used to convert each peak to a

 msppresample

1-1237

Gaussian shaped curve. Default is median(diff(inputSU))/2,
where inputSU is the concatenated separation-unit values from the
input Peaklist. The default is a rough approximation of resolution
observed in the input data, Peaklist.

Tip To ensure that the resolution of the peaks is preserved, set
FWHHValue to half the distance between the two peaks of interest
that are closest to each other.

ShowPlotValue Controls the display of a plot of an original and resampled signal.
Choices are true, false, or I, an integer specifying the index of
a signal in Intensities. If you set to true, the first signal in
Intensities is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

Output Arguments

X Vector of equally spaced, common separation-unit values for a set of
signals with peaks. The number of elements in the vector equals N,
or the number of rows in matrix Intensities.

Intensities Matrix of reconstructed intensity values for a set of peaks that
share the same separation-unit range. Each row corresponds to
a separation-unit value, and each column corresponds to either a
set of signals with peaks or a retention time. The number of rows
equals N, or the number of elements in vector X.

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

1 Alphabetical List

1-1238

[X, Intensities] = msppresample(Peaklist, N) resamples Peaklist, a peak
list, by converting centroided peaks to a semicontinuous, raw signal that preserves peak
information. The resampled signal has N equally spaced points. Output X is a vector of
N elements specifying the equally spaced, common separation-unit values for the set of
signals with peaks. Output Intensities is a matrix of reconstructed intensity values
for a set of peaks that share the same separation-unit range. Each row corresponds to a
separation-unit value, and each column corresponds to either a set of signals with peaks
or a retention time. The number of rows equals N.

msppresample uses a Gaussian kernel to reconstruct the signal. The intensity at any
given separation-unit value is taken from the maximum intensity of any contributing
(overlapping) peaks.

Tip msppresample is useful to prepare a set of signals for imaging functions such as
msheatmap and preprocessing functions such as msbackadj and msnorm.

msppresample(Peaklist, N, ... 'PropertyName', PropertyValue, ...)

calls msppresample with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

msppresample(Peaklist, N, ...'Range', RangeValue, ...) specifies
a separation-unit range for the output matrix Intensities using the minimum
and maximum separation values specified in the 1-by-2 vector RangeValue.
RangeValue must be within [min(inputSU) max(inputSU)], where inputSU is the
concatenated separation-unit values from the input Peaklist. Default is the full range
[min(inputSU) max(inputSU)]

msppresample(Peaklist, N, ...'FWHH', FWHHValue, ...) sets the full width
at half height (FWHH) in separation units. The FWHH is used to convert each peak to a
Gaussian shaped curve. Default is median(diff(inputSU))/2, where inputSU is the
concatenated separation-unit values from the input Peaklist. The default is a rough
approximation of resolution observed in the input data, Peaklist.

Tip To ensure that the resolution of the peaks is preserved, set FWHHValue to half the
distance between the two peaks of interest that are closest to each other.

 msppresample

1-1239

msppresample(Peaklist, N, ...'ShowPlot', ShowPlotValue, ...) controls
the display of a plot of an original and resampled signal. Choices are true, false, or I,
an integer specifying the index of a signal in Intensities. If you set to true, the first
signal in Intensities is plotted. Default is:

• false — When return values are specified.
• true — When return values are not specified.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, that contains
liquid chromatography/mass spectrometry (LC/MS) data variables. It includes
peaks, a cell array of peak lists, where each element is a two-column matrix of m/
z values and ion intensity values, and each element corresponds to a spectrum or
retention time.

load lcmsdata

2 Resample the data, specifying 5000 m/z values in the resampled signal. Then create
a heat map of the LC/MS data.

[MZ,Y] = msppresample(ms_peaks,5000);

msheatmap(MZ,ret_time,log(Y))

1 Alphabetical List

1-1240

3 Plot the reconstructed profile spectra between two retention times.

figure

t1 = 3370;

t2 = 3390;

h = find(ret_time>t1 & ret_time<t2);

[MZ,Y] = msppresample(ms_peaks(h),10000);

plot3(repmat(MZ,1,numel(h)),repmat(ret_time(h)',10000,1),Y)

xlabel('Mass/Charge (M/Z)')

ylabel('Retention Time')

zlabel('Relative Intensity')

 msppresample

1-1241

4 Resample the data to plot the Total Ion Chromatogram (TIC).

figure

[MZ,Y] = msppresample(ms_peaks,5000);

plot(ret_time,sum(Y))

title('Total Ion Chromatogram (TIC)')

xlabel('Retention Time')

ylabel('Relative Intensity')

1 Alphabetical List

1-1242

5 Resample the data to plot the Extracted Ion Chromatogram (XIC) in the 450 to 500
m/z range.

figure

[MZ,Y] = msppresample(ms_peaks,5000,'Range',[450 500]);

plot(ret_time,sum(Y))

title('Extracted Ion Chromatogram (XIC) from 450 to 500 M/Z')

xlabel('Retention Time')

ylabel('Relative Intensity')

 msppresample

1-1243

More About
• Differential Analysis of Complex Protein and Metabolite Mixtures Using Liquid

Chromatography/Mass Spectrometry (LC/MS)

See Also
msdotplot | mspalign | mspeaks | msresample | mzcdf2peaks | mzcdfread |
mzxml2peaks | mzxmlread

1 Alphabetical List

1-1244

msresample
Resample signal with peaks

Syntax

[Xout, Intensitiesout] = msresample(X, Intensities, N)

msresample(..., 'Uniform', UniformValue, ...)

msresample(..., 'Range', RangeValue, ...)

msresample(..., 'RangeWarnOff', RangeWarnOffValue, ...)

msresample(..., 'Missing', MissingValue, ...)

msresample(..., 'Window', WindowValue, ...)

msresample(..., 'Cutoff', CutoffValue, ...)

msresample(..., 'ShowPlot', ShowPlotValue, ...)

Arguments

X Vector of separation-unit values for a set of signals with peaks. The
number of elements in the vector equals the number of rows in the
matrix Intensities. The separation unit can quantify wavelength,
frequency, distance, time, or m/z depending on the instrument that
generates the signal data.

Intensities Matrix of intensity values for a set of peaks that share the same
separation-unit range. Each row corresponds to a separation-unit
value, and each column corresponds to either a set of signals with
peaks or a retention time. The number of rows equals the number of
elements in vector X.

N Positive integer specifying the total number of samples.

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

 msresample

1-1245

[Xout, Intensitiesout] = msresample(X, Intensities, N) resamples raw
noisy signal data, Intensities. The output signal has N samples with a spacing that
increases linearly within the range [min(X) max(X)]. X can be a linear or a quadratic
function of its index. When you set input arguments such that down-sampling takes
place, msresample applies a lowpass filter before resampling to minimize aliasing.

For the antialias filter, msresample uses a linear-phase FIR filter with a least-squares
error minimization. The cutoff frequency is set by the largest down-sampling ratio when
comparing the same regions in the X and Xout vectors.

Tip msresample is particularly useful when you have signals with different separation-
unit vectors and you want to match the scales.

msresample(..., 'PropertyName', PropertyValue, ...) calls msresample
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotes and is case insensitive. These property name/property value pairs are as follows:

msresample(..., 'Uniform', UniformValue, ...), when UniformValue is
true, it forces the vector X to be uniformly spaced. The default value is false.

msresample(..., 'Range', RangeValue, ...) specifies a 1-by-2 vector with the
separation-unit range for the output signal, Intensitiesout. RangeValue must be
within [min(X) max(X)]. Default value is the full range [min(X) max(X)]. When
RangeValue values exceed the values in X, msresample extrapolates the signal with
zeros and returns a warning message.

msresample(..., 'RangeWarnOff', RangeWarnOffValue, ...) controls
the return of a warning message when RangeValue values exceed the values in X.
RangeWarnOffValue can be true or false (default).

msresample(..., 'Missing', MissingValue, ...), when MissingValue is
true, analyzes the input vector, X, for dropped samples. The default value is false. If
the down-sample factor is large, checking for dropped samples might not be worth the
extra computing time. Dropped samples can only be recovered if the original separation-
unit values follow a linear or a quadratic function of the X vector index.

msresample(..., 'Window', WindowValue, ...) specifies the window used
when calculating parameters for the lowpass filter. Enter 'Flattop', 'Blackman',
'Hamming', or 'Hanning'. The default value is 'Flattop'.

1 Alphabetical List

1-1246

msresample(..., 'Cutoff', CutoffValue, ...) specifies the cutoff frequency.
Enter a scalar value from 0 to 1 (Nyquist frequency or half the sampling frequency).
By default, msresample estimates the cutoff value by inspecting the separation-unit
vectors, X and XOut. However, the cutoff frequency might be underestimated if X has
anomalies.

msresample(..., 'ShowPlot', ShowPlotValue, ...) plots the original and the
resampled signal. When msresample is called without output arguments, the signals are
plotted unless ShowPlotValue is false. When ShowPlotValue is true, only the first
signal in Intensities is plotted. ShowPlotValue can also contain an index to one of
the signals in Intensities.

Tip LC/MS data analysis requires extended amounts of memory from the operating
system.

• If you receive errors related to memory, try the following:

• Increase the virtual memory (swap space) for your operating system (with a
recommended initial size of 3,069 and a maximum size of 16,368) as described in
“Memory Usage”.

• Set the 3 GB switch (32-bit Windows XP only) as described in “Memory Usage”.
• If you receive errors related to Java heap space, increase your Java heap space:

• If you have MATLAB version 7.10 (R2010a) or later, see
“Java Heap Memory Preferences”

• If you have MATLAB version 7.9 (R2009b) or earlier, see
http://www.mathworks.com/support/solutions/data/1-18I2C.html

Examples

Resample Mass Spectrometry Data

This example shows how to resample mass spec data.

Load a MAT-file, included with Bioinformatics Toolbox™, that contains mass
spectrometry data, and then extract m/z and intensity value vectors.

http://www.mathworks.com/support/solutions/data/1-18I2C.html

 msresample

1-1247

load sample_hi_res;

mz = MZ_hi_res;

y = Y_hi_res;

Plot the original data.

plot(mz, y, '.')

Resample the spectrogram to have 10000 samples between 2000 and maximum m/z value
in the data set, and show both the resampled and original data.

[mz1,y1] = msresample(mz, y, 10000, 'range',[2000 max(mz)],'SHOWPLOT',true);

1 Alphabetical List

1-1248

More About
• Preprocessing Raw Mass Spectrometry Data

See Also
msalign | msbackadj | msheatmap | mslowess | msnorm | msppresample |
mssgolay | msviewer

 mssgolay

1-1249

mssgolay
Smooth signal with peaks using least-squares polynomial

Syntax

Yout = mssgolay(X, Intensities)

mssgolay(X, Intensities, ...'Span', SpanValue, ...)

mssgolay(X, Intensities, ...'Degree', DegreeValue, ...)

mssgolay(X, Intensities, ...'ShowPlot', ShowPlotValue, ...)

Arguments

X Vector of separation-unit values for a set of signals with peaks. The
number of elements in the vector equals the number of rows in the
matrix Intensities. The separation unit can quantify wavelength,
frequency, distance, time, or m/z depending on the instrument that
generates the signal data.

Intensities Matrix of intensity values for a set of peaks that share the same
separation-unit range. Each row corresponds to a separation-unit
value, and each column corresponds to either a set of signals with
peaks or a retention time. The number of rows equals the number of
elements in vector X.

Description

Tip Use the following syntaxes with data from any separation technique that produces
signal data, such as spectroscopy, NMR, electrophoresis, chromatography, or mass
spectrometry.

Yout = mssgolay(X, Intensities) smooths raw noisy signal data, Intensities,
using a least-squares digital polynomial filter (Savitzky and Golay filters). The default
span or frame is 15 samples.

1 Alphabetical List

1-1250

mssgolay(X, Intensities, ...'PropertyName', PropertyValue, ...) calls
mssgolay with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

mssgolay(X, Intensities, ...'Span', SpanValue, ...) modifies the frame
size for the smoothing function. If SpanValue is greater than 1, the window is the size
of SpanValue in samples independent of the X vector. Higher values smooth the signal
more with an increase in computation time. If SpanValue is less than 1, the window size
is a fraction of the number of points in the input data, X. For example, if SpanValue is
0.05, the window size is equal to 5% of the number of points in X.

Note: The original algorithm by Savitzky and Golay assumes the input vector, X, has
uniformly spaced separation units, while mssgolay also allows one that is not uniformly
spaced. Therefore, the sliding frame for smoothing is centered using the closest samples
in terms of the X value and not in terms of the X index.

When the input vector, X, does not have repeated values or NaN values, the algorithm is
approximately twice as fast.

When the input vector, X, is evenly spaced, the least-squares fitting is performed once
so that the signal is filtered with the same coefficients, and the speed of the algorithm
increases considerably.

If the input vector, X, is evenly spaced and SpanValue is even, span is incremented by 1
to include both edge samples in the frame.

mssgolay(X, Intensities, ...'Degree', DegreeValue, ...) specifies the
degree of the polynomial (DegreeValue) fitted to the points in the moving frame. The
default value is 2. DegreeValue must be smaller than SpanValue.

mssgolay(X, Intensities, ...'ShowPlot', ShowPlotValue, ...) plots
smoothed signals over the original. When mssgolay is called without output arguments,
the signals are plotted unless ShowPlotValue is false. When ShowPlotValue is true,
only the first signal in Intensities is plotted. ShowPlotValue can also contain an
index to one of the signals in Intensities.

 mssgolay

1-1251

Examples

Smooth Mass Spectrometry Data

This example shows how to smooth mass spectrometry data using least-squares
polynomial approach.

Load a MAT-file, included with Bioinformatics Toolbox™, that contains mass
spectrometry data including MZ_lo_res , a vector of m/z values for a set of spectra, and
Y_lo_res , a matrix of intensity values for a set of mass spectra that share the same m/z
charge.

load sample_lo_res

Apply least-squares polynomial smoothing to the data.

YS = mssgolay(MZ_lo_res, Y_lo_res);

Plot the third sample/spectrogram in Y_lo_res , and its smoothed signal.

mssgolay(MZ_lo_res,Y_lo_res,'SHOWPLOT',3);

1 Alphabetical List

1-1252

More About
• Preprocessing Raw Mass Spectrometry Data

See Also
msalign | msbackadj | msheatmap | mslowess | msnorm | mspeaks | msresample
| msviewer

 msviewer

1-1253

msviewer
Explore mass spectrum or set of mass spectra

Syntax

msviewer(MZ , Intensities)

msviewer(..., 'Markers', MarkersValue)

msviewer(..., 'Group', GroupValue)

Arguments

MZ Column vector of common mass/charge (m/z) values for a set of
spectra. The number of elements in the vector equals the number of
rows in the matrix Intensities.

Intensities Matrix of intensity values for a set of mass spectra that share the
same m/z range. Each row corresponds to an m/z value, and each
column corresponds to a spectrum or retention time. The number of
rows equals the number of elements in vector MZ.

GroupValue Either of the following:

• Vector of values with the same number of elements as rows in the
matrix Intensities

• Cell array of strings with the same number of elements as rows
(spectra) in the matrix Intensities

Each value or string specifies a group to which the corresponding
spectrum belongs. Spectra from the same group are plotted with the
same color. Default is [1:numSpectra].

Description

msviewer(MZ , Intensities) displays the MS Viewer, which lets you view and
explore a mass spectrum defined by MZ and Intensities.

1 Alphabetical List

1-1254

msviewer(..., 'Markers', MarkersValue) specifies a list of marker positions from
the mass/charge vector, MZ, for exploration and easy navigation. Enter a column vector
with MZ values.

msviewer(..., 'Group', GroupValue) specifies a group to which the spectra
belong. The groups are specified by GroupValue, a vector of values or cell array of
strings. The number of values or strings is the same as the number of rows in the
matrix Intensities. Each value or string specifies a group to which the corresponding
spectrum belongs. Spectra from the same group are plotted with the same color. Default
is [1:numSpectra].

The MS Viewer includes the following features:

• Plot mass spectra. The spectra are plotted with different colors according to their
group labels.

• An overview displays a full spectrum, and a box indicates the region that is currently
displayed in the main window.

• Five different zoom in options, one zoom out option, and a reset view option resize the
spectrum.

• Add/focus/move/delete marker operations
• Import/Export markers from/to MATLAB workspace
• Print and preview the spectra plot
• Print the spectra plot to a MATLAB Figure window

MSViewer has five components:

• Menu bar: File, Tools, Window, and Help
• Toolbar: Move marker, Zoom XY, Zoom X, Zoom Y, Zoom out, Reset view, and Help
• Main window: display the spectra
• Overview window: display the overview of a full spectrum (the average of all spectra

in display)
• Marker control panel: a list of markers, Add Marker, Delete Marker, up and down

buttons

 msviewer

1-1255

Examples

Plot Mass Spectra Data

This example shows how to plot mass spectra data.

Load and plot a sample mass spectra data.

load sample_lo_res

msviewer(MZ_lo_res, Y_lo_res)

Add a marker by pointing to a mass peak, right-clicking, and then clicking Add Marker.

The File menu has the following options.

1 Alphabetical List

1-1256

• Import Markers from Workspace - Opens the Import Markers From MATLAB®
Workspace dialog. The dialog displays a list of double Mx1 or 1xM variables. If the
selected variable is out of range, the viewer displays an error message.

• Export Markers to Workspace - Opens the Export Markers to MATLAB®
Workspace dialog. Enter a variable name for the markers. All markers are saved. If
thre is no marker available, this menu item is disabled.

• Print to Figure - Prints the spectra plot in the main display to a MATLAB® figure
window.

The Tools menu has the following options.

• Add Marker - Opens the Add Marker dialog where you can enter an m/z marker.
• Delete Marker - Removes the currently selected m/z marker from the Markers (m/z)

list.
• Next Marker or Previous Marker - Moves the selection up and down the Markers

list.
• Zoom XY, Zoom X, Zoom Y, or Zoom Out - Changes the cursor from an arror to a

crosshair. Left-click and drag a rectangle box over an area and then release it. The
display zooms the area covered by the box.

From the range window at the bottom, move the view box to a new location.

More About
• msalign

• msbackadj

• mslowess

• msnorm

• msresample

• mssgolay

See Also
msheatmap

 multialign

1-1257

multialign

Align multiple sequences using progressive method

Syntax

SeqsMultiAligned = multialign(Seqs)

SeqsMultiAligned = multialign(Seqs, Tree)

multialign(..., 'PropertyName', PropertyValue,...)

multialign(..., 'Weights', WeightsValue)

multialign(..., 'ScoringMatrix', ScoringMatrixValue)

multialign(..., 'SMInterp', SMInterpValue)

multialign(..., 'GapOpen', GapOpenValue)

multialign(..., 'ExtendGap', ExtendGapValue)

multialign(..., 'DelayCutoff', DelayCutoffValue)

multialign(..., 'UseParallel', UseParallelValue)

multialign(..., 'Verbose', VerboseValue)

multialign(..., 'ExistingGapAdjust', ExistingGapAdjustValue)

multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue)

Input Arguments

Seqs Vector of structures with the fields 'Sequence' for
the residues and 'Header' or 'Name' for the labels.

Seqs can also be a cell array of strings or a char
array.

Tree Phylogenetic tree calculated with the seqlinkage or
seqneighjoin function.

WeightsValue Property to select the sequence weighting method.
Enter 'THG' (default) or 'equal'.

ScoringMatrixValue Either of the following:

• String specifying the scoring matrix to use for the
alignment. Choices for amino acid sequences are:

1 Alphabetical List

1-1258

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

• 'BLOSUM80' to 'BLOSUM30' series — When
AlphabetValue equals 'AA'

• 'NUC44' — When AlphabetValue equals
'NT'

Note: The above scoring matrices, provided with
the software, also include a structure containing
a scale factor that converts the units of the output
score to bits. You can also use the 'Scale'
property to specify an additional scale factor to
convert the output score from bits to another unit.

• Matrix representing the scoring matrix to use for
the alignment. It can be a matrix, such as returned
by the blosum, pam, dayhoff, gonnet, or nuc44
function. It can also be an M-by-M matrix or M-
by-M-by-N array of matrices with N user-defined
scoring matrices.

Note: If you use a scoring matrix that you created
or was created by one of the above functions, the
matrix does not include a scale factor. The output
score will be returned in the same units as the
scoring matrix. When passing your own series of
scoring matrices, ensure they share the same scale.

 multialign

1-1259

Note: If you need to compile multialign into a
stand-alone application or software component using
MATLAB Compiler, use a matrix instead of a string
for ScoringMatrixValue.

SMInterpValue Property to specify whether linear interpolation of the
scoring matrices is on or off. When false, the scoring
matrix is assigned to a fixed range depending on the
distances between the two profiles (or sequences)
being aligned. Default is true.

GapOpenValue Scalar or a function specified using @. If you enter
a function, multialign passes four values to the
function: the average score for two matched residues
(sm), the average score for two mismatched residues
(sx), and, the length of both profiles or sequences
(len1, len2). Default is @(sm,sx,len1,len2)
5*sm.

ExtendGapValue Scalar or a function specified using @. If you enter
a function, multiialign passes four values to the
function: the average score for two matched residues
(sm), the average score for two mismatched residues
(sx), and the length of both profiles or sequences
(len1, len2). Default is @(sm,sx,len1,len2)
sm/4.

DelayCutoffValue Property to specify the threshold delay of divergent
sequences. Default is unity where sequences with the
closest sequence farther than the median distance are
delayed.

1 Alphabetical List

1-1260

UseParallelValue Controls the computation of the pairwise alignments
using parfor-loops. When true, and Parallel
Computing Toolbox is installed and a parpool is
open, computation occurs in parallel. If there are no
open parpool, but automatic creation is enabled
in the Parallel Preferences, the default pool will
be automatically open and computation occurs in
parallel. If Parallel Computing Toolbox is installed,
but there are no open parpool and automatic
creation is disabled, then computation uses parfor-
loops in serial mode. If Parallel Computing Toolbox is
not installed, then computation uses parfor-loops in
serial mode. Default is false, which uses for-loops in
serial mode.

VerboseValue Property to control displaying the sequences with
sequence information. Default is false.

ExistingGapAdjustValue Property to control automatic adjustment based on
existing gaps. Default is true.

TerminalGapAdjustValue Property to adjust the penalty for opening a gap at the
ends of the sequence. Default is false.

Output Arguments

SeqsMultiAligned Vector of structures (same as Seqs) but with the field
'Sequence' updated with the alignment.

When Seqs is a cell or char array,
SeqsMultiAligned is a char array with the output
alignment following the same order as the input.

Description

SeqsMultiAligned = multialign(Seqs) performs a progressive multiple alignment
for a set of sequences (Seqs). Pairwise distances between sequences are computed after
pairwise alignment with the Gonnet scoring matrix and then by counting the proportion

 multialign

1-1261

of sites at which each pair of sequences are different (ignoring gaps). The guide tree is
calculated by the neighbor-joining method assuming equal variance and independence of
evolutionary distance estimates.

SeqsMultiAligned = multialign(Seqs, Tree) uses a tree (Tree) as a guide for
the progressive alignment. The sequences (Seqs) should have the same order as the
leaves in the tree (Tree) or use a field ('Header' or 'Name') to identify the sequences.

multialign(..., 'PropertyName', PropertyValue,...) enters optional
arguments as property name/property value pairs. Specify one or more properties in any
order. Enclose each PropertyName in single quotation marks. Each PropertyName is
case insensitive. These property name/property value pairs are as follows:

multialign(..., 'Weights', WeightsValue) selects the sequence weighting
method. Weights emphasize highly divergent sequences by scaling the scoring matrix
and gap penalties. Closer sequences receive smaller weights.

Values of the property Weights are:

• 'THG' (default) — Thompson-Higgins-Gibson method using the phylogenetic tree
branch distances weighted by their thickness.

• 'equal' — Assigns the same weight to every sequence.

multialign(..., 'ScoringMatrix', ScoringMatrixValue) selects the scoring
matrix (ScoringMatrixValue) for the progressive alignment. Match and mismatch
scores are interpolated from the series of scoring matrices by considering the distances
between the two profiles or sequences being aligned. The first matrix corresponds to the
smallest distance, and the last matrix to the largest distance. Intermediate distances are
calculated using linear interpolation.

multialign(..., 'SMInterp', SMInterpValue), when SMInterpValue is false,
turns off the linear interpolation of the scoring matrices. Instead, each supplied scoring
matrix is assigned to a fixed range depending on the distances between the two profiles
or sequences being aligned.

multialign(..., 'GapOpen', GapOpenValue) specifies the initial penalty for
opening a gap.

multialign(..., 'ExtendGap', ExtendGapValue) specifies the initial penalty for
extending a gap.

1 Alphabetical List

1-1262

multialign(..., 'DelayCutoff', DelayCutoffValue) specifies a threshold to
delay the alignment of divergent sequences whose closest neighbor is farther than

(DelayCutoffValue) * (median patristic distance between sequences)

multialign(..., 'UseParallel', UseParallelValue) specifies whether
to use parfor-loops when computing the pairwise alignments. When true, and
Parallel Computing Toolbox is installed and a parpool is open, computation occurs in
parallel. If there are no open parpool, but automatic creation is enabled in the Parallel
Preferences, the default pool will be automatically open and computation occurs in
parallel. If Parallel Computing Toolbox is installed, but there are no open parpool and
automatic creation is disabled, then computation uses parfor-loops in serial mode. If
Parallel Computing Toolbox is not installed, then computation uses parfor-loops in
serial mode. Default is false, which uses for-loops in serial mode.

multialign(..., 'Verbose', VerboseValue), when VerboseValue is true,
turns on verbosity.

The remaining input optional arguments are analogous to the function profalign and
are used through every step of the progressive alignment of profiles.

multialign(..., 'ExistingGapAdjust', ExistingGapAdjustValue), when
ExistingGapAdjustValue is false, turns off the automatic adjustment based on
existing gaps of the position-specific penalties for opening a gap.

When ExistingGapAdjustValue is true, for every profile position, profalign
proportionally lowers the penalty for opening a gap toward the penalty of extending a
gap based on the proportion of gaps found in the contiguous symbols and on the weight of
the input profile.

multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue), when
TerminalGapAdjustValue is true, adjusts the penalty for opening a gap at the ends of
the sequence to be equal to the penalty for extending a gap.

Examples

Align multiple sequences

This example shows how to align multiple protein sequences.

 multialign

1-1263

Use the fastaread function to read p53samples.txt, a FASTA-formatted file included
with Bioinformatics Toolbox™, which contains p53 protein sequences of seven species.

p53 = fastaread('p53samples.txt')

p53 =

7x1 struct array with fields:

 Header

 Sequence

Compute the pairwise distances between each pair of sequences using the 'GONNET'
scoring matrix.

dist = seqpdist(p53,'ScoringMatrix','GONNET');

Build a phylogenetic tree using an unweighted average distance (UPGMA) method. This
tree will be used as a guiding tree in the next step of progressive alignment.

tree = seqlinkage(dist,'average',p53)

 Phylogenetic tree object with 7 leaves (6 branches)

Perform progressive alignment using the PAM family scoring matrices.

ma = multialign(p53,tree,'ScoringMatrix',...

 {'pam150','pam200','pam250'})

showalignment(ma)

ma =

7x1 struct array with fields:

 Header

 Sequence

1 Alphabetical List

1-1264

Align Nucleotide Sequences

1 Enter an array of sequences.

seqs = {'CACGTAACATCTC','ACGACGTAACATCTTCT','AAACGTAACATCTCGC'};

2 Promote terminations with gaps in the alignment.

multialign(seqs,'terminalGapAdjust',true)

 multialign

1-1265

ans =

--CACGTAACATCTC--

ACGACGTAACATCTTCT

-AAACGTAACATCTCGC

3 Compare the alignment without termination gap adjustment.

multialign(seqs)

ans =

CA--CGTAACATCT--C

ACGACGTAACATCTTCT

AA-ACGTAACATCTCGC

See Also
align2cigar | hmmprofalign | multialignread | multialignwrite | nwalign |
profalign | seqprofile | seqconsensus | seqneighjoin | showalignment

1 Alphabetical List

1-1266

multialignread
Read multiple sequence alignment file

Syntax

S = multialignread(File)

[Headers, Sequences] = multialignread(File)

... = multialignread(File, 'IgnoreGaps', IgnoreGapsValue)

Input Arguments

File Multiple sequence alignment file specified by one of the
following:

• File name or path and file name
• URL pointing to a file
• MATLAB character array that contains the text of a

multiple sequence alignment file

You can read common multiple sequence alignment file types,
such as ClustalW (.aln), GCG (.msf), and PHYLIP.

IgnoreGapsValue Controls removing gap symbols, such as '-' or '.', from the
sequences. Choices are true or false (default).

Output Arguments

S MATLAB structure array containing the following fields:

• Header — Header information from the file.
• Sequence — Amino acid or nucleotide sequences.

Headers Cell array containing the header information from the file.
Sequences Cell array containing the amino acid or nucleotide sequences.

 multialignread

1-1267

Description

S = multialignread(File) reads a multiple sequence alignment file. The file
contains multiple sequence lines that start with a sequence header followed by an
optional number (not used by multialignread) and a section of the sequence. The
multiple sequences are broken into blocks with the same number of blocks for every
sequence. To view an example multiple sequence alignment file, type open aagag.aln
at the MATLAB command line.

The output, S, is a structure array where S.Header contains the header information and
S.Sequence contains the amino acid or nucleotide sequences.

[Headers, Sequences] = multialignread(File) reads the file into separate
variables, Headers and Sequences, which are cell arrays containing header information
and amino acid or nucleotide sequences, respectively.

... = multialignread(File, 'IgnoreGaps', IgnoreGapsValue) controls the
removal of any gap symbol, such as '-' or '.', from the sequences. Choices are true or
false (default).

Examples

Read a multiple sequence alignment of the gag polyprotein for several HIV strains.

gagaa = multialignread('aagag.aln')

gagaa =

1x16 struct array with fields:

 Header

 Sequence

See Also
fastaread | gethmmalignment | multialign | seqalignviewer |
multialignwrite | seqconsensus | seqdisp | seqprofile

1 Alphabetical List

1-1268

multialignwrite
Write multiple alignment to file

Syntax

multialignwrite(File, Alignment)

multialignwrite(..., 'Format', FormatValue, ...)

multialignwrite(..., 'Header', HeaderValue, ...)

multialignwrite(..., 'WriteCount', WriteCountValue, ...)

Description

multialignwrite(File, Alignment) writes the contents of an alignment to a
ClustalW ALN-formatted (default) or MSF-formatted file.

multialignwrite(..., 'PropertyName', PropertyValue, ...) calls
multialignwrite with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Enclose each PropertyName
in single quotation marks. Each PropertyName is case insensitive. These property
name/property value pairs are as follows:

multialignwrite(..., 'Format', FormatValue, ...) specifies the format of the
file. FormatValue can be 'ALN' (default) or 'MSF'.

multialignwrite(..., 'Header', HeaderValue, ...) specifies the first line of
the file. The default for HeaderValue is 'MATLAB multiple sequence alignment'.

multialignwrite(..., 'WriteCount', WriteCountValue, ...) specifies
whether to add the residue counts to the end of each line. WriteCountValue can be
true (default) or false.

Input Arguments

Alignment

An alignment, such as returned by the multialign function, represented by either a:

 multialignwrite

1-1269

• Vector of structures, each containing the fields Header and Sequence
• Character array

Default:

File

String specifying either a file name or a path and file name for saving the data. If you
specify only a file name, the file is saved to the MATLAB Current Folder browser.

Tip If you use an .msf extension when supplying a file name for File, the data is
written to an MSF-formatted file. Otherwise, the data is written to a ClustalW ALN-
formatted file.

Below the columns of the ClustalW ALN-formatted file, symbols can appear that denote:

• * — Residues or nucleotides in the column are identical in all sequences in the
alignment.

• : — Conserved substitutions exist in the column for all sequences in the alignment.
• . — Semiconserved substitutions exist in the column for all sequences in the

alignment.

For more information on these symbols and the groups of residues considered conserved
and semiconserved, see section 12 in “Changes since version 1.6” at http://web.mit.edu/
seven/src/clustalw-1.82/README.

Default:

FormatValue

String that specifies the format of File. Choices are 'ALN' (default) or 'MSF'.

Tip You can also write to an MSF-formatted file by using an .msf extension when
supplying a file name for File.

Default:

http://web.mit.edu/seven/src/clustalw-1.82/README
http://web.mit.edu/seven/src/clustalw-1.82/README

1 Alphabetical List

1-1270

HeaderValue

String that specifies the first line of the file.

Tip Use the 'Header' property if your file header must be a specific format for a third-
party software application.

Default: 'MATLAB multiple sequence alignment'

WriteCountValue

Specifies whether to add the residue counts to the end of each line. Choices are true
(default) or false.

Default:

Examples
1 Use the fastaread function to read p53samples.txt, a FASTA-formatted file

included with the Bioinformatics Toolbox software, which contains seven cellular
tumor antigen p53 sequences.

p53 = fastaread('p53samples.txt')

p53 =

7x1 struct array with fields:

 Header

 Sequence

2 Use the multialign function to align the seven cellular tumor antigen p53
sequences.

ma = multialign(p53,'verbose',true);

3 Write the alignment to a file named p53.aln.

multialignwrite('p53.aln',ma)

See Also
fastaread | fastawrite | gethmmalignment | multialign | multialignread |
seqalignviewer | phytreewrite | seqconsensus | seqdisp | seqprofile

 mzcdf2peaks

1-1271

mzcdf2peaks

Convert mzCDF structure to peak list

Syntax

[Peaklist, Times] = mzcdf2peaks(mzCDFStruct)

Input Arguments

mzCDFStruct MATLAB structure containing information from a netCDF file, such
as one created by the mzcdfread function. Its fields correspond to
the variables and global attributes in a netCDF file. If a netCDF
variable contains local attributes, an additional field is created, with
the name of the field being the variable name appended with the
_attributes string. The number and names of the fields will vary,
depending on the mass spectrometer software, but typically there are
mass_values and intensity_values fields.

Output Arguments

Peaklist Either of the following:

• Two-column matrix, where the first column contains mass/charge
(m/z) values and the second column contains ion intensity values.

• Cell array of peak lists, where each element is a two-column
matrix of m/z values and ion intensity values, and each element
corresponds to a spectrum or retention time.

Times Scalar of vector of retention times associated with a liquid
chromatography/mass spectrometry (LC/MS) or gas chromatography/
mass spectrometry (GC/MS) data set. If Times is a vector, the
number of elements equals the number of peak lists contained in
Peaklist.

1 Alphabetical List

1-1272

Description

[Peaklist, Times] = mzcdf2peaks(mzCDFStruct) extracts peak information from
mzCDFStruct, a MATLAB structure containing information from a netCDF file, such
as one created by the mzcdfread function, and creates Peaklist, a single matrix or a
cell array of matrices containing mass/charge (m/z) values and ion intensity values, and
Times, a scalar or vector of retention times associated with a liquid chromatography/
mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set.

mzCDFStruct contains fields that correspond to the variables and global attributes in a
netCDF file. If a netCDF variable contains local attributes, an additional field is created,
with the name of the field being the variable name appended with the _attributes
string. The number and names of the fields will vary, depending on the mass
spectrometer software, but typically there are mass_values and intensity_values
fields.

Examples

In the following example, the file results.cdf is not provided.

1 Use the mzcdfread function to read a netCDF file into the MATLAB software as a
structure. Then extract the peak information from the structure.

mzcdf_struct = mzcdfread('results.cdf');

[peaks,time] = mzcdf2peaks(mzcdf_struct)

peaks =

 [7008x2 single]

 [7008x2 single]

 [7008x2 single]

 [7008x2 single]

time =

 8.3430

 12.6130

 16.8830

 21.1530

2 Create a color map containing a color for each peak list (retention time).

 mzcdf2peaks

1-1273

colors = hsv(numel(peaks));

3 Create a 3-D figure of the peaks and add labels to it.

figure

hold on

for i = 1:numel(peaks)

 t = repmat(time(i),size(peaks{i},1),1);

 plot3(t,peaks{i}(:,1),peaks{i}(:,2),'color',colors(i,:))

end

view(70,60)

xlabel('Time')

ylabel(mzcdf_struct.mass_axis_label)

zlabel(mzcdf_struct.intensity_axis_label)

1 Alphabetical List

1-1274

See Also
msdotplot | mspalign | msppresample | mzcdfread

 mzcdfinfo

1-1275

mzcdfinfo
Return information about netCDF file containing mass spectrometry data

Syntax

InfoStruct = mzcdfinfo(File)

Input Arguments

File String containing a file name, or a path and file name, of
a netCDF file that contains mass spectrometry data and
conforms to the ANDI/MS or the ASTM E2077-00 (2005)
standard specification or earlier specifications.

If you specify only a file name, that file must be on the
MATLAB search path or in the current folder.

Output Arguments

InfoStruct MATLAB structure containing information from a netCDF
file. It includes the fields in the following table.

Description

InfoStruct = mzcdfinfo(File) returns a MATLAB structure, InfoStruct,
containing summary information about a netCDF file, File.

File is a string containing a file name, or a path and file name, of a netCDF file that
contains mass spectrometry data. The file must conform to the ANDI/MS or the ASTM
E2077-00 (2005) standard specification or earlier specifications.

InfoStruct includes the following fields.

1 Alphabetical List

1-1276

Field Description

Filename Name of the netCDF file.
FileTimeStamp Date time stamp of the netCDF file.
FileSize Size of the file in bytes.
NumberOfScans Number of scans in the file.
StartTime Run start time.
EndTime Run end time.
TimeUnits Units for time.
GlobalMassMin Minimum m/z value in all scans.
GlobalMassMax Maximum m/z value in all scans.
GlobalIntensityMin Minimum intensity value in all scans.
GlobalIntensityMax Maximum intensity value in all scans.
ExperimentType Indicates if data is raw or centroided.

Note: If any of the associated attributes are not in the netCDF file (because they are
optional in the specifications), the value for that field will be set to N/A or NaN.

Examples

In the following example, the file results.cdf is not provided.

Return a MATLAB structure containing summary information about a netCDF file.

info = mzcdfinfo('results.cdf')

info =

 Filename: 'results.cdf'

 FileTimeStamp: '19930703134354-700'

 FileSize: 339892

 NumberOfScans: 4

 StartTime: 8.3430

 EndTime: 21.1530

 TimeUnits: 'N/A'

 GlobalMassMin: 399.9990

 mzcdfinfo

1-1277

 GlobalMassMax: 1.8000e+003

 GlobalIntensityMin: NaN

 GlobalIntensityMax: NaN

 ExperimentType: 'Continuum Mass Spectrum'

See Also
mzcdfread

1 Alphabetical List

1-1278

mzcdfread
Read mass spectrometry data from netCDF file

Syntax

mzCDFStruct = mzcdfread(File)

mzCDFStruct = mzcdfread(File, ...'TimeRange', TimeRangeValue, ...)

mzCDFStruct = mzcdfread(File, ...'ScanIndices',

ScanIndicesValue, ...)

mzCDFStruct = mzcdfread(File, ...'Verbose', VerboseValue, ...)

Input Arguments

File String containing a file name, or a path and file name, of
a netCDF file that contains mass spectrometry data and
conforms to the ANDI/MS or the ASTM E2077-00 (2005)
standard specification or earlier specifications.

If you specify only a file name, that file must be on the
MATLAB search path or in the current folder.

TimeRangeValue Two-element numeric array [Start End] that specifies the
time range in File for which to read spectra. Default is to read
spectra from all times [0 Inf].

Tip Time units are indicated in the netCDF global attributes.
For summary information about the time ranges in a netCDF
file, use the mzcdfinfo function.

Note: If you specify a TimeRangeValue, you cannot specify a
ScanIndicesValue.

ScanIndicesValue Positive integer, vector of integers, or a two-element numeric
array [Start_Ind End_Ind] that specifies a scan, multiple
scans, or a range of scans in File to read. Start_Ind and

 mzcdfread

1-1279

End_Ind are each positive integers indicating a scan index
number. Start_Ind must be less than End_Ind. Default is to
read all scans.

Tip For information about the scan indices in a netCDF file,
check the NumberOfScans field in the structure returned by
the mzcdfinfo function.

Note: If you specify a ScanIndicesValue, you cannot specify
TimeRangeValue.

VerboseValue Controls the display of the progress of the reading of File.
Choices are true (default) or false.

Output Arguments

mzCDFStruct MATLAB structure containing mass spectrometry information
from a netCDF file. Its fields correspond to the variables and global
attributes in a netCDF file. If a netCDF variable contains local
attributes, an additional field is created, with the name of the field
being the variable name appended with the _attributes string.
The number and names of the fields will vary, depending on the mass
spectrometer software, but typically there are mass_values and
intensity_values fields.

Description
mzCDFStruct = mzcdfread(File) reads a netCDF file, File, and then creates a
MATLAB structure, mzCDFStruct.

File is a string containing a file name, or a path and file name, of a netCDF file that
contains mass spectrometry data. The file must conform to the ANDI/MS or the ASTM
E2077-00 (2005) standard specification or earlier specifications.

mzCDFStruct contains fields that correspond to the variables and global attributes in a
netCDF file. If a netCDF variable contains local attributes, an additional field is created,
with the name of the field being the variable name appended with the _attributes

1 Alphabetical List

1-1280

string. The number and names of the fields will vary, depending on the mass
spectrometer software, but typically there are mass_values and intensity_values
fields.

Tip LC/MS data analysis requires extended amounts of memory from the operating
system.

• If you receive errors related to memory, try the following:

• Increase the virtual memory (swap space) for your operating system (with a
recommended initial size of 3,069 and a maximum size of 16,368) as described in
“Memory Usage”.

• Set the 3 GB switch (32-bit Windows XP only) as described in “Memory Usage”.
• If you receive errors related to Java heap space, increase your Java heap space:

• If you have MATLAB version 7.10 (R2010a) or later, see
“Java Heap Memory Preferences”

• If you have MATLAB version 7.9 (R2009b) or earlier, see
http://www.mathworks.com/support/solutions/data/1-18I2C.html

mzCDFStruct = mzcdfread(File, ...'PropertyName', PropertyValue, ...)

calls mzcdfread with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

mzCDFStruct = mzcdfread(File, ...'TimeRange', TimeRangeValue, ...)

specifies the range of time in File to read. TimeRangeValue is a two-element numeric
array [Start End]. Default is to read spectra from all times [0 Inf].

Tip Time units are indicated in the netCDF global attributes. For summary information
about the time ranges in a netCDF file, use the mzcdfinfo function.

Note: If you specify a TimeRangeValue, you cannot specify ScanIndicesValue.

http://www.mathworks.com/support/solutions/data/1-18I2C.html

 mzcdfread

1-1281

mzCDFStruct = mzcdfread(File, ...'ScanIndices',

ScanIndicesValue, ...) specifies a scan, multiple scans, or range of scans in File
to read. ScanIndicesValue is a positive integer, vector of integers, or a two-element
numeric array [Start_Ind End_Ind]. Start_Ind and End_Ind are each positive
integers indicating a scan index number. Start_Ind must be less than End_Ind.
Default is to read all scans.

Tip For information about the scan indices in a netCDF file, check the NumberOfScans
field in the structure returned by the mzcdfinfo function.

Note: If you specify a ScanIndicesValue, you cannot specify a TimeRangeValue.

mzCDFStruct = mzcdfread(File, ...'Verbose', VerboseValue, ...) controls
the progress display when reading File. Choices are true (default) or false.

Examples

In the following example, the file results.cdf is not provided.

1 Read a netCDF file into the MATLAB software as a structure.

out = mzcdfread('results.cdf');

2 View the second scan in the netCDF file by creating separate variables containing
the intensity and m/z values, and then plotting these values. Add a title and x- and y-
axis labels using fields in the output structure.

idx1 = out.scan_index(2)+1;

idx2 = out.scan_index(3);

y = out.intensity_values(idx1:idx2);

z = out.mass_values(idx1:idx2);

stem(z,y,'marker','none')

title(sprintf('Time: %f',out.scan_acquisition_time(2)))

xlabel(out.mass_axis_units)

ylabel(out.intensity_axis_units)

1 Alphabetical List

1-1282

See Also
jcampread | mzcdf2peaks | mzcdfinfo | mzxmlread | tgspcread

 mzxml2peaks

1-1283

mzxml2peaks
Convert mzXML structure to peak list

Syntax

[Peaklist, Times] = mzxml2peaks(mzXMLStruct)

[Peaklist, Times] = mzxml2peaks(mzXMLStruct, 'Levels', LevelsValue)

Input Arguments

mzXMLStruct MATLAB structure containing information from an mzXML file,
such as one created by the mzxmlread function. It includes the fields
shown in the table below.

LevelsValue Positive integer or vector of integers that specifies the level(s) of
spectra in mzXMLStruct to convert, assuming the spectra are from
tandem MS data sets. Default is 1, which converts only the first-
level spectra, that is, spectra containing precursor ions. Setting
LevelsValue to 2 converts only the second-level spectra, which are
the fragment spectra (created from a precursor ion).

Output Arguments

Peaklist Either of the following:

• Two-column matrix, where the first column contains mass/charge
(m/z) values and the second column contains ion intensity values.

• Cell array of peak lists, where each element is a two-column
matrix of m/z values and ion intensity values, and each element
corresponds to a spectrum or retention time.

Times Vector of retention times associated with a liquid chromatography/
mass spectrometry (LC/MS) or gas chromatography/mass
spectrometry (GC/MS) data set. The number of elements in Times
equals the number of elements in Peaklist.

1 Alphabetical List

1-1284

Description

[Peaklist, Times] = mzxml2peaks(mzXMLStruct) extracts peak information
from mzXMLStruct, a MATLAB structure containing information from an mzXML file,
such as one created by the mzxmlread function, and creates Peaklist, a cell array of
matrices containing mass/charge (m/z) values and ion intensity values, and Times, a
vector of retention times associated with a liquid chromatography/mass spectrometry
(LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. mzXMLStruct
includes the following fields:

Field Description

scan Structure array containing the data pertaining to each individual scan,
such as mass spectrometry level, total ion current, polarity, precursor mass
(when it applies), and the spectrum data.

index Structure containing indices to the positions of scan elements in the XML
document.

mzXML Structure containing:

• Information in the root element of the mzXML schema, such as
instrument details, experiment details, and preprocessing method

• URLs pointing to schemas for the individual scans
• Indexing approach
• Digital signature calculated for the current instance of the document

[Peaklist, Times] = mzxml2peaks(mzXMLStruct, 'Levels', LevelsValue)

specifies the level(s) of the spectra in mzXMLStruct to convert, assuming the spectra
are from tandem MS data sets. Default is 1, which converts only the first-level spectra,
that is, spectra containing precursor ions. Setting LevelsValue to 2 converts only the
second-level spectra, which are the fragment spectra (created from a precursor ion).

Examples

Note: In the following example, the file results.mzxml is not provided. Sample mzXML
files can be found at:

• Peptide Atlas Repository at the Institute for Systems Biology (ISB)

http://www.peptideatlas.org/repository/

 mzxml2peaks

1-1285

• The Sashimi Project

1 Use the mzxmlread function to read an mzXML file into the MATLAB software as
structure. Then extract the peak information of only the first-level ions from the
structure.

mzxml_struct = mzxmlread('results.mzxml');

[peaks,time] = mzxml2peaks(mzxml_struct);

2 Create a dot plot of the LC/MS data.

msdotplot(peaks,time)

See Also
msdotplot | mspalign | msppresample | mzxmlread

http://sashimi.sourceforge.net/repository.html

1 Alphabetical List

1-1286

mzxmlinfo
Return information about mzXML file

Syntax

InfoStruct = mzxmlinfo(File)

InfoStruct = mzxmlinfo(File, 'NumOfLevels', NumOfLevelsValue)

Input Arguments

File String containing a file name, or a path and file name, of an
mzXML file that conforms to the mzXML 2.1 specification or
earlier specifications.

If you specify only a file name, that file must be on the
MATLAB search path or in the current folder.

NumOfLevelsValue Controls the return of NumOfLevels, an additional field in
InfoStruct, that contains the number of mass spectrometry
(MS) levels of spectra in File. Choices are true or false
(default).

Output Arguments

InfoStruct MATLAB structure containing information from an mzXML
file. It includes the fields shown in the table below.

Description

InfoStruct = mzxmlinfo(File) returns a MATLAB structure, InfoStruct,
containing summary information about an mzXML file, File.

File is a string containing a file name, or a path and file name, of an mzXML file. The
file must conform to the mzXML 2.1 specification or earlier specifications. You can view
the mzXML 2.1 specification at:

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

 mzxmlinfo

1-1287

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

InfoStruct includes the following fields.

Field Description

Filename Name of the mzXML file.
FileModDate Modification date of the file.
FileSize Size of the file in bytes.
NumberOfScans Number of scans in the file.*
StartTime Run start time.*
EndTime Run end time.*
DataProcessingIntensityCutoff Minimum mass/charge (m/z) intensity

value.*
DataProcessingCentroided Indicates if data is centroided.*
DataProcessingDeisotoped Indicates if data is deisotoped.*
DataProcessing ChargeDeconvoluted Indicates if data is deconvoluted.*
DataProcessingSpotIntegration For LC/MALDI experiments, indicates if

peaks eluting over multiple spots have
been integrated into a single spot.*

* — These fields contain N/A if the mzXML file does not include the associated
attributes. The associated attributes are optional in the mzXML file, per the mzXML 2.1
specification.

InfoStruct = mzxmlinfo(File, 'NumOfLevels', NumOfLevelsValue) controls
the return of NumOfLevels, an additional field in mzXMLInfo, that contains the number
of mass spectrometry levels of spectra in File. Choices are true or false (default).

Examples

Note: In the following example, the file results.mzxml is not provided. Sample mzXML
files can be found at:

• Peptide Atlas Repository at the Institute for Systems Biology (ISB)

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf
http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf
http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf
http://www.peptideatlas.org/repository/

1 Alphabetical List

1-1288

• The Sashimi Project

Return a MATLAB structure containing summary information about an mzXML file.

info = mzxmlinfo('results.mzxml');

info =

 Filename: 'results.mzxml'

 FileModDate: '07-May-2008 13:39:12'

 FileSize: 10607

 NumberOfScans: 2

 StartTime: 'PT0.00683333S'

 EndTime: 'PT200.036S'

 DataProcessingIntensityCutoff: 'N/A'

 DataProcessingCentroided: 'false'

 DataProcessingDeisotoped: 'N/A'

 DataProcessingChargeDeconvoluted: 'N/A'

 DataProcessingSpotIntegration: 'N/A'

Return a MATLAB structure containing summary information, including the number of
mass spectrometry levels, about an mzXML file.

info = mzxmlinfo('results.mzxml','numoflevels',true);

info =

 Filename: 'results.mzxml'

 FileModDate: '07-May-2008 13:39:12'

 FileSize: 10607

 NumberOfScans: 2

 StartTime: 'PT0.00683333S'

 EndTime: 'PT200.036S'

 DataProcessingIntensityCutoff: 'N/A'

 DataProcessingCentroided: 'false'

 DataProcessingDeisotoped: 'N/A'

 DataProcessingChargeDeconvoluted: 'N/A'

 DataProcessingSpotIntegration: 'N/A'

 NumberOfMSLevels: 2

See Also
mzxmlread

http://sashimi.sourceforge.net/repository.html

 mzxmlread

1-1289

mzxmlread
Read data from mzXML file

Syntax

mzXMLStruct = mzxmlread(myFile)

mzXMLStruct = mzxmlread(myFile,Name,Value)

Description

mzXMLStruct = mzxmlread(myFile) returns a MATLAB structure, mzXMLStruct,
from an mzXML file, myFile.

mzXMLStruct = mzxmlread(myFile,Name,Value) reads an mzXML file, myFile, and
then returns a MATLAB structure, mzXMLStruct, using additional options specified by
one or more Name,Value pair arguments.

Examples

Create a MATLAB Structure from an mzXML File

In this example, the file results_1.mzxml is not provided. You can find sample mzXML
files at:

• The Sashimi Project
• Peptide Atlas Repository at the Institute for Systems Biology (ISB)

Read an mzXML file into a MATLAB structure.

out = mzxmlread('results_1.mzxml')

out =

 scan: [2000x1 struct]

 mzXML: [1x1 struct]

 index: [1x1 struct]

http://sashimi.sourceforge.net/repository.html
http://www.peptideatlas.org/repository/

1 Alphabetical List

1-1290

View the first scan in the mzXML file by creating separate variables containing the
mass-to-charge ratio (mz_ratio) and intensity (Y) values respectively. Then plot these
values.

mz_ratio = out.scan(1).peaks.mz(1:2:end);

Y = out.scan(1).peaks.mz(2:2:end);

stem(mz_ratio,Y,'marker','none')

Extract One or Multiple Scans from an mzXML Structure

In this example, the file results_2.mzxml is not provided. You can find sample mzXML
files at:

• The Sashimi Project
• Peptide Atlas Repository at the Institute for Systems Biology (ISB)

Read an mzXML file into a MATLAB structure, extracting a scan at index 1000.

out1 = mzxmlread('results_2.mzxml','ScanIndices',1000)

http://sashimi.sourceforge.net/repository.html
http://www.peptideatlas.org/repository/

 mzxmlread

1-1291

out1 =

 scan: [1x1 struct]

 mzXML: [1x1 struct]

 index: [1x1 struct]

Read an mzXML file into a MATLAB structure, extracting multiple scans at indices
1000, 1500, and 2000.

out2 = mzxmlread('results_2.mzxml','ScanIndices',[1000 1500 2000])

out2 =

 scan: [3x1 struct]

 mzXML: [1x1 struct]

 index: [1x1 struct]

Read an mzXML file into a MATLAB structure, extracting a range of scans from indices
1000 to 2000.

out3 = mzxmlread('results_2.mzxml','ScanIndices',[1000:2000])

out3 =

 scan: [1001x1 struct]

 mzXML: [1x1 struct]

 index: [1x1 struct]

Input Arguments

myFile — Input file
string containing mzXML file name

Input file, specified as a string containing an mzXML file name. The file must conform to
the mzXML 2.1 or earlier specifications. You can read the mzXML 2.1 specification here:

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

1 Alphabetical List

1-1292

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Levels',3,'TimeRange',[5.0 10.0]

'Levels' — Spectra levels
positive integer | vector of integers

Spectra levels, specified as a positive integer or vector of integers indicating which scans
to extract scans from myFile. By default, mzxmlread reads all spectra levels.

For summary information about the levels of spectra in an mzXML file, use the
mzxmlinfo function.

If you are using the 'Levels' name-value pair argument, then you cannot use
'TimeRange' or 'ScanIndices'.

Example: 'Levels',5

'TimeRange' — Range of time
Two-element numeric array

Range of time, specified as a two-element numeric array, such as [Start End]
indicating which scans to extract from myFile. The Start and End scalar values must be
between the startTime and endTime attributes of the msRun element in myFile. The
Start scalar value must be less than End. By default, mzxmlread reads all scans.

For summary information about the time ranges in an mzXML file, use the mzxmlinfo
function.

If you are using 'TimeRange' name-value pair argument, then you cannot use
'Levels' or 'ScanIndices'.

Example: 'TimeRange',[5.1 10.2]

'ScanIndices' — Scan indices
positive integer | vector of positive integers

Scan indices, specified as a positive integer or vector of positive integers indicating
which scans to extract from myFile. Use an integer to specify a single scan, or a vector of
integers to specify multiple scans. By default, mzxmlread reads all scans.

For summary information about the time ranges in an mzXML file, use the mzxmlinfo
function.

 mzxmlread

1-1293

If you are using the 'ScanIndices' name-value pair argument, then you cannot use
'Levels' or 'TimeRange'.

Example: 'ScanIndices',7000

'Verbose' — Verbose mode
true (default) | 1 | false | 0

Verbose mode, specified as true (1), or false (0). When 'Verbose' is set to true,
mzxmlread displays the progress while reading myFile.

Example: 'Verbose',false

Output Arguments

mzXMLStruct — Structure from mzXML file
MATLAB structure

Structure from an mzXML file, returned as a MATLAB structure. mzXMLStruct has the
following fields:

Field Description

scan Structure array containing the data pertaining to each individual scan,
such as mass spectrometry level, total ion current, polarity, precursor mass
(when it applies), and the spectrum data.

index Structure containing indices to the positions of scan elements in the XML
document.

mzXML Structure containing all of the following:

• Information in the root element of the mzXML schema, such as
instrument details, experiment details, and preprocessing methods

• URLs pointing to schemas for each scan
• Indexing approach
• Digital signature calculated for the current instance of the document

1 Alphabetical List

1-1294

More About

Tips

LC/MS data analysis requires extended amounts of memory from the operating system.

• If you receive errors related to memory, try the following:

• Increase the virtual memory (swap space) for your operating system (using a
recommended initial size of 3,069 and a maximum size of 16,368) as described in
“Memory Usage”.

• Set the 3 GB switch (32-bit Windows XP only) as described in “Memory Usage”.
• If you receive errors related to Java heap space, increase your heap space:

• If you have MATLAB 7.10 (R2010a) or later, see the following:

“Java Heap Memory Preferences”
• If you have MATLAB 7.9 (R2009b) or earlier, see the following:

http://www.mathworks.com/support/solutions/data/1-18I2C.html

See Also
jcampread | mzxml2peaks | mzxmlinfo | tgspcread | xmlread

http://www.mathworks.com/support/solutions/data/1-18I2C.html

 nbintest

1-1295

nbintest

Unpaired hypothesis test for short-read count data with small sample sizes

Syntax

test = nbintest(X,Y)

test = nbintest(X,Y,Name,Value)

Description

test = nbintest(X,Y) performs a hypothesis test that two independent samples of
short-read count data, in each row of X and Y, come from distributions with equal means
under the assumptions that:

• Short-read counts are modeled using the negative binomial distribution.
• Variance and mean of data in each row are linked through a regression function along

all the rows.

X and Y must have the same number of rows and at least 2 columns, but not necessarily
the same number of columns. Rows of X and Y correspond to variables, features, or
genes, such as measurements of gene expression for different genes. Columns are usually
time points or patients.

test is a NegativeBinomialTest object with two-sided p-values stored in the pValue
property.

Use this function when you want to perform an unpaired hypothesis test for short-read
count data (from high-throughput assays such as RNA-Seq or ChIP-Seq) with small
sample sizes (in the order of tens at most). For instance, use this function to decide if
observed differences in read counts between two conditions are significant for given
genes.

test = nbintest(X,Y,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

1 Alphabetical List

1-1296

Note: It is recommended that you use the diagnostic plots of the
NegativeBinomialTest object returned by nbintest before interpreting the p-values.
These plots allow you to see if the model assumption is correct, and the variance link
used is appropriate for the data.

Examples

Perform unpaired hypothesis test for short-read count data

This example shows how to perform an unpaired hypothesis test for synthetic short-read
count data from two different biological conditions.

The synthetic data in this example contains gene count data for 5000 genes, measured
from two different biological conditions, such as diseased and normal cells. For each
condition, there are five samples. Only 10% of the genes (500 genes) are differentially
expressed. Specifically, half of them (250 genes) are exactly 3-fold overexpressed. The
other 250 genes are 3-fold underexpressed. The rest of the gene expression data is
generated from the same negative binomial distribution for both conditions. Each sample
also has a different size factor (that is, the coverage or sampling depth).

Load the data.

clear all

load(fullfile(matlabroot,'examples','bioinfo','nbintest_data.mat'))

The variable K contains gene count data. The rows represent genes, and the columns
represent samples. In this case, the first five columns represent samples from the first
condition. The other five columns represent samples from the second condition. Display
the first few rows of K.

K(1:5,:)

ans =

 Columns 1 through 6

 13683 14140 8281 14309 12208 8045

 16028 16805 9813 16486 14076 9901

 814 862 492 910 758 521

 nbintest

1-1297

 15870 16453 9857 16454 14267 9671

 9422 9393 5734 9598 8174 5381

 Columns 7 through 10

 9446 11317 14597 14592

 10927 13348 16999 17036

 573 753 870 936

 10997 13624 17151 17205

 6315 7752 9869 9795

In this example, the null hypothesis is true when the gene is not differentially expressed.
The variable H0 contains boolean indicators that indicate for which genes the null
hypothesis is true (marked as 1). In other words, H0 contains known labels that you will
use later to compare with predicted results.

sum(H0)

ans =

 4500

Out of 5000 genes, 4500 are not differentially expressed in this synthetic data.

Run an unpaired hypothesis test for samples from two conditions using nbintest.
The assumption is that the data came from a negative binomial distribution, where the
variance is linked to the mean via a locally-regressed smooth function of the mean as
described in [1] by setting 'VarianceLink' to 'LocalRegression'.

tLocal = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','LocalRegression');

Use plotVarianceLink to plot a scatter plot for each experimental condition (for X and
Y conditions), with the sample variance on the common scale versus the estimate of the
condition-dependent mean. Use a linear scale for both axes. Include curves for all other
linkage options by setting 'Compare' to true.

plotVarianceLink(tLocal,'Scale','linear','Compare',true)

1 Alphabetical List

1-1298

 nbintest

1-1299

The Identity line represents the Poisson model, where the variance is identical to
the mean as described in [3]. Observe that the data seems to be overdispersed (that is,
most points are above the Identity line). The Constant line represents the negative
binomial model, where the variance is the sum of the shot noise term (mean) and a
constant multiplied by the squared mean as described in [2]. The Local Regression
and Constant linkage options appear to fit better with the overdispersed data.

Use plotChiSquaredFit to assess the goodness-of-fit for variance regression. It plots
the empirical CDF (ecdf) of the chi-squared probabilities. The probabilities are the ratio
between the observed and the estimated variance stratified by short-read count levels
into five equal-sized bins.

plotChiSquaredFit(tLocal)

1 Alphabetical List

1-1300

 nbintest

1-1301

Each figure shows five ecdf curves. Each curve represents one of the five short-read count
levels. For instance, the blue line represents the ecdf curve for a low short-read counts
between 0 and 1264. The red line represents high counts (more than 11438).

One way to interpret the curves is to check if the ecdf curves are above the diagonal line.
If they are above the line, then the variance is overestimated. If they are below the line,
then the variance is underestimated. In both figures, the variance seems to be correctly
estimated for higher counts (that is, the red line follows the diagonal line), but slightly
overestimated for lower count levels.

To assess the performance of the hypothesis test, construct a confusion matrix using the
known labels and the predicted p-values.

confusionmat(H0,(tLocal.pValue > .001))

1 Alphabetical List

1-1302

ans =

 493 7

 5 4495

Out of 500 differentially expressed genes, 493 are correctly predicted (true positives) and
7 of them are incorrectly predicted as not-differentially expressed genes (false negatives).
Out of 4500 genes that are not differentially expressed, 4495 are correctly predicted (true
negatives) and 5 of them are incorrectly predicted as differentially expressed genes (false
positives).

For a comparison, run the hypothesis test again assuming that counts are modeled by the
Poisson distribution, where the variance is identical to the mean.

tPoisson = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','Identity');

Plot the ecdf curves. Observe that all the curves are below the diagonal line, implying
that the variance is underestimated. Therefore, the negative binomial model fits the data
better.

plotChiSquaredFit(tPoisson)

 nbintest

1-1303

1 Alphabetical List

1-1304

Input Arguments

X — Gene expression values from the first experimental condition
matrix | table

Gene expression values from the first experimental condition, specified as a matrix or
table. For instance, X can represent gene expression values from cancer cells.

Note: X and Y must have the same number of rows and at least 2 columns, but not
necessarily the same number of columns. Rows of X and Y correspond to genes (or

 nbintest

1-1305

features), such as measurements of gene expression for different genes. Columns are
usually time points or patients.

Y — Gene expression values from the second experimental condition
matrix | table

Gene expression values from the second experimental condition, specified as a matrix or
table. For instance, Y can represent gene expression values from normal cells.

Note: X and Y must have the same number of rows and at least 2 columns, but not
necessarily the same number of columns. Rows of X and Y correspond to genes (or
features), such as measurements of gene expression for different genes. Columns are
time points or patients.

Example:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'VarianceLink' — Linkage type between the variance and mean
'LocalRegression' (default) | 'Constant' | 'Identity'

Linkage type between the variance and mean, specified as a comma-separated pair
consisting of 'VarianceLink' and a string. This table summarizes the available linkage
options.

Linkage Option Description

'LocalRegression'The variance is the sum of the shot noise term (mean) and a locally
regressed nonparametric smooth function of the mean as described
in [1]. This option is the default. Use this option if your data is
overdispersed and has more than 1000 rows (genes).

1 Alphabetical List

1-1306

Linkage Option Description

'Constant' The variance is the sum of the shot noise term (mean) and a
constant multiplied by the squared mean as described in [2]. This
method uses all the rows in the data to estimate the constant. Use
this option if your data is overdispersed and has less than 1000
rows.

'Identity' The variance is equal to the mean as described in [3]. Counts are
therefore modeled by the Poisson distribution individually for each
row of X and Y. Use this option if your data has few genes and the
regression between the variance and mean is not possible because
of very small number of samples or replicates. This option is not
recommended for overdispersed data.

Example: 'VarianceLink','Constant'

'PooledVariance' — Logical flag to pool variance across both conditions
false (default) | true

Logical flag to pool variance across both conditions, specified as true or false. By
default, the variance is estimated separately for each condition.
Example: 'PooledVariance',true

'SizeFactor' — Size (scaling) factor of each column in X and Y
[] (default) | cell array of two vectors

Size (scaling) factor of each column in X and Y, specified as a cell array of two vectors
such as {SX,SY}. SX and SY are numeric vectors with sizes equal to size(X,2) and
size(Y,2). SX , SY, or both can be a scalar indicating that all columns share the same
size factor.

In a high-throughput sequencing library, the size factor is an estimation of the coverage
or the sampling depth. The default is an empty array [], meaning the size factor is
estimated as the median of the ratio of the sample’s counts to the geometric mean of each
row in X or Y. Rows with zero geometric mean are ignored.
Example: 'SizeFactor',{[1.2,0.5,0.8],[0.8,1.1,1.5]}

 nbintest

1-1307

Output Arguments

test — Hypothesis test results
NegativeBinomialTest object

Hypothesis test results, returned as a NegativeBinomialTest object. Use this object to
create diagnostic plots and access p-values.

More About
• “Negative Binomial Distribution”

References

[1] Anders, S., and Huber, W. (2010). Differential Expression Analysis for Sequence
Count Data. Genome Biology, 11(10):R106.

[2] Robinson, M.D., and Smyth, G.K. (2008). Small-sample Estimation of Negative
Binomial Dispersion, with Applications to SAGE data. Biostatistics, 9:321-332.

[3] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-
seq: an Assessment of Technical Reproducibility and Comparison with Gene
Expression Arrays. Genome Research, 16:1509-1517.

See Also
mattest | NegativeBinomialTest | plotChiSquaredFit | plotVarianceLink

1 Alphabetical List

1-1308

Using NegativeBinomialTest Objects
Unpaired hypothesis test result

A NegativeBinomialTest object, returned by the nbintest function, contains the
results of an unpaired hypothesis test for short-read count data with small sample sizes.
Use this object to access p-values of the test or to create diagnostic plots.

Examples

Perform unpaired hypothesis test for short-read count data

This example shows how to perform an unpaired hypothesis test for synthetic short-read
count data from two different biological conditions.

The synthetic data in this example contains gene count data for 5000 genes, measured
from two different biological conditions, such as diseased and normal cells. For each
condition, there are five samples. Only 10% of the genes (500 genes) are differentially
expressed. Specifically, half of them (250 genes) are exactly 3-fold overexpressed. The
other 250 genes are 3-fold underexpressed. The rest of the gene expression data is
generated from the same negative binomial distribution for both conditions. Each sample
also has a different size factor (that is, the coverage or sampling depth).

Load the data.

clear all

load(fullfile(matlabroot,'examples','bioinfo','nbintest_data.mat'))

The variable K contains gene count data. The rows represent genes, and the columns
represent samples. In this case, the first five columns represent samples from the first
condition. The other five columns represent samples from the second condition. Display
the first few rows of K.

K(1:5,:)

ans =

 Columns 1 through 6

 Using NegativeBinomialTest Objects

1-1309

 13683 14140 8281 14309 12208 8045

 16028 16805 9813 16486 14076 9901

 814 862 492 910 758 521

 15870 16453 9857 16454 14267 9671

 9422 9393 5734 9598 8174 5381

 Columns 7 through 10

 9446 11317 14597 14592

 10927 13348 16999 17036

 573 753 870 936

 10997 13624 17151 17205

 6315 7752 9869 9795

In this example, the null hypothesis is true when the gene is not differentially expressed.
The variable H0 contains boolean indicators that indicate for which genes the null
hypothesis is true (marked as 1). In other words, H0 contains known labels that you will
use later to compare with predicted results.

sum(H0)

ans =

 4500

Out of 5000 genes, 4500 are not differentially expressed in this synthetic data.

Run an unpaired hypothesis test for samples from two conditions using nbintest.
The assumption is that the data came from a negative binomial distribution, where the
variance is linked to the mean via a locally-regressed smooth function of the mean as
described in [1] by setting 'VarianceLink' to 'LocalRegression'.

tLocal = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','LocalRegression');

Use plotVarianceLink to plot a scatter plot for each experimental condition (for X and
Y conditions), with the sample variance on the common scale versus the estimate of the
condition-dependent mean. Use a linear scale for both axes. Include curves for all other
linkage options by setting 'Compare' to true.

plotVarianceLink(tLocal,'Scale','linear','Compare',true)

1 Alphabetical List

1-1310

 Using NegativeBinomialTest Objects

1-1311

The Identity line represents the Poisson model, where the variance is identical to
the mean as described in [3]. Observe that the data seems to be overdispersed (that is,
most points are above the Identity line). The Constant line represents the negative
binomial model, where the variance is the sum of the shot noise term (mean) and a
constant multiplied by the squared mean as described in [2]. The Local Regression
and Constant linkage options appear to fit better with the overdispersed data.

Use plotChiSquaredFit to assess the goodness-of-fit for variance regression. It plots
the empirical CDF (ecdf) of the chi-squared probabilities. The probabilities are the ratio
between the observed and the estimated variance stratified by short-read count levels
into five equal-sized bins.

plotChiSquaredFit(tLocal)

1 Alphabetical List

1-1312

 Using NegativeBinomialTest Objects

1-1313

Each figure shows five ecdf curves. Each curve represents one of the five short-read count
levels. For instance, the blue line represents the ecdf curve for a low short-read counts
between 0 and 1264. The red line represents high counts (more than 11438).

One way to interpret the curves is to check if the ecdf curves are above the diagonal line.
If they are above the line, then the variance is overestimated. If they are below the line,
then the variance is underestimated. In both figures, the variance seems to be correctly
estimated for higher counts (that is, the red line follows the diagonal line), but slightly
overestimated for lower count levels.

To assess the performance of the hypothesis test, construct a confusion matrix using the
known labels and the predicted p-values.

confusionmat(H0,(tLocal.pValue > .001))

1 Alphabetical List

1-1314

ans =

 493 7

 5 4495

Out of 500 differentially expressed genes, 493 are correctly predicted (true positives) and
7 of them are incorrectly predicted as not-differentially expressed genes (false negatives).
Out of 4500 genes that are not differentially expressed, 4495 are correctly predicted (true
negatives) and 5 of them are incorrectly predicted as differentially expressed genes (false
positives).

For a comparison, run the hypothesis test again assuming that counts are modeled by the
Poisson distribution, where the variance is identical to the mean.

tPoisson = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','Identity');

Plot the ecdf curves. Observe that all the curves are below the diagonal line, implying
that the variance is underestimated. Therefore, the negative binomial model fits the data
better.

plotChiSquaredFit(tPoisson)

 Using NegativeBinomialTest Objects

1-1315

1 Alphabetical List

1-1316

Properties
pValue — Two-sided p-values
column vector

Two-sided p-values, specified as a column vector, for every row of the inputs to
nbintest.

VarianceLink — Linkage type between the variance and mean
'LocalRegression' (default) | 'Constant' | 'Identity'

Linkage type between the variance and mean, specified as a string. This table
summarizes the available linkage options.

 Using NegativeBinomialTest Objects

1-1317

Linkage Option Description

'LocalRegression'The variance is the sum of the shot noise term (mean) and a locally
regressed nonparametric smooth function of the mean as described
in [1]. This option is the default. Use this option if your data
contains several rows (genes), such as more than 1000 rows.

'Constant' The variance is the sum of the shot noise term (mean) and a
constant multiplied by the squared mean as described in [2]. This
method uses all the rows in the data to estimate the constant. Use
this option if your data has fewer rows, that is, less than 1000 rows,
and is overdispersed.

'Identity' The variance is equal to the mean as described in [3]. Counts are
therefore modeled by the Poisson distribution individually for each
row of X and Y. Use this option to compare the results of the other
two options.

PooledVariance — Logical flag to pool variance between both conditions
0 (default) | 1

Logical flag to pool variance between both conditions, specified as 1 (true) or 0 (false).
The default is 0, meaning the variance is estimated separately for each condition.

SizeFactors — Size (scaling) factor of each column in X and Y
cell array of two vectors

Size (scaling) factor of each column in X and Y, specified as a cell array of two vectors,
such as {SX,SY}. SX and SY are numeric vectors with sizes equal to size(X,2) and
size(Y,2).

Note: These properties are read-only. Run nbintest to change them.

Object Functions
plotVarianceLink plotChiSquaredFit

Create Object
A NegativeBinomialTest object is returned by the nbintest function, and you cannot
construct this object directly.

1 Alphabetical List

1-1318

References

[1] Anders, S., and Huber, W. (2010). Differential Expression Analysis for Sequence
Count Data. Genome Biology, 11(10):R106.

[2] Robinson, M.D., and Smyth, G.K. (2008). Small-sample Estimation of Negative
Binomial Dispersion, with Applications to SAGE data. Biostatistics, 9:321-332.

[3] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-
seq: an Assessment of Technical Reproducibility and Comparison with Gene
Expression Arrays. Genome Research, 16:1509-1517.

See Also
mattest | nbintest

More About
• “Negative Binomial Distribution”

 ndims (DataMatrix)

1-1319

ndims (DataMatrix)
Return number of dimensions in DataMatrix object

Syntax

N = ndims(DMObj)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Output Arguments

N Positive integer representing the number of dimensions in
DMObj. The number of dimensions in a DataMatrix object is
always 2.

Description

N = ndims(DMObj) returns the number of dimensions in DMObj, a DataMatrix object.
The number of dimensions in a DataMatrix object is always 2.

More About
• “DataMatrix object”

See Also
DataMatrix

1 Alphabetical List

1-1320

ne (DataMatrix)
Test DataMatrix objects for inequality

Syntax

T = ne(DMObj1, DMObj2)

T = DMObj1 ~= DMObj2

T = ne(DMObj1, B)

T = DMObj1 ~= B

T = ne(B, DMObj1)

T = B ~= DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

T Logical matrix of the same size as DMObj1 and DMObj2 or
DMObj1 and B. It contains logical 1 (true) where elements in
the first input are not equal to the corresponding element in the
second input, and logical 0 (false) when they are equal.

Description

T = ne(DMObj1, DMObj2) or the equivalent T = DMObj1 ~= DMObj2 compares
each element in DataMatrix object DMObj1 to the corresponding element in DataMatrix
object DMObj2, and returns T, a logical matrix of the same size as DMObj1 and DMObj2,
containing logical 1 (true) where elements in DMObj1 are not equal to the corresponding
element in DMObj2, and logical 0 (false) when they are equal. DMObj1 and DMObj2

 ne (DataMatrix)

1-1321

must have the same size (number of rows and columns), unless one is a scalar (1-by-1
DataMatrix object). DMObj1 and DMObj2 can have different Name properties.

T = ne(DMObj1, B) or the equivalent T = DMObj1 ~= B compares each element in
DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array,
and returns T, a logical matrix of the same size as DMObj1 and B, containing logical 1
(true) where elements in DMObj1 are not equal to the corresponding element in B, and
logical 0 (false) when they are equal. DMObj1 and B must have the same size (number of
rows and columns), unless one is a scalar.

T = ne(B, DMObj1) or the equivalent T = B ~= DMObj1 compares each element in B,
a numeric or logical array, to the corresponding element in DataMatrix object DMObj1,
and returns T, a logical matrix of the same size as B and DMObj1, containing logical 1
(true) where elements in B are not equal to the corresponding element in DMObj1, and
logical 0 (false) when they are equal. B and DMObj1 must have the same size (number of
rows and columns), unless one is a scalar.

MATLAB calls T = ne(X, Y) for the syntax T = X ~= Y when X or Y is a DataMatrix
object.

More About
• “DataMatrix object”

See Also
DataMatrix | eq

1 Alphabetical List

1-1322

ngsbrowser

Open NGS Browser to visualize and explore short-read sequence alignments

Syntax

ngsbrowser

Description

ngsbrowser opens the NGS Browser app, from which you can import:

• A single reference sequence from a FASTA-formatted file
• Short-read sequence alignment data from SAM- or BAM-formatted files or BioMap

objects
• Annotation features from GFF- or GTF-formatted files

You can then visualize and explore the alignments and feature annotations.

Examples

Create a BioMap Object and Import it to the NGS Browser

This example shows how to create a BioMap object and display in the NGS Browser.

Create a BioMap object from a SAM-formatted file.

b = BioMap('ex1.sam');

Display the object in the NGS Browser.

ngsbrowser(b)

• Identifying Differentially Expressed Genes from RNA-Seq Data
• Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

 ngsbrowser

1-1323

More About

Tips

• Use the NGS Browser to compare the alignment of multiple data sets to a common
reference sequence.

• Use the NGS Browser to investigate regions of interest in the short-read alignment
determined by various analyses, such as RNA-Seq, ChIP-Seq, and genetic variation
analyses.

• “Visualize and Investigate Short-Read Alignments”
• Bowtie
• Burrows-Wheeler Aligner
• SAMtools
• NCBI Genome Database

See Also
BioMap | seqalignviewer | seqviewer

http://bowtie-bio.sourceforge.net/manual.shtml
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://www.ncbi.nlm.nih.gov/guide/genomes-maps/

1 Alphabetical List

1-1324

nmercount
Count n-mers in nucleotide or amino acid sequence

Syntax

Nmer = nmercount(Seq, Length)

Nmer = nmercount(Seq, Length, C)

Input Arguments

Seq One of the following:

• String of codes specifying a nucleotide sequence or amino
acid sequence. For valid letter codes, see the table Mapping
Nucleotide Letter Codes to Integers or the table Mapping Amino
Acid Letter Codes to Integers.

• MATLAB structure containing a Sequence field that contains
a nucleotide sequence or an amino acid sequence, such as
returned by fastaread, fastqread, emblread, getembl,
genbankread, getgenbank, getgenpept, genpeptread,
getpdb, or pdbread.

Length Integer specifying the length of n-mer to count.

Output Arguments

Nmer Cell array containing the n-mer counts in Seq.

Description

Nmer = nmercount(Seq, Length) counts the n-mers or patterns of a specific length
in Seq, a nucleotide sequence or amino acid sequence, and returns the n-mer counts in a
cell array.

 nmercount

1-1325

Nmer = nmercount(Seq, Length, C) returns only the n-mers with cardinality of at
least C.

Examples

1 Use the getgenpept function to retrieve the amino acid sequence for the human
insulin receptor.

S = getgenpept('AAA59174','SequenceOnly',true);

2 Count the number of four-mers in the amino acid sequence and display the first 20
rows in the cell array.

nmers = nmercount(S,4);

nmers(1:20,:)

ans =

 'APES' [2]

 'DFRD' [2]

 'ESLK' [2]

 'FRDL' [2]

 'GNYS' [2]

 'LKEL' [2]

 'SHCQ' [2]

 'SLKD' [2]

 'SVRI' [2]

 'TDYL' [2]

 'TSLA' [2]

 'TVIN' [2]

 'VING' [2]

 'VPLD' [2]

 'YALV' [2]

 'AAAA' [1]

 'AAAP' [1]

 'AAEI' [1]

 'AAEL' [1]

 'AAFP' [1]

See Also
aacount | basecount | codoncount | dimercount

1 Alphabetical List

1-1326

nt2aa
Convert nucleotide sequence to amino acid sequence

Syntax

SeqAA = nt2aa(SeqNT)

SeqAA = nt2aa(..., 'Frame', FrameValue, ...)

SeqAA = nt2aa(..., 'GeneticCode', GeneticCodeValue, ...)

SeqAA = nt2aa(..., 'AlternativeStartCodons',

AlternativeStartCodonsValue, ...)

SeqAA = nt2aa(..., 'ACGTOnly', ACGTOnlyValue, ...)

Input Arguments

SeqNT One of the following:

• String of single-letter codes specifying a
nucleotide sequence. For valid letter codes,
see the table Mapping Nucleotide Letter
Codes to Integers.

• Row vector of integers specifying a
nucleotide sequence. For valid integers, see
the table Mapping Nucleotide Integers to
Letter Codes.

• MATLAB structure containing a Sequence
field that contains a nucleotide sequence,
such as returned by fastaread,
fastqread, emblread, getembl,
genbankread, or getgenbank

Note: Hyphens are valid only if the codon to
which it belongs represents a gap, that is, the
codon contains all hyphens. Example: ACT---
TGA

 nt2aa

1-1327

Tip Do not use a sequence with hyphens if you
specify 'all' for FrameValue.

FrameValue Integer or string specifying a reading frame in
the nucleotide sequence. Choices are 1, 2, 3, or
'all'. Default is 1.

If FrameValue is 'all', then SeqAA is a 3-
by-1 cell array.

GeneticCodeValue Integer or string specifying a genetic code
number or code name from the table Genetic
Code. Default is 1 or 'Standard'.

Tip If you use a code name, you can truncate
the name to the first two letters of the name.

AlternativeStartCodonsValue Controls the translation of alternative codons.
Choices are true (default) or false.

ACGTOnlyValue Controls the behavior of ambiguous nucleotide
characters (R, Y, K, M, S, W, B, D, H, V, and N)
and unknown characters. ACGTOnlyValue can
be true (default) or false.

• If true, then the function errors if any of
these characters are present.

• If false, then the function tries to resolve
ambiguities. If it cannot, it returns X for the
affected codon.

Output Arguments

SeqAA Amino acid sequence specified by a string of
single-letter codes.

1 Alphabetical List

1-1328

Description

SeqAA = nt2aa(SeqNT) converts a nucleotide sequence, specified by SeqNT, to an
amino acid sequence, returned in SeqAA, using the standard genetic code.

SeqAA = nt2aa(SeqNT, ...'PropertyName', PropertyValue, ...) calls nt2aa
with optional properties that use property name/property value pairs. You can specify
one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

SeqAA = nt2aa(..., 'Frame', FrameValue, ...) converts a nucleotide sequence
for a specific reading frame to an amino acid sequence. Choices are 1, 2, 3, or 'all'.
Default is 1. If FrameValue is 'all', then output SeqAA is a 3-by-1 cell array.

SeqAA = nt2aa(..., 'GeneticCode', GeneticCodeValue, ...) specifies a
genetic code to use when converting a nucleotide sequence to an amino acid sequence.
GeneticCodeValue can be an integer or string specifying a code number or code name
from the table Genetic Code. Default is 1 or 'Standard'. The amino acid to nucleotide
codon mapping for the Standard genetic code is shown in the table Standard Genetic
Code.

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

SeqAA = nt2aa(..., 'AlternativeStartCodons',

AlternativeStartCodonsValue, ...) controls the translation of alternative
start codons. By default, AlternativeStartCodonsValue is set to true, and if the
first codon of a sequence is a known alternative start codon, the codon is translated to
methionine.

If this option is set to false, then an alternative start codon at the start of a sequence
is translated to its corresponding amino acid in the genetic code that you specify, which
might not necessarily be methionine. For example, in the human mitochondrial genetic
code, AUA and AUU are known to be alternative start codons.

For more information about alternative start codons, see:

www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

 nt2aa

1-1329

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Standard Genetic Code

Amino Acid Name Amino Acid Code Nucleotide Codon

Alanine A GCT GCC GCA GCG

Arginine R CGT CGC CGA CGG AGA AGG

Asparagine N ATT AAC

Aspartic acid
(Aspartate)

D GAT GAC

Cysteine C TGT TGC

Glutamine Q CAA CAG

1 Alphabetical List

1-1330

Amino Acid Name Amino Acid Code Nucleotide Codon

Glutamic acid
(Glutamate)

E GAA GAG

Glycine G GGT GGC GGA GGG

Histidine H CAT CAC

Isoleucine I ATT ATC ATA

Leucine L TTA TTG CTT CTC CTA CTG

Lysine K AAA AAG

Methionine M ATG

Phenylalanine F TTT TTC

Proline P CCT CCC CCA CCG

Serine S TCT TCC TCA TCG AGT AGC

Threonine T ACT ACC ACA ACG

Tryptophan W TGG

Tyrosine Y TAT, TAC

Valine V GTT GTC GTA GTG

Asparagine or Aspartic
acid (Aspartate)

B Random codon from D and N

Glutamine or
Glutamic acid
(Glutamate)

Z Random codon from E and Q

Unknown amino acid
(any amino acid)

X Random codon

Translation stop * TAA TAG TGA

Gap of indeterminate
length

- ---

Unknown character
(any character or
symbol not in table)

? ???

SeqAA = nt2aa(..., 'ACGTOnly', ACGTOnlyValue, ...) controls the behavior
of ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V, and N) and unknown

 nt2aa

1-1331

characters. ACGTOnlyValue can be true (default) or false. If true, then the function
errors if any of these characters are present. If false, then the function tries to resolve
ambiguities. If it cannot, it returns X for the affected codon.

Examples

Converting the ND1 Gene

1 Use the getgenbank function to retrieve genomic information for the human
mitochondrion from the GenBank database and store it in a MATLAB structure .

mitochondria = getgenbank('NC_012920')

mitochondria =

 LocusName: 'NC_012920'

 LocusSequenceLength: '16569'

 LocusNumberofStrands: ''

 LocusTopology: 'circular'

 LocusMoleculeType: 'DNA'

 LocusGenBankDivision: 'PRI'

 LocusModificationDate: '05-MAR-2010'

 Definition: 'Homo sapiens mitochondrion, complete genome.'

 Accession: 'NC_012920 AC_000021'

 Version: 'NC_012920.1'

 GI: '251831106'

 Project: []

 DBLink: 'Project:30353'

 Keywords: []

 Segment: []

 Source: 'mitochondrion Homo sapiens (human)'

 SourceOrganism: [4x65 char]

 Reference: {1x7 cell}

 Comment: [24x67 char]

 Features: [933x74 char]

 CDS: [1x13 struct]

 Sequence: [1x16569 char]

 SearchURL: [1x70 char]

 RetrieveURL: [1x104 char]

2 Determine the name and location of the first gene in the human mitochondrion.

mitochondria.CDS(1).gene

1 Alphabetical List

1-1332

ans =

ND1

mitochondria.CDS(1).location

ans =

3307..4262

3 Extract the sequence for the ND1 gene from the nucleotide sequence.

ND1gene = mitochondria.Sequence(3307:4262);

4 Convert the ND1 gene on the human mitochondria genome to an amino acid
sequence using the Vertebrate Mitochondrial genetic code.

protein1 = nt2aa(ND1gene,'GeneticCode', 2);

5 Use the getgenpept function to retrieve the same amino acid sequence from the
GenPept database.

protein2 = getgenpept('YP_003024026', 'SequenceOnly', true);

6 Use the isequal function to compare the two amino acid sequences.

isequal (protein1, protein2)

ans =

 1

Converting the ND2 Gene

1 Use the getgenbank function to retrieve the nucleotide sequence for the human
mitochondrion from the GenBank database.

mitochondria = getgenbank('NC_012920');

2 Determine the name and location of the second gene in the human mitochondrion.

mitochondria.CDS(2).gene

ans =

ND2

mitochondria.CDS(2).location

 nt2aa

1-1333

ans =

4470..5511

3 Extract the sequence for the ND2 gene from the nucleotide sequence.

ND2gene = mitochondria.Sequence(4470:5511);

4 Convert the ND2 gene on the human mitochondria genome to an amino acid
sequence using the Vertebrate Mitochondrial genetic code.

protein1 = nt2aa(ND2gene,'GeneticCode', 2);

Note: In the ND2gene nucleotide sequence, the first codon is ATT, which is
translated to M, while the subsequent ATT codons are translated to I. If you set
'AlternativeStartCodons' to false, then the first ATT codon is translated to I,
the corresponding amino acid in the Vertebrate Mitochondrial genetic code.

5 Use the getgenpept function to retrieve the same amino acid sequence from the
GenPept database.

protein2 = getgenpept('YP_003024027', 'SequenceOnly', true);

6 Use the isequal function to compare the two amino acid sequences.

isequal (protein1, protein2)

ans =

 1

Converting a Sequence with Ambiguous Characters

If you have a sequence with ambiguous or unknown nucleotide characters, you can set
the 'ACGTOnly' property to false to have the nt2aa function try to resolve them:

nt2aa('agttgccgacgcgcncar','ACGTOnly', false)

ans =

SCRRAQ

1 Alphabetical List

1-1334

See Also
aa2nt | aminolookup | baselookup | codonbias | dnds | dndsml | geneticcode
| isotopicdist | revgeneticcode | seqviewer

 nt2int

1-1335

nt2int

Convert nucleotide sequence from letter to integer representation

Syntax

SeqInt = nt2int(SeqChar)

SeqInt = nt2int(SeqChar, ...'Unknown', UnknownValue, ...)

SeqInt = nt2int(SeqChar, ...'ACGTOnly', ACGTOnlyValue, ...)

Input Arguments

SeqChar One of the following:

• String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers. Integers are arbitrarily assigned to IUB/IUPAC
letters.

• MATLAB structure containing a Sequence field that contains
a nucleotide sequence, such as returned by fastaread,
fastqread, emblread, getembl, genbankread, or
getgenbank.

UnknownValue Integer to represent unknown nucleotides. Choices are integers ≥ 0
and ≤ 255. Default is 0.

ACGTOnlyValue Controls the prohibition of ambiguous nucleotides. Choices are
true or false (default). If ACGTOnlyValue is true, you can enter
only the characters A, C, G, T, and U.

Output Arguments

SeqInt Nucleotide sequence specified by a row vector of integers.

1 Alphabetical List

1-1336

Description

SeqInt = nt2int(SeqChar) converts SeqChar, a string of codes specifying a
nucleotide sequence, to SeqInt, a row vector of integers specifying the same nucleotide
sequence. For valid codes, see the table Mapping Nucleotide Letter Codes to Integers.
Unknown characters (characters not in the table) are mapped to 0. Gaps represented
with hyphens are mapped to 16.

SeqInt = nt2int(SeqChar, ...'PropertyName', PropertyValue, ...) calls
nt2int with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

SeqInt = nt2int(SeqChar, ...'Unknown', UnknownValue, ...) specifies an
integer to represent unknown nucleotides. UnknownValue can be an integer ≥ 0 and ≤
255. Default is 0.

SeqInt = nt2int(SeqChar, ...'ACGTOnly', ACGTOnlyValue, ...) controls the
prohibition of ambiguous nucleotides (N, R, Y, K, M, S, W, B, D, H, and V). Choices are true
or false (default). If ACGTOnlyValue is true, you can enter only the characters A, C, G,
T, and U.

Mapping Nucleotide Letter Codes to Integers

Nucleotide Code Integer

Adenosine A 1

Cytidine C 2

Guanine G 3

Thymidine T 4

Uridine (if 'Alphabet' set to 'RNA') U 4

Purine (A or G) R 5

Pyrimidine (T or C) Y 6

Keto (G or T) K 7

Amino (A or C) M 8

Strong interaction (3 H bonds) (G or C) S 9

 nt2int

1-1337

Nucleotide Code Integer

Weak interaction (2 H bonds) (A or T) W 10

Not A (C or G or T) B 11

Not C (A or G or T) D 12

Not G (A or C or T) H 13

Not T or U (A or C or G) V 14

Any nucleotide (A or C or G or T or U) N 15

Gap of indeterminate length - 16

Unknown (any character not in table) * 0 (default)

Examples

Converting a Simple Sequence

Convert a nucleotide sequence from letters to integers.

s = nt2int('ACTGCTAGC')

s =

 1 2 4 3 2 4 1 3 2

Converting a Random Sequence

1 Create a random character string to represent a nucleotide sequence.

SeqChar = randseq(20)

SeqChar =

TTATGACGTTATTCTACTTT

2 Convert the nucleotide sequence from letter to integer representation.

SeqInt = nt2int(SeqChar)

SeqInt =

 Columns 1 through 13

 4 4 1 4 3 1 2 3 4 4 1 4 4

1 Alphabetical List

1-1338

 Columns 14 through 20

 2 4 1 2 4 4 4

See Also
aa2int | baselookup | int2aa | int2nt

 ntdensity

1-1339

ntdensity

Plot density of nucleotides along sequence

Syntax

ntdensity(SeqNT)

Density = ntdensity(SeqNT)

... = ntdensity(..., 'Window', WindowValue, ...)

[Density, HighCG] = ntdensity(..., 'CGThreshold',

CGThresholdValue, ...)

Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers.

• Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes.

• MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned by
emblread, fastaread, fastqread, genbankread,
getembl, or getgenbank.

Note: Although you can submit a sequence with nucleotides
other than A, C, G, and T, ntdensity plots only A, C, G, and T.

WindowValue Value that specifies the window length for the density
calculation. Default is length(SeqNT)/20.

CGThresholdValue Controls the return of indices for regions where the CG content
of SeqNT is greater than CGThresholdValue. Default is 5.

1 Alphabetical List

1-1340

Description

ntdensity(SeqNT) plots the density of nucleotides A, C, G, and T in sequence SeqNT.

Density = ntdensity(SeqNT) returns a MATLAB structure with the density of
nucleotides A, C, G, and T.

... = ntdensity(SeqNT, ...'PropertyName', PropertyValue, ...) calls
ntdensity with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = ntdensity(..., 'Window', WindowValue, ...) uses a window of length
WindowValue for the density calculation. Default WindowValue is length(SeqNT)/20.

[Density, HighCG] = ntdensity(..., 'CGThreshold',

CGThresholdValue, ...) returns indices for regions where the CG content of SeqNT is
greater than CGThresholdValue. Default CGThresholdValue is 5.

Examples

1 Create a random character string to represent a nucleotide sequence.

s = randseq(1000, 'alphabet', 'dna');

2 Plot the density of nucleotides along the sequence.

ntdensity(s)

 ntdensity

1-1341

See Also
basecount | codoncount | cpgisland | dimercount | filter

1 Alphabetical List

1-1342

nuc44
Return NUC44 scoring matrix for nucleotide sequences

Syntax

ScoringMatrix = nuc44

[ScoringMatrix, MatrixInfo] = nuc44

Description

ScoringMatrix = nuc44 returns the scoring matrix. The nuc44 scoring matrix uses
ambiguous nucleotide codes and probabilities rounded to the nearest integer.

Scale = 0.277316

Expected score = -1.7495024, Entropy = 0.5164710 bits

Lowest score = -4, Highest score = 5

Order: A C G T R Y K M S W B D H V N

[ScoringMatrix, MatrixInfo] = nuc44 returns a structure with information about
the matrix with fields Name and Order.

Note: The NUC44 scoring matrix is supplied by NCBI and is used by the BLAST suite of
programs. For more information, see ftp://ftp.ncbi.nih.gov/blast/matrices/.

See Also
blosum | dayhoff | gonnet | localalign | nwalign | pam | swalign

ftp://ftp.ncbi.nih.gov/blast/matrices/

 num2goid

1-1343

num2goid
Convert numbers to Gene Ontology IDs

Syntax

GOIDs = num2goid(X)

Description

GOIDs = num2goid(X) converts the numbers in X to strings with Gene Ontology IDs.
IDs are seven-digit numbers preceded by the prefix GO:, which is the standard used by
the Gene Ontology database.

Examples

Get the Gene Ontology IDs of the following numbers.

 t = [5575 5622 5623 5737 5840 30529 43226 43228 43229 43232 43234];

 ids = num2goid(t)

Columns 1 through 4

 'GO:0005575' 'GO:0005622' 'GO:0005623' 'GO:0005737'

 Columns 5 through 8

 'GO:0005840' 'GO:0030529' 'GO:0043226' 'GO:0043228'

 Columns 9 through 11

 'GO:0043229' 'GO:0043232' 'GO:0043234'

See Also
geneont.getancestors | geneont.getmatrix | geneont | goannotread |
geneont | geneont.getdescendants | geneont.getrelatives

1 Alphabetical List

1-1344

numel (DataMatrix)
Return number of elements in DataMatrix object

Syntax

N = numel(DMObj)

Ns = numel(DMObj, Index1, Index2)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Index1 A row or range of rows in DMObj specified by a positive integer
or a range using the format x:y, where x is the first row and y is
the last row.

Index2 A column or range of columns in DMObj specified by a positive
integer or a range using the format x:y, where x is the first
column and y is the last column.

Output Arguments

N Positive integer representing the number of elements in DMObj,
a DataMatrix object.

Ns Positive integer representing the number of subscripted
elements in DMObj, a DataMatrix object.

Description

N = numel(DMObj) returns 1. To find the number of elements in DMObj, a DataMatrix
object, use either of the following syntaxes:

prod(size(DMObj))

 numel (DataMatrix)

1-1345

numel(DMObj,':',':')

Ns = numel(DMObj, Index1, Index2) returns the number of subscripted elements
in DMObj, a DataMatrix object. Index1 specifies a row or range of rows in DMObj.
Index2 specifies a column or range of columns in DMObj.

More About
• “DataMatrix object”

See Also
DataMatrix

1 Alphabetical List

1-1346

nwalign
Globally align two sequences using Needleman-Wunsch algorithm

Syntax

Score = nwalign(Seq1,Seq2)

[Score, Alignment] = nwalign(Seq1,Seq2)

[Score, Alignment, Start] = nwalign(Seq1,Seq2)

... = nwalign(Seq1,Seq2, ...'Alphabet', AlphabetValue, ...)

... =

nwalign(Seq1,Seq2, ...'ScoringMatrix', ScoringMatrixValue, ...)

... = nwalign(Seq1,Seq2, ...'Scale', ScaleValue, ...)

... = nwalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...)

... = nwalign(Seq1,Seq2, ...'ExtendGap', ExtendGapValue, ...)

... = nwalign(Seq1,Seq2, ...'Glocal', GlocalValue, ...)

... = nwalign(Seq1,Seq2, ...'Showscore', ShowscoreValue, ...)

Input Arguments

Seq1, Seq2 Amino acid or nucleotide sequences. Enter any of the
following:

• Character string of letters representing amino acids or
nucleotides, such as returned by int2aa or int2nt

• Vector of integers representing amino acids or
nucleotides, such as returned by aa2int or nt2int

• Structure containing a Sequence field

Tip For help with letter and integer representations of
amino acids and nucleotides, see Amino Acid Lookup or
Nucleotide Lookup.

AlphabetValue String specifying the type of sequence. Choices are 'AA'
(default) or 'NT'.

ScoringMatrixValue Either of the following:

 nwalign

1-1347

• String specifying the scoring matrix to use for the global
alignment. Choices for amino acid sequences are:

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

• 'BLOSUM50' — When AlphabetValue equals 'AA'
• 'NUC44' — When AlphabetValue equals 'NT'

Note: The above scoring matrices, provided with the
software, also include a structure containing a scale
factor that converts the units of the output score to bits.
You can also use the 'Scale' property to specify an
additional scale factor to convert the output score from
bits to another unit.

• Matrix representing the scoring matrix to use for the
global alignment, such as returned by the blosum, pam,
dayhoff, gonnet, or nuc44 function.

Note: If you use a scoring matrix that you created or
was created by one of the above functions, the matrix
does not include a scale factor. The output score will be
returned in the same units as the scoring matrix. You
can use the 'Scale' property to specify a scale factor to
convert the output score to another unit.

Note: If you need to compile nwalign into a stand-
alone application or software component using

1 Alphabetical List

1-1348

MATLAB Compiler, use a matrix instead of a string for
ScoringMatrixValue.

ScaleValue Positive value that specifies a scale factor that is applied to
the output score.

For example, if the output score is initially determined in
bits, and you enter log(2) for ScaleValue, then nwalign
returns Score in nats.

Default is 1, which does not change the units of the output
score.

Note: If the 'ScoringMatrix' property also specifies
a scale factor, then nwalign uses it first to scale the
output score, then applies the scale factor specified by
ScaleValue to rescale the output score.

Tip Before comparing alignment scores from multiple
alignments, ensure the scores are in the same units. You
can use the 'Scale' property to control the units of the
output scores.

GapOpenValue Positive value specifying the penalty for opening a gap in
the alignment. Default is 8.

ExtendGapValue Positive value specifying the penalty for extending a gap
using the affine gap penalty scheme.

Note: If you specify this value, nwalign uses the affine
gap penalty scheme, that is, it scores the first gap using
the GapOpenValue and scores subsequent gaps using
the ExtendGapValue. If you do not specify this value,
nwalign scores all gaps equally, using the GapOpenValue
penalty.

GlocalValue Controls the return of a semiglobal or “glocal” alignment.
In a semiglobal alignment, gap penalties at the end of the
sequences are null. Choices are true or false (default).

 nwalign

1-1349

ShowscoreValue Controls the display of the scoring space and the winning
path of the alignment. Choices are true or false (default).

Output Arguments

Score Optimal global alignment score in bits.
Alignment 3-by-N character array showing the two sequences,

Seq1 and Seq2, in the first and third rows, and symbols
representing the optimal global alignment for them in the
second row.

Start 2-by-1 vector of indices indicating the starting point in
each sequence for the alignment. Because this is a global
alignment, Start is always [1;1].

Description

Score = nwalign(Seq1,Seq2) returns the optimal global alignment score in bits. The
scale factor used to calculate the score is provided by the scoring matrix.

[Score, Alignment] = nwalign(Seq1,Seq2) returns a 3-by-N character array
showing the two sequences, Seq1 and Seq2, in the first and third rows, and symbols
representing the optimal global alignment for them in the second row. The symbol |
indicates amino acids or nucleotides that match exactly. The symbol : indicates amino
acids or nucleotides that are related as defined by the scoring matrix (nonmatches with a
zero or positive scoring matrix value).

[Score, Alignment, Start] = nwalign(Seq1,Seq2) returns a 2-by-1 vector of
indices indicating the starting point in each sequence for the alignment. Because this is a
global alignment, Start is always [1;1].

... = nwalign(Seq1,Seq2, ...'PropertyName', PropertyValue, ...) calls
nwalign with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

1 Alphabetical List

1-1350

... = nwalign(Seq1,Seq2, ...'Alphabet', AlphabetValue, ...) specifies
the type of sequences. Choices are 'AA' (default) or 'NT'.

... =

nwalign(Seq1,Seq2, ...'ScoringMatrix', ScoringMatrixValue, ...)

specifies the scoring matrix to use for the global alignment. Default is:

• 'BLOSUM50' — When AlphabetValue equals 'AA'
• 'NUC44' — When AlphabetValue equals 'NT'

... = nwalign(Seq1,Seq2, ...'Scale', ScaleValue, ...) specifies a scale
factor that is applied to the output score, thereby controlling the units of the output
score. Choices are any positive value.

... = nwalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...) specifies the
penalty for opening a gap in the alignment. Choices are any positive value. Default is 8.

... = nwalign(Seq1,Seq2, ...'ExtendGap', ExtendGapValue, ...) specifies
the penalty for extending a gap using the affine gap penalty scheme. Choices are any
positive value.

... = nwalign(Seq1,Seq2, ...'Glocal', GlocalValue, ...) controls the
return of a semiglobal or “glocal” alignment. In a semiglobal alignment, gap penalties at
the end of the sequences are null. Choices are true or false (default).

... = nwalign(Seq1,Seq2, ...'Showscore', ShowscoreValue, ...) controls
the display of the scoring space and winning path of the alignment. Choices are true or
false (default).

 nwalign

1-1351

The scoring space is a heat map displaying the best scores for all the partial alignments
of two sequences. The color of each (n1,n2) coordinate in the scoring space represents
the best score for the pairing of subsequences Seq1(1:n1) and Seq2(1:n2), where n1
is a position in Seq1 and n2 is a position in Seq2. The best score for a pairing of specific
subsequences is determined by scoring all possible alignments of the subsequences by
summing matches and gap penalties.

The winning path is represented by black dots in the scoring space, and it illustrates the
pairing of positions in the optimal global alignment. The color of the last point (lower
right) of the winning path represents the optimal global alignment score for the two
sequences and is the Score output returned by nwalign.

1 Alphabetical List

1-1352

Note: The scoring space visually indicates if there are potential alternate winning paths,
which is useful when aligning sequences with big gaps. Visual patterns in the scoring
space can also indicate a possible sequence rearrangement.

Examples

1 Globally align two amino acid sequences using the BLOSUM50 (default) scoring
matrix and the default values for the GapOpen and ExtendGap properties. Return
the optimal global alignment score in bits and the alignment character array.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD')

Score =

 7.3333

Alignment =

VSPAGMASGYD

: | | || ||

I-P-GKAS-YD

2 Globally align two amino acid sequences specifying the PAM250 scoring matrix and a
gap open penalty of 5.

[Score, Alignment] = nwalign('IGRHRYHIGG','SRYIGRG',...

 'scoringmatrix','pam250',...

 'gapopen',5)

Score =

 2.3333

Alignment =

IGRHRYHIG-G

 : || || |

-S--RY-IGRG

3 Globally align two amino acid sequences returning the Score in nat units (nats) by
specifying a scale factor of log(2).
[Score, Alignment] = nwalign('HEAGAWGHEE','PAWHEAE','Scale',log(2))

Score =

 nwalign

1-1353

 0.2310

Alignment =

HEAGAWGHE-E

 || || |

--P-AW-HEAE

References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence
Analysis (Cambridge University Press).

See Also
aa2int | aminolookup | baselookup | blosum | dayhoff | gonnet | int2aa |
int2nt | localalign | multialign | nt2aa | nt2int | nuc44 | pam | profalign
| seqdotplot | showalignment | swalign

1 Alphabetical List

1-1354

oligoprop
Calculate sequence properties of DNA oligonucleotide

Syntax

SeqProperties = oligoprop(SeqNT)

SeqProperties = oligoprop(SeqNT, ...'Salt', SaltValue, ...)

SeqProperties = oligoprop(SeqNT, ...'Temp', TempValue, ...)

SeqProperties = oligoprop(SeqNT, ...'Primerconc',

PrimerconcValue, ...)

SeqProperties = oligoprop(SeqNT, ...'HPBase', HPBaseValue, ...)

SeqProperties = oligoprop(SeqNT, ...'HPLoop', HPLoopValue, ...)

SeqProperties = oligoprop(SeqNT, ...'Dimerlength',

DimerlengthValue, ...)

Input Arguments

SeqNT DNA oligonucleotide sequence represented by any of the
following:

• Character string containing the letters A, C, G, T, or N
• Vector of integers containing the integers 1, 2, 3, 4, or 15
• Structure containing a Sequence field that contains a

nucleotide sequence
SaltValue Value that specifies a salt concentration in moles/liter for

melting temperature calculations. Default is 0.05 moles/liter.
TempValue Value that specifies the temperature in degrees Celsius for

nearest-neighbor calculations of free energy. Default is 25
degrees Celsius.

PrimerconcValue Value that specifies the concentration in moles/liter for melting
temperature calculations. Default is 50e-6 moles/liter.

HPBaseValue Value that specifies the minimum number of paired bases that
form the neck of the hairpin. Default is 4 base pairs.

 oligoprop

1-1355

HPLoopValue Value that specifies the minimum number of bases that form
the loop of a hairpin. Default is 2 bases.

DimerlengthValue Value that specifies the minimum number of aligned bases
between the sequence and its reverse. Default is 4 bases.

Output Arguments

SeqProperties Structure containing the sequence properties for a DNA
oligonucleotide.

Description

SeqProperties = oligoprop(SeqNT) returns the sequence properties for a DNA
oligonucleotide as a structure with the following fields:

Field Description

GC Percent GC content for the DNA oligonucleotide. Ambiguous
N characters in SeqNT are considered to potentially be any
nucleotide. If SeqNT contains ambiguous N characters, GC is the
midpoint value, and its uncertainty is expressed by GCdelta.

GCdelta The difference between GC (midpoint value) and either the
maximum or minimum value GC could assume. The maximum
and minimum values are calculated by assuming all N
characters are G/C or not G/C, respectively. Therefore, GCdelta
defines the possible range of GC content.

Hairpins H-by-length(SeqNT) matrix of characters displaying all
potential hairpin structures for the sequence SeqNT. Each
row is a potential hairpin structure of the sequence, with the
hairpin forming nucleotides designated by capital letters. H is
the number of potential hairpin structures for the sequence.
Ambiguous N characters in SeqNT are considered to potentially
complement any nucleotide.

Dimers D-by-length(SeqNT) matrix of characters displaying all
potential dimers for the sequence SeqNT. Each row is a
potential dimer of the sequence, with the self-dimerizing

1 Alphabetical List

1-1356

Field Description

nucleotides designated by capital letters. D is the number of
potential dimers for the sequence. Ambiguous N characters in
SeqNT are considered to potentially complement any nucleotide.

MolWeight Molecular weight of the DNA oligonucleotide. Ambiguous
N characters in SeqNT are considered to potentially be any
nucleotide. If SeqNT contains ambiguous N characters,
MolWeight is the midpoint value, and its uncertainty is
expressed by MolWeightdelta.

MolWeightdelta The difference between MolWeight (midpoint value) and
either the maximum or minimum value MolWeight could
assume. The maximum and minimum values are calculated by
assuming all N characters are G or C, respectively. Therefore,
MolWeightdelta defines the possible range of molecular
weight for SeqNT.

Tm A vector with melting temperature values, in degrees Celsius,
calculated by six different methods, listed in the following order:

• Basic (Marmur et al., 1962)
• Salt adjusted (Howley et al., 1979)
• Nearest-neighbor (Breslauer et al., 1986)
• Nearest-neighbor (SantaLucia Jr. et al., 1996)
• Nearest-neighbor (SantaLucia Jr., 1998)
• Nearest-neighbor (Sugimoto et al., 1996)

Ambiguous N characters in SeqNT are considered to potentially
be any nucleotide. If SeqNT contains ambiguous N characters,
Tm is the midpoint value, and its uncertainty is expressed by
Tmdelta.

Tmdelta A vector containing the differences between Tm (midpoint value)
and either the maximum or minimum value Tm could assume
for each of the six methods. Therefore, Tmdelta defines the
possible range of melting temperatures for SeqNT.

 oligoprop

1-1357

Field Description

Thermo 4-by-3 matrix of thermodynamic calculations.

The rows correspond to nearest-neighbor parameters from:

• Breslauer et al., 1986
• SantaLucia Jr. et al., 1996
• SantaLucia Jr., 1998
• Sugimoto et al., 1996

The columns correspond to:

• delta H — Enthalpy in kilocalories per mole, kcal/mol
• delta S — Entropy in calories per mole-degrees Kelvin, cal/

(K)(mol)
• delta G — Free energy in kilocalories per mole, kcal/mol

Ambiguous N characters in SeqNT are considered to potentially
be any nucleotide. If SeqNT contains ambiguous N characters,
Thermo is the midpoint value, and its uncertainty is expressed
by Thermodelta.

Thermodelta 4-by-3 matrix containing the differences between Thermo
(midpoint value) and either the maximum or minimum
value Thermo could assume for each calculation and method.
Therefore, Thermodelta defines the possible range of
thermodynamic values for SeqNT.

SeqProperties = oligoprop(SeqNT, ...'PropertyName',

PropertyValue, ...) calls oligoprop with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

SeqProperties = oligoprop(SeqNT, ...'Salt', SaltValue, ...) specifies a
salt concentration in moles/liter for melting temperature calculations. Default is 0.05
moles/liter.

1 Alphabetical List

1-1358

SeqProperties = oligoprop(SeqNT, ...'Temp', TempValue, ...) specifies
the temperature in degrees Celsius for nearest-neighbor calculations of free energy.
Default is 25 degrees Celsius.

SeqProperties = oligoprop(SeqNT, ...'Primerconc',

PrimerconcValue, ...) specifies the concentration in moles/liter for melting
temperatures. Default is 50e-6 moles/liter.

SeqProperties = oligoprop(SeqNT, ...'HPBase', HPBaseValue, ...)

specifies the minimum number of paired bases that form the neck of the hairpin. Default
is 4 base pairs.

SeqProperties = oligoprop(SeqNT, ...'HPLoop', HPLoopValue, ...)

specifies the minimum number of bases that form the loop of a hairpin. Default is 2
bases.

SeqProperties = oligoprop(SeqNT, ...'Dimerlength',

DimerlengthValue, ...) specifies the minimum number of aligned bases between the
sequence and its reverse. Default is 4 bases.

Examples

Calculating Properties for a DNA Sequence

1 Create a random sequence.

seq = randseq(25)

seq =

TAGCTTCATCGTTGACTTCTACTAA

2 Calculate sequence properties of the sequence.
S1 = oligoprop(seq)

S1 =

 GC: 36

 GCdelta: 0

 Hairpins: [0x25 char]

 Dimers: 'tAGCTtcatcgttgacttctactaa'

 MolWeight: 7.5820e+003

 MolWeightdelta: 0

 Tm: [52.7640 60.8629 62.2493 55.2870 54.0293 61.0614]

 oligoprop

1-1359

 Tmdelta: [0 0 0 0 0 0]

 Thermo: [4x3 double]

 Thermodelta: [4x3 double]

3 List the thermodynamic calculations for the sequence.

S1.Thermo

ans =

 -178.5000 -477.5700 -36.1125

 -182.1000 -497.8000 -33.6809

 -190.2000 -522.9000 -34.2974

 -191.9000 -516.9000 -37.7863

Calculating Properties for a DNA Sequence with Ambiguous Characters

1 Calculate sequence properties of the sequence ACGTAGAGGACGTN.
S2 = oligoprop('ACGTAGAGGACGTN')

S2 =

 GC: 53.5714

 GCdelta: 3.5714

 Hairpins: 'ACGTagaggACGTn'

 Dimers: [3x14 char]

 MolWeight: 4.3329e+003

 MolWeightdelta: 20.0150

 Tm: [38.8357 42.2958 57.7880 52.4180 49.9633 55.1330]

 Tmdelta: [1.4643 1.4643 10.3885 3.4633 0.2829 3.8074]

 Thermo: [4x3 double]

 Thermodelta: [4x3 double]

2 List the potential dimers for the sequence.

S2.Dimers

ans =

ACGTagaggacgtn

ACGTagaggACGTn

acgtagagGACGTN

More About
• “isoelectric”
• “molweight”

1 Alphabetical List

1-1360

• “ntdensity”
• “randseq”

References

[1] Breslauer, K.J., Frank, R., Blöcker, H., and Marky, L.A. (1986). Predicting DNA
duplex stability from the base sequence. Proceedings of the National Academy of
Science USA 83, 3746–3750.

[2] Chen, S.H., Lin, C.Y., Cho, C.S., Lo, C.Z., and Hsiung, C.A. (2003). Primer Design
Assistant (PDA): A web-based primer design tool. Nucleic Acids Research 31(13),
3751–3754.

[3] Howley, P.M., Israel, M.A., Law, M., and Martin, M.A. (1979). A rapid method for
detecting and mapping homology between heterologous DNAs. Evaluation of
polyomavirus genomes. The Journal of Biological Chemistry 254(11), 4876–4883.

[4] Marmur, J., and Doty, P. (1962). Determination of the base composition of
deoxyribonucleic acid from its thermal denaturation temperature. Journal
Molecular Biology 5, 109–118.

[5] Panjkovich, A., and Melo, F. (2005). Comparison of different melting temperature
calculation methods for short DNA sequences. Bioinformatics 21(6), 711–722.

[6] SantaLucia Jr., J., Allawi, H.T., and Seneviratne, P.A. (1996). Improved Nearest-
Neighbor Parameters for Predicting DNA Duplex Stability. Biochemistry 35,
3555–3562.

[7] SantaLucia Jr., J. (1998). A unified view of polymer, dumbbell, and oligonucleotide
DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of
Science USA 95, 1460–1465.

[8] Sugimoto, N., Nakano, S., Yoneyama, M., and Honda, K. (1996). Improved
thermodynamic parameters and helix initiation factor to predict stability of DNA
duplexes. Nucleic Acids Research 24(22), 4501–4505.

[9] http://www.basic.northwestern.edu/biotools/oligocalc.html for weight calculations.

See Also
palindromes

http://www.basic.northwestern.edu/biotools/oligocalc.html

 palindromes

1-1361

palindromes

Find palindromes in sequence

Syntax

[Position, Length] = palindromes(SeqNT)

[Position, Length, Pal] = palindromes(SeqNT)

... = palindromes(SeqNT, ..., 'Length', LengthValue, ...)

... = palindromes(SeqNT, ..., 'Complement', ComplementValue, ...)

Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence. For valid
letter codes, see the table Mapping Nucleotide Letter Codes
to Integers.

• Row vector of integers specifying a nucleotide sequence. For
valid integers, see the table Mapping Nucleotide Integers to
Letter Codes.

• MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned by
emblread, fastaread, fastqread, genbankread,
getembl, or getgenbank.

LengthValue Integer specifying a minimum length for palindromes. Default
is 6.

ComplementValue Controls the return of complementary palindromes, that is,
where the elements match their complementary pairs A-T (or
U) and C-G instead of an exact nucleotide match. Choices are
true or false (default).

1 Alphabetical List

1-1362

Description

[Position, Length] = palindromes(SeqNT) finds all palindromes in sequence
SeqNT with a length greater than or equal to 6, and returns the starting indices,
Position, and the lengths of the palindromes, Length.

[Position, Length, Pal] = palindromes(SeqNT) also returns a cell array, Pal,
of the palindromes.

... = palindromes(SeqNT, ...'PropertyName', PropertyValue, ...) calls
palindromes with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = palindromes(SeqNT, ..., 'Length', LengthValue, ...) finds all
palindromes longer than or equal to LengthValue. Default is 6.

... = palindromes(SeqNT, ..., 'Complement', ComplementValue, ...)

controls the return of complementary palindromes, that is, where the elements match
their complementary pairs A-T (or A-U) and C-G instead of an exact nucleotide match.
Choices for ComplementValue are true or false (default).

Examples

Find the palindromes in a simple nucleotide sequence.

[p,l,s] = palindromes('GCTAGTAACGTATATATAAT')

p =

 11

 12

l =

 7

 7

s =

 'TATATAT'

 'ATATATA'

Find the complementary palindromes in a simple nucleotide sequence.

 palindromes

1-1363

[pc,lc,sc] = palindromes('TAGCTTGTCACTGAGGCCA',...

 'Complement',true)

pc =

 8

lc =

 7

sc =

 'TCACTGA'

Find the palindromes in a random nucleotide sequence.

a = randseq(100)

a =

TAGCTTCATCGTTGACTTCTACTAA

AAGCAAGCTCCTGAGTAGCTGGCCA

AGCGAGCTTGCTTGTGCCCGGCTGC

GGCGGTTGTATCCTGAATACGCCAT

[pos,len,pal]=palindromes(a)

pos =

 74

len =

 6

pal =

 'GCGGCG'

See Also
seqcomplement | seqrcomplement | seqreverse | seqshowwords | regexp |
strfind

1 Alphabetical List

1-1364

pam

Return Point Accepted Mutation (PAM) scoring matrix

Syntax

ScoringMatrix = pam(N)

[ScoringMatrix, MatrixInfo] = pam(N)

... = pam(N, ...'Extended', ExtendedValue, ...)

... = pam(N, ...'Order', OrderValue, ...)

Arguments

N Integer specifying the PAM scoring matrix to return.
Choices are 10:10:500.

Tip Entering a larger value for N allows for sequence
alignments with larger evolutionary distances.

ExtendedValue Controls the return of the ambiguous characters (B, Z,
and X), and the stop character (*), in addition to the 20
standard amino acid characters. Choices are true or false
(default).

OrderValue String that controls the order of amino acids in the scoring
matrix. Choices are a string with at least the 20 standard
amino acids. The default order of the output is A R N D
C Q E G H I L K M F P S T W Y V B Z X *. If
OrderValue does not contain the characters B, Z, X, and *,
then these characters are not returned.

Description

ScoringMatrix = pam(N) returns the PAMN scoring matrix for amino acid sequences.

 pam

1-1365

[ScoringMatrix, MatrixInfo] = pam(N) returns a structure with information
about the PAM matrix. The fields in the structure are Name, Scale, Entropy,
Expected, and Order.

... = pam(N, ...'PropertyName', PropertyValue, ...) calls pam with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

... = pam(N, ...'Extended', ExtendedValue, ...) controls the return of the
ambiguous characters (B, Z, and X), and the stop character (*), in addition to the 20
standard amino acid characters. Choices are true or false (default).

... = pam(N, ...'Order', OrderValue, ...) controls the order of amino acids
in the returned scoring matrix. Choices are a string with at least the 20 standard amino
acids. The default ordering of the output is A R N D C Q E G H I L K M F P S T W
Y V B Z X *. If OrderValue does not contain the extended characters B, Z, X, and *,
then these characters are not returned.

PAM50 substitution matrix in 1/2 bit units, Expected score = -3.70, Entropy = 2.00
bits, Lowest score = -13, Highest score = 13.

PAM250 substitution matrix in 1/3 bit units, Expected score = -0.844, Entropy =
0.354 bits, Lowest score = -8, Highest score = 17.

Examples

Return the PAM50 matrix.

PAM50 = pam(50)

Return the PAM250 matrix and specify the order of amino acids in the matrix.

PAM250 = pam(250,'Order','CSTPAGNDEQHRKMILVFYW')

See Also
blosum | dayhoff | gonnet | localalign | nuc44 | nwalign | swalign

1 Alphabetical List

1-1366

pdbdistplot
Visualize intermolecular distances in Protein Data Bank (PDB) file

Syntax

pdbdistplot(PDBid)

pdbdistplot(PDBid, Distance)

Arguments

PDBid Any of the following:

• String specifying a unique identifier for a protein structure record
• Name of a variable for a MATLAB structure containing PDB

information for a molecular structure, such as returned by
getpdb or pdbread.

• Name of file containing PDB information for a molecular
structure, such as created by getpdb with the 'ToFile'
property.

Note: Each structure in the PDB database is represented by a
four-character alphanumeric identifier. For example, 4hhb is the
identification code for hemoglobin.

Distance Threshold distance in angstroms shown on a spy plot. Default is 7.

Description

pdbdistplot displays the distances between atoms and amino acids in a PDB structure.

pdbdistplot(PDBid) retrieves information for the structure specified by PDBid from
the Protein Data Bank (PDB) database. Creates a heat map showing interatom distances
and a spy plot showing the residues where the minimum distances apart are less than 7
angstroms.

 pdbdistplot

1-1367

pdbdistplot(PDBid, Distance) specifies the threshold distance shown on a spy plot.
Default is 7.

Examples

Display a heat map of the interatom distances and a spy plot at 7 angstroms of the
protein cytochrome C from albacore tuna.

pdbdistplot('5CYT');

1 Alphabetical List

1-1368

Display a spy plot at 10 angstroms of the same structure.

pdbdistplot('5CYT',10);

 pdbdistplot

1-1369

1 Alphabetical List

1-1370

See Also
getpdb | molviewer | pdbread | proteinplot | ramachandran

 pdbread

1-1371

pdbread

Read data from Protein Data Bank (PDB) file

Syntax

PDBStruct = pdbread(File)

PDBStruct = pdbread(File, 'ModelNum', ModelNumValue)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a Protein Data Bank
(PDB)-formatted file (ASCII text file). If you specify only a file
name, that file must be on the MATLAB search path or in the
MATLAB Current Folder.

• MATLAB character array that contains the text of a PDB-
formatted file.

Tip You can use the getpdb function with the 'ToFile'
property to retrieve protein structure data from the PDB
database and create a PDB-formatted file.

ModelNumValue Positive integer specifying a model in a PDB-formatted file.

Output Arguments

PDBStruct MATLAB structure containing a field for each PDB record.

1 Alphabetical List

1-1372

Description

The Protein Data Bank (PDB) database is an archive of experimentally determined 3-D
biological macromolecular structure data. For more information about the PDB format,
see:

http://www.wwpdb.org/documentation/format23/v2.3.html

PDBStruct = pdbread(File) reads the data from PDB-formatted text file File
and stores the data in the MATLAB structure, PDBStruct, which contains a field for
each PDB record. The following table summarizes the possible PDB records and the
corresponding fields in the MATLAB structure PDBStruct:

PDB Database Record Field in the MATLAB Structure

HEADER Header

OBSLTE Obsolete

TITLE Title

CAVEAT Caveat

COMPND Compound

SOURCE Source

KEYWDS Keywords

EXPDTA ExperimentData

AUTHOR Authors

REVDAT RevisionDate

SPRSDE Superseded

JRNL Journal

REMARK 1 Remark1

REMARK N

Note: N equals 2 through 999.

Remarkn

Note: n equals 2 through 999.
DBREF DBReferences

SEQADV SequenceConflicts

SEQRES Sequence

http://www.wwpdb.org/documentation/format23/v2.3.html

 pdbread

1-1373

PDB Database Record Field in the MATLAB Structure

FTNOTE Footnote

MODRES ModifiedResidues

HET Heterogen

HETNAM HeterogenName

HETSYN HeterogenSynonym

FORMUL Formula

HELIX Helix

SHEET Sheet

TURN Turn

SSBOND SSBond

LINK Link

HYDBND HydrogenBond

SLTBRG SaltBridge

CISPEP CISPeptides

SITE Site

CRYST1 Cryst1

ORIGXn OriginX

SCALEn Scale

MTRIXn Matrix

TVECT TranslationVector

MODEL Model

ATOM Atom

SIGATM AtomSD

ANISOU AnisotropicTemp

SIGUIJ AnisotropicTempSD

TER Terminal

HETATM HeterogenAtom

1 Alphabetical List

1-1374

PDB Database Record Field in the MATLAB Structure

CONECT Connectivity

PDBStruct = pdbread(File, 'ModelNum', ModelNumValue) reads only the model
specified by ModelNumValue from the PDB-formatted text file File and stores the data
in the MATLAB structure PDBStruct. If ModelNumValue does not correspond to an
existing mode number in File, then pdbread reads the coordinate information of all the
models.

The Sequence Field

The Sequence field is also a structure containing sequence information in the following
subfields:

• NumOfResidues

• ChainID

• ResidueNames — Contains the three-letter codes for the sequence residues.
• Sequence — Contains the single-letter codes for the sequence residues.

Note: If the sequence has modified residues, then the ResidueNames subfield might not
correspond to the standard three-letter amino acid codes. In this case, the Sequence
subfield will contain the modified residue code in the position corresponding to the
modified residue. The modified residue code is provided in the ModifiedResidues field.

The Model Field

The Model field is also a structure or an array of structures containing coordinate
information. If the MATLAB structure contains one model, the Model field is a structure
containing coordinate information for that model. If the MATLAB structure contains
multiple models, the Model field is an array of structures containing coordinate
information for each model. The Model field contains the following subfields:

• Atom

• AtomSD

• AnisotropicTemp

• AnisotropicTempSD

 pdbread

1-1375

• Terminal

• HeterogenAtom

The Atom Field

The Atom field is also an array of structures containing the following subfields:

• AtomSerNo

• AtomName

• altLoc

• resName

• chainID

• resSeq

• iCode

• X

• Y

• Z

• occupancy

• tempFactor

• segID

• element

• charge

• AtomNameStruct — Contains three subfields: chemSymbol, remoteInd, and
branch.

Examples

1 Use the getpdb function to retrieve structure information from the Protein Data
Bank (PDB) for the nicotinic receptor protein with identifier 1abt, and then save the
data to the PDB-formatted file nicotinic_receptor.pdb in the MATLAB Current
Folder.

getpdb('1abt', 'ToFile', 'nicotinic_receptor.pdb');

1 Alphabetical List

1-1376

2 Read the data from the nicotinic_receptor.pdb file into a MATLAB structure
pdbstruct.

pdbstruct = pdbread('nicotinic_receptor.pdb');

3 Read only the second model from the nicotinic_receptor.pdb file into a
MATLAB structure pdbstruct_Model2.
pdbstruct_Model2 = pdbread('nicotinic_receptor.pdb', 'ModelNum', 2);

4 View the atomic coordinate information in the model fields of both MATLAB
structures pdbstruct and pdbstruct_Model2.

pdbstruct.Model

ans =

1x4 struct array with fields:

 MDLSerNo

 Atom

 Terminal

pdbstruct_Model2.Model

ans =

 MDLSerNo: 2

 Atom: [1x1205 struct]

 Terminal: [1x2 struct]

5 Read the data from a URL into a MATLAB structure, gfl_pdbstruct.

gfl_pdbstruct = pdbread('http://www.rcsb.org/pdb/files/1gfl.pdb');

See Also
genpeptread | getpdb | molviewer | pdbdistplot | pdbsuperpose |
pdbtransform | pdbwrite

 pdbsuperpose

1-1377

pdbsuperpose
Superpose 3-D structures of two proteins

Syntax

pdbsuperpose(PDB1, PDB2)

Dist = pdbsuperpose(PDB1, PDB2)

[Dist, RMSD] = pdbsuperpose(PDB1, PDB2)

[Dist, RMSD, Transf] = pdbsuperpose(PDB1, PDB2)

[Dist, RMSD, Transf, PBD2TX] = pdbsuperpose(PDB1, PDB2)

... = pdbsuperpose(..., 'ModelNum', ModelNumValue, ...)

... = pdbsuperpose(..., 'Scale', ScaleValue, ...)

... = pdbsuperpose(..., 'Translate', TranslateValue, ...)

... = pdbsuperpose(..., 'Reflection', ReflectionValue, ...)

... = pdbsuperpose(..., 'SeqAlign', SeqAlignValue, ...)

... = pdbsuperpose(..., 'Segment', SegmentValue, ...)

... = pdbsuperpose(..., 'Apply', ApplyValue, ...)

... = pdbsuperpose(..., 'Display', DisplayValue, ...)

Input Arguments

PDB1, PDB2 Protein structures represented by any of the following:

• String specifying a unique identifier for a protein structure
record in the Protein Data Bank (PDB) database.

• Variable containing a PDB-formatted MATLAB structure,
such as returned by getpdb or pdbread.

• String specifying a file name or, a path and file name. The
referenced file is a PDB-formatted file. If you specify only a
file name, that file must be on the MATLAB search path or
in the MATLAB Current Folder.

ModelNumValue Two-element numeric array whose elements correspond to
models in PDB1 and PDB2 respectively when PDB1 or PDB2
contains multiple models. It specifies the models to consider in

1 Alphabetical List

1-1378

the superposition. By default, the first model in each structure
is considered.

ScaleValue Specifies whether to include a scaling component in the linear
transformation. Choices are true or false (default).

TranslateValue Specifies whether to include a translation component in the
linear transformation. Choices are true (default) or false.

ReflectionValue Specifies whether to include a reflection component in the
linear transformation. Choices are:

• true — Include reflection component.
• false — Exclude reflection component.
• 'best' — Default. May or may not include the reflection

component, depending on the best fit solution.
SeqAlignValue Specifies whether to perform a local sequence alignment and

then use only the portions of the structures corresponding to
the segments that align to compute the linear transformation.
Choices are true (default) or false.

Note: If you set the 'SeqAlign' property to true, you can
also specify the following properties used by the swalign
function:

• 'ScoringMatrix'

• 'GapOpen'

• 'ExtendGap'

For more information on these properties, see swalign.

 pdbsuperpose

1-1379

SegmentValue Specifies the boundaries and the chain of two subsequences
to consider for computing the linear transformation.
SegmentValue is a cell array of strings with the following
format:

{'start1-stop1:chain1', 'start2-stop2:chain2'}

You can omit the boundaries to indicate the entire chain, such
as in {'chain1', 'start2-stop2:chain2'}. You can
specify only one pair of segments at any given time, and the
specified segments are assumed to contain the same number of
alpha carbon atoms.

ApplyValue Specifies the extent to which the linear transformation should
be applied. Choices are:

• 'all' — Default. Apply the linear transformation to the
entire PDB2 structure.

• 'chain' — Apply the linear transformation to the specified
chain only.

• 'segment' — Apply the linear transformation to the
specified segment only.

DisplayValue Specifies whether to display the original PDB1 structure and
the resulting transformed PDB2TX structure in the Molecule
Viewer window using the molviewer function. Each structure
is represented as a separate model. Choices are true (default)
or false.

Output Arguments

Dist Value representing a dissimilarity measure given by the
sum of the squared errors between PDB1 and PDB2. For
more information, see procrustes in the Statistics Toolbox
documentation.

RMSD Scalar representing the root mean square distance between
the coordinates of the PDB1 structure and the transformed
PDB2 structure, considering only the atoms used to compute
the linear transformation.

1 Alphabetical List

1-1380

Transf Linear transformation computed to superpose the chain of
PDB2 to the chain of PDB1. Transf is a MATLAB structure
with the following fields:

• T — Orthogonal rotation and reflection component.
• b — Scale component.
• c — Translation component.

Note: Only alpha carbon atom coordinates are used to compute
the linear transformation.

Tip You can use the Transf output as input to the
pdbtransform function.

PDB2TX PDB-formatted MATLAB structure that represents the
coordinates in the transformed PDB2 protein structure.

Description

pdbsuperpose(PDB1, PDB2) computes and applies a linear transformation to
superpose the coordinates of the protein structure represented in PDB2 to the coordinates
of the protein structure represented in PDB1. PDB1 and PDB2 are protein structures
represented by any of the following:

• String specifying a unique identifier for a protein structure record in the PDB
database.

• Variable containing a PDB-formatted MATLAB structure, such as returned by
getpdb or pdbread.

• String specifying a file name or a path and file name. The referenced file is a PDB-
formatted file. If you specify only a file name, that file must be on the MATLAB
search path or in the MATLAB Current Folder.

Alpha carbon atom coordinates of single chains for each structure are considered to
compute the linear transformation (translation, reflection, orthogonal rotation, and
scaling). By default, the first chain in each structure is considered to compute the
transformation, and the transformation is applied to the entire molecule. By default, the

 pdbsuperpose

1-1381

original PDB1 structure and the resulting transformed PDB2 structure are displayed as
separate models in the Molecule Viewer window using the molviewer function.

Dist = pdbsuperpose(PDB1, PDB2) returns a dissimilarity measure given by
the sum of the squared errors between PDB1 and PDB2. For more information, see
procrustes.

[Dist, RMSD] = pdbsuperpose(PDB1, PDB2) also returns RMSD, the root mean
square distance between the coordinates of the PDB1 structure and the transformed PDB2
structure, considering only the atoms used to compute the linear transformation.

[Dist, RMSD, Transf] = pdbsuperpose(PDB1, PDB2) also returns Transf, the
linear transformation computed to superpose the chain of PDB2 to the chain of PDB1.
Transf is a MATLAB structure with the following fields:

• T — Orthogonal rotation and reflection component.
• b — Scale component.
• c — Translation component.

Note: Only alpha carbon atom coordinates are used to compute the linear
transformation.

[Dist, RMSD, Transf, PBD2TX] = pdbsuperpose(PDB1, PDB2) also returns
PBD2TX, a PDB-formatted MATLAB structure that represents the coordinates in the
transformed PDB2 protein structure.

... = pdbsuperpose(..., 'PropertyName', PropertyValue, ...) calls
pdbsuperpose with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... = pdbsuperpose(..., 'ModelNum', ModelNumValue, ...) specifies the
models to consider in the superposition when PDB1 or PDB2 contains multiple models.
ModelNumValue is a two-element numeric array whose elements correspond to the
models in PDB1 and PDB2 respectively. By default, the first model in each structure is
considered.

1 Alphabetical List

1-1382

... = pdbsuperpose(..., 'Scale', ScaleValue, ...) specifies whether to
include a scaling component in the linear transformation. Choices are true or false
(default).

... = pdbsuperpose(..., 'Translate', TranslateValue, ...) specifies
whether to include a translation component in the linear transformation. Choices are
true (default) or false.

... = pdbsuperpose(..., 'Reflection', ReflectionValue, ...) specifies
whether to include a reflection component in the linear transformation. Choices are true
(include reflection component), false (exclude reflection component), or 'best' (may or
may not include the reflection component, depending on the best fit solution). Default is
'best'.

... = pdbsuperpose(..., 'SeqAlign', SeqAlignValue, ...) specifies whether
to perform a local sequence alignment and then use only the portions of the structures
corresponding to the segments that align to compute the linear transformation. Choices
are true (default) or false.

Note: If you set the 'SeqAlign' property to true, you can also specify the following
properties used by the swalign function:

• 'ScoringMatrix'

• 'GapOpen'

• 'ExtendGap'

For more information on these properties, see swalign.

... = pdbsuperpose(..., 'Segment', SegmentValue, ...) specifies
the boundaries and the chain of two subsequences to consider for computing the
linear transformation. SegmentValue is a cell array of strings with the following
format: {'start1-stop1:chain1', 'start2-stop2:chain2'}. You can omit
the boundaries to indicate the entire chain, such as in {'chain1', 'start2-
stop2:chain2'}. You can specify only one pair of segments at any given time, and the
specified segments are assumed to contain the same number of alpha carbon atoms.

... = pdbsuperpose(..., 'Apply', ApplyValue, ...) specifies the extent to
which the linear transformation should be applied. Choices are 'all' (apply the linear
transformation to the entire PDB2 structure), 'chain' (apply the linear transformation

 pdbsuperpose

1-1383

to the specified chain only), or 'segment' (apply the linear transformation to the
specified segment only). Default is 'all'.

... = pdbsuperpose(..., 'Display', DisplayValue, ...) specifies whether
to display the original PDB1 structure and the resulting transformed PDB2TX structure
in the Molecule Viewer window using the molviewer function. Each structure is
represented as a separate model. Choices are true (default) or false.

Examples

Superposing Two Hemoglobin Structures

1 Use the getpdb function to retrieve protein structure data from the Protein Data
Bank (PDB) database for two hemoglobin structures.

str1 = getpdb('1dke');

str2 = getpdb('4hhb');

2 Superpose the first model of the two hemoglobin structures, applying the
transformation to the entire molecule.

d = pdbsuperpose(str1, str2, 'model', [1 1], 'apply', 'all');

3 Superpose the two hemoglobin structures (each containing four chains), computing
and applying the linear transformation chain by chain. Do not display the structures.
strtx = str2;

chainList1 = {str1.Sequence.ChainID};

chainList2 = {str2.Sequence.ChainID};

for i = 1:4

 [d(i), rmsd(i), tr(i), strtx] = pdbsuperpose(str1, strtx, ...

 'segment', {chainList1{i}; chainList2{i}}, ...

 'apply', 'chain', 'display', false);

end

Superposing Two Chains of a Thioredoxin Structure

Superpose chain B on chain A of a thioredoxin structure (PDBID = 2trx), and then apply
the transformation only to chain B.
[d, rmsd, tr] = pdbsuperpose('2trx', '2trx', 'segment', {'A', 'B'}, ...

 'apply', 'chain')

d =

 0.0028

1 Alphabetical List

1-1384

rmsd =

 0.6604

tr =

 T: [3x3 double]

 b: 1

 c: [109x3 double]

Superposing Two Calmodulin Structures

Superpose two calmodulin structures according to the linear transformation obtained
using two 20 residue-long segments.

pdbsuperpose('1a29', '1cll', 'segment', {'10-30:A', '10-30:A'})

ans =

 0.1945

See Also
getpdb | molviewer | pdbread | pdbtransform | swalign | procrustes

 pdbtransform

1-1385

pdbtransform

Apply linear transformation to 3-D structure of molecule

Syntax

pdbtransform(PDB, Transf)

PDBTX = pdbtransform(PDB, Transf)

... = pdbtransform(..., 'ModelNum', ModelNumValue, ...)

... = pdbtransform(..., 'Segment', SegmentValue, ...)

Input Arguments

PDB Protein structure represented by any of the following:

• String specifying a unique identifier for a protein structure
record in the Protein Data Bank (PDB) database.

• Variable containing a PDB-formatted MATLAB structure,
such as returned by getpdb or pdbread.

• String specifying a file name or a path and file name. The
referenced file is a PDB-formatted file. If you specify only a
file name, that file must be on the MATLAB search path or
in the MATLAB Current Folder.

Transf MATLAB structure representing a linear transformation,
which is applied to the coordinates of the molecule represented
by PDB. Transf contains the following fields:

• T — Orthogonal rotation and reflection component.
• b — Scale component.
• c — Translation component.

Tip You can use the Transf structure returned by the
pdbsuperpose function as input.

1 Alphabetical List

1-1386

ModelNumValue Positive integer that specifies the model to which to apply
the transformation, when PDB contains multiple models. By
default, the first model is considered.

SegmentValue Specifies the extent to which the linear transformation is
applied. SegmentValue can be either:

• 'all' — The transformation is applied to the entire PDB
input.

• String specifying the boundaries and the chain to
consider. It uses either of the following formats: 'start-
stop:chain' or 'chain'. Omitting the boundaries
indicates the entire chain.

Output Arguments

PDBTX Transformed PDB-formatted MATLAB structure.

Description

pdbtransform(PDB, Transf) applies the linear transformation specified in Transf,
a MATLAB structure representing a linear transformation, to the coordinates of the
molecule represented by PDB, which can be any of the following:

• String specifying a unique identifier for a protein structure record in the PDB
database.

• Variable containing a PDB-formatted MATLAB structure, such as returned by
getpdb or pdbread.

• String specifying a file name or a path and file name. The referenced file is a PDB-
formatted file. If you specify only a file name, that file must be on the MATLAB
search path or in the MATLAB Current Folder.

PDBTX = pdbtransform(PDB, Transf) returns PDBTX, the transformed PDB-
formatted MATLAB structure.

... = pdbtransform(...'PropertyName', PropertyValue, ...) calls
pdbtransform with optional properties that use property name/property value pairs.

 pdbtransform

1-1387

You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... = pdbtransform(..., 'ModelNum', ModelNumValue, ...) specifies
the model to which to apply the transformation, when PDB contains multiple models.
ModelNumValue is a positive integer. By default, the first model is considered.

... = pdbtransform(..., 'Segment', SegmentValue, ...) specifies the extent
to which the linear transformation is applied. SegmentValue can be either:

• 'all' — The transformation is applied to the entire PDB input.
• String specifying the boundaries and the chain to consider. It uses either of the

following formats: 'start-stop:chain' or 'chain'. Omitting the boundaries
indicates the entire chain.

Examples

1 Create a MATLAB structure that defines a linear transformation.

transf.T = eye(3); transf.b = 1; transf.c = [11.8 -2.8 -32.3];

2 Apply the linear transformation to chain B in the thioredoxin structure, with a PDB
identifier of 2trx.

pdbtx = pdbtransform('2trx', transf, 'segment', 'B');

See Also
getpdb | molviewer | pdbread | pdbsuperpose | procrustes

1 Alphabetical List

1-1388

pdbwrite

Write to file using Protein Data Bank (PDB) format

Syntax

pdbwrite(File, PDBStruct)

PDBArray = pdbwrite(File, PDBStruct)

Input Arguments

File String specifying either a file name or a path and file name for saving
the PDB-formatted data. If you specify only a file name, the file is
saved to the MATLAB Current Folder.

Tip After you save the MATLAB structure to a local PDB-formatted
file, you can use the molviewer function to display and manipulate a
3-D image of the structure.

PDBStruct MATLAB structure containing 3-D protein structure coordinate data,
created initially by using the getpdb or pdbread functions.

Note: You can edit this structure to modify its 3-D protein structure
data. The coordinate information is stored in the Model field of
PDBStruct.

Output Arguments

PDBArray Character array in which each row corresponds to a line in a PDB
record.

 pdbwrite

1-1389

Description

pdbwrite(File, PDBStruct) writes the contents of the MATLAB structure
PDBStruct to a PDB-formatted file (ASCII text file) whose path and file name are
specified by File. In the output file, File, the atom serial numbers are preserved. The
atomic coordinate records are ordered according to their atom serial numbers.

Tip After you save the MATLAB structure to a local PDB-formatted file, you can use the
molviewer function to display and manipulate a 3-D image of the structure.

PDBArray = pdbwrite(File, PDBStruct) saves the formatted PDB record,
converted from the contents of the MATLAB structure PDBStruct, to PDBArray, a
character array in which each row corresponds to a line in a PDB record.

Note: You can edit PDBStruct to modify its 3-D protein structure data. The coordinate
information is stored in the Model field of PDBStruct.

Examples

1 Use the getpdb function to retrieve structure information from the Protein Data
Bank (PDB) for the green fluorescent protein with identifier 1GFL , and store the
data in the MATLAB structure gflstruct.

gflstruct = getpdb('1GFL');

2 Find the x-coordinate of the first atom.

gflstruct.Model.Atom(1).X

ans =

 -14.0930

3 Edit the x-coordinate of the first atom.

gflstruct.Model.Atom(1).X = -18;

1 Alphabetical List

1-1390

Note: Do not add or remove any Atom fields, because the pdbwrite function does
not allow the number of elements in the structure to change.

4 Write the modified MATLAB structure gflstruct to a new PDB-formatted file
modified_gfl.pdb in the Work folder on your C drive.

pdbwrite('c:\work\modified_gfl.pdb', gflstruct);

5 Use the pdbread function to read the modified PDB file into a MATLAB structure,
then confirm that the x-coordinate of the first atom has changed.

modified_gflstruct = pdbread('c:\work\modified_gfl.pdb')

modified_gflstruct.Model.Atom(1).X

ans =

 -18

See Also
getpdb | molviewer | pdbread

 pdist (phytree)

1-1391

pdist (phytree)
Calculate pairwise patristic distances in phytree object

Syntax

D = pdist(Tree)

[D, C] = pdist(Tree)

pdist(..., 'Nodes', NodesValue, ...)

pdist(..., 'Squareform', SquareformValue, ...)

pdist(..., 'Criteria', CriteriaValue, ...)

Arguments

Tree phytree object created by phytree function (object constructor)
or phytreeread function.

NodesValue String that specifies the nodes included in the computation.
Choices are 'leaves' (default) or 'all'.

SquareformValue Controls the creation of a square matrix. Choices are true or
false (default).

CriteriaValue String that specifies the criteria used to relate pairs. Choices
are 'distance' (default) or 'levels'.

Description

D = pdist(Tree) returns D, a vector containing the patristic distances between every
possible pair of leaf nodes of Tree, a phylogenetic tree object. The patristic distances are
computed by following paths through the branches of the tree and adding the patristic
branch distances originally created with the seqlinkage function.

The output vector D is arranged in the order ((2,1), (3,1), ..., (M,1),
(3,2), ..., (M,2), ..., (M,M-1)) (the lower-left triangle of the full M-by-M
distance matrix). To get the distance between the Ith and Jth nodes (I > J), use the
formula D((J-1)*(M-J/2)+I-J). M is the number of leaves.

1 Alphabetical List

1-1392

[D, C] = pdist(Tree) returns in C, the index of the closest common parent nodes for
every possible pair of query nodes.

pdist(..., 'PropertyName', PropertyValue, ...) calls pdist with optional
properties that use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single quotation marks
and is case insensitive. These property name/property value pairs are as follows:

pdist(..., 'Nodes', NodesValue, ...) specifies the nodes included in the
computation. Choices are 'leaves' (default) or 'all'. When NodesValue is
'leaves', the output is ordered as before, but M is the total number of nodes in the tree
(NumLeaves+NumBranches).

pdist(..., 'Squareform', SquareformValue, ...) controls the creation of a
square matrix. Choices are true or false (default). When SquareformValue is true,
pdist converts the output into a square-formatted matrix, so that D(I,J) denotes the
distance between the Ith and the Jth nodes. The output matrix is symmetric and has a
zero diagonal.

pdist(..., 'Criteria', CriteriaValue, ...) changes the criteria used to relate
pairs. CriteriaValue can be 'distance' (default) or 'levels'.

Examples

1 Read a phylogenetic tree file into a phytree object.

tr = phytreeread('pf00002.tree')

2 Calculate the tree distances between pairs of leaves.

dist = pdist(tr,'nodes','leaves','squareform',true)

More About
• “phytree object”

See Also
phytree | phytreeread | phytreeviewer | seqlinkage | seqpdist

 pfamhmmread

1-1393

pfamhmmread
Read data from PFAM HMM-formatted file

Syntax

HMMStruct = pfamhmmread(File)

Input Arguments

File Either of the following:

• String specifying a file name, a path and file name, or a URL
pointing to a file. The referenced file is a PFAM HMM-formatted
file. If you specify only a file name, that file must be on the
MATLAB search path or in the current folder.

• MATLAB character array that contains the text of a PFAM-
HMM-formatted file.

Tip You can use the gethmmprof function with the 'ToFile'
property to retrieve HMM profile information from the PFAM
database and create a PFAM HMM-formatted file.

Output Arguments

HMMStruct MATLAB structure containing information from a PFAM HMM-
formatted file.

Description

Note: pfamhmmread reads PFAM-HMM formatted files, from file format version
HMMER2.0 to HMMER3/b.

1 Alphabetical List

1-1394

HMMStruct = pfamhmmread(File) reads File, a PFAM HMM-formatted file,
and converts it to HMMStruct, a MATLAB structure containing the following fields
corresponding to parameters of an HMM profile:

Field Description

Name The protein family name (unique identifier) of the HMM
profile record in the PFAM database.

PfamAccessionNumber The protein family accession number of the HMM profile
record in the PFAM database.

ModelDescription Description of the HMM profile.
ModelLength The length of the profile (number of MATCH states).
Alphabet The alphabet used in the model, 'AA' or 'NT'.

Note: AlphaLength is 20 for 'AA' and 4 for 'NT'.
MatchEmission Symbol emission probabilities in the MATCH states.

The format is a matrix of size ModelLength-
by-AlphaLength, where each row corresponds to the
emission distribution for a specific MATCH state.

InsertEmission Symbol emission probabilities in the INSERT state.

The format is a matrix of size ModelLength-
by-AlphaLength, where each row corresponds to the
emission distribution for a specific INSERT state.

NullEmission Symbol emission probabilities in the MATCH and INSERT
states for the NULL model.

The format is a 1-by-AlphaLength row vector.

Note: NULL probabilities are also known as the background
probabilities.

BeginX BEGIN state transition probabilities.

Format is a 1-by-(ModelLength + 1) row vector:

[B->D1 B->M1 B->M2 B->M3 B->Mend]

 pfamhmmread

1-1395

Field Description

MatchX MATCH state transition probabilities.

Format is a 4-by-(ModelLength - 1) matrix:

[M1->M2 M2->M3 ... M[end-1]->Mend;

 M1->I1 M2->I2 ... M[end-1]->I[end-1];

 M1->D2 M2->D3 ... M[end-1]->Dend;

 M1->E M2->E ... M[end-1]->E]

InsertX INSERT state transition probabilities.

Format is a 2-by-(ModelLength - 1) matrix:

[I1->M2 I2->M3 ... I[end-1]->Mend;

 I1->I1 I2->I2 ... I[end-1]->I[end-1]]

DeleteX DELETE state transition probabilities.

Format is a 2-by-(ModelLength - 1) matrix:

[D1->M2 D2->M3 ... D[end-1]->Mend ;

 D1->D2 D2->D3 ... D[end-1]->Dend]

FlankingInsertX Flanking insert states (N and C) used for LOCAL profile
alignment.

Format is a 2-by-2 matrix:

[N->B C->T ;

 N->N C->C]

LoopX Loop states transition probabilities used for multiple hits
alignment.

Format is a 2-by-2 matrix:

[E->C J->B ;

 E->J J->J]

NullX Null transition probabilities used to provide scores with log-
odds values also for state transitions.

Format is a 2-by-1 column vector:

[G->F ; G->G]

1 Alphabetical List

1-1396

For more information on HMM profile models, see “HMM Profile Model” on page 1-976.

Examples

Read a locally saved PFAM HMM-formatted file into a MATLAB structure.

pfamhmmread('pf00002.ls')

ans =

 Name: '7tm_2'

 PfamAccessionNumber: 'PF00002.15'

 ModelDescription: '7 transmembrane receptor (Secretin family)'

 ModelLength: 293

 Alphabet: 'AA'

 MatchEmission: [293x20 double]

 InsertEmission: [293x20 double]

 NullEmission: [1x20 double]

 BeginX: [294x1 double]

 MatchX: [292x4 double]

 InsertX: [292x2 double]

 DeleteX: [292x2 double]

 FlankingInsertX: [2x2 double]

 LoopX: [2x2 double]

 NullX: [2x1 double]

See Also
gethmmalignment | gethmmprof | hmmprofalign | hmmprofstruct | showhmmprof

 phytree object

1-1397

phytree object
Data structure containing phylogenetic tree

Description

A phytree object is a data structure containing a phylogenetic tree. Phylogenetic trees
are binary rooted trees, which means that each branch is the parent of two other
branches, two leaves, or one branch and one leaf. A phytree object can be ultrametric or
nonultrametric.

Method Summary

Following are methods of a phytree object:

cluster (phytree)
Validate clusters in phylogenetic tree

get (phytree)
Retrieve information about phylogenetic
tree object

getbyname (phytree)
Branches and leaves from phytree object

getcanonical (phytree)
Calculate canonical form of phylogenetic
tree

getmatrix (phytree)
Convert phytree object into relationship
matrix

getnewickstr (phytree)
Create Newick-formatted string

pdist (phytree)
Calculate pairwise patristic distances in
phytree object

plot (phytree)
Draw phylogenetic tree

1 Alphabetical List

1-1398

prune (phytree)
Remove branch nodes from phylogenetic
tree

reorder (phytree)
Reorder leaves of phylogenetic tree

reroot (phytree)
Change root of phylogenetic tree

select (phytree)
Select tree branches and leaves in phytree
object

subtree (phytree)
Extract phylogenetic subtree

view (phytree)
View phylogenetic tree

weights (phytree)
Calculate weights for phylogenetic tree

Property Summary

Note: You cannot modify these properties directly. You can access these properties using
the get method.

Property Description

NumLeaves Number of leaves
NumBranches Number of branches
NumNodes Number of nodes (NumLeaves + NumBranches)
Pointers Branch to leaf/branch connectivity list
Distances Edge length for every leaf/branch
LeafNames Names of the leaves
BranchNames Names of the branches
NodeNames Names of all the nodes

 phytree object

1-1399

See Also
phytree | cluster | getbyname | getmatrix | pdist | plot | reroot | subtree
| weights | phytreeread | phytreeviewer | phytreewrite | seqlinkage |
seqneighjoin | seqpdist | get | getcanonical | getnewickstr | prune |
select | view

1 Alphabetical List

1-1400

phytree
Create phytree object

Syntax

Tree = phytree(B)

Tree = phytree(B, D)

Tree = phytree(B, C)

Tree = phytree(BC)

Tree = phytree(..., N)

Tree = phytree

Arguments

B Numeric array of size [NUMBRANCHES X 2] in which every row represents a
branch of the tree. It contains two pointers to the branch or leaf nodes, which
are its children.

C Column vector with distances for every branch.
D Column vector with distances from every node to their parent branch.
BC Combined matrix with pointers to branches or leaves, and distances of branches.
N Cell array with the names of leaves and branches.

Description

Tree = phytree(B) creates an ultrametric phylogenetic tree object. In an ultrametric
phylogenetic tree object, all leaves are the same distance from the root.

B is a numeric array of size [NUMBRANCHES X 2] in which every row represents a
branch of the tree and it contains two pointers to the branch or leaf nodes, which are its
children.

Leaf nodes are numbered from 1 to NUMLEAVES and branch nodes are numbered from
NUMLEAVES + 1 to NUMLEAVES + NUMBRANCHES. Note that because only binary trees
are allowed, NUMLEAVES = NUMBRANCHES + 1.

 phytree

1-1401

Branches are defined in chronological order (for example, B(i,:) > NUMLEAVES + i).
As a consequence, the first row can only have pointers to leaves, and the last row must
represent the root branch. Parent-child distances are set to 1, unless the child is a leaf
and to satisfy the ultrametric condition of the tree its distance is increased.

Given a tree with three leaves and two branches as an example.

In the MATLAB Command Window, type

B = [1 2 ; 3 4]

 B =

 1 2

 3 4

tree = phytree(B)

 Phylogenetic tree object with 3 leaves (2 branches)

view(tree)

1 Alphabetical List

1-1402

Tree = phytree(B, D) creates an additive (ultrametric or nonultrametric)
phylogenetic tree object with branch distances defined by D. D is a numeric array of size
[NUMNODES X 1] with the distances of every child node (leaf or branch) to its parent
branch equal to NUMNODES = NUMLEAVES + NUMBRANCHES. The last distance in D is the
distance of the root node and is meaningless.

b = [1 2 ; 3 4]

b =

 1 2

 3 4

d = [1; 2; 1.5; 1; 0]

d =

 phytree

1-1403

 1.0000

 2.0000

 1.5000

 1.0000

 0

view(phytree(b,d))

Tree = phytree(B, C) creates an ultrametric phylogenetic tree object with distances
between branches and leaves defined by C. C is a numeric array of size [NUMBRANCHES X
1], which contains the distance from each branch to the leaves. In ultrametric trees, all
of the leaves are at the same location (same distance to the root).

1 Alphabetical List

1-1404

b = [1 2 ; 3 4]

b =

 1 2

 3 4

c = [1 4]'

c =

 1

 4

view(phytree(b,c))

 phytree

1-1405

Tree = phytree(BC) creates an ultrametric phylogenetic binary tree object with
branch pointers in BC(:,[1 2]) and branch coordinates in BC(:,3). Same as
phytree(B,C).

Tree = phytree(..., N) specifies the names for the leaves and/or the branches. N is
a cell of strings. If NUMEL(N)==NUMLEAVES, then the names are assigned chronologically
to the leaves. If NUMEL(N)==NUMBRANCHES, the names are assigned to the branch nodes.
If NUMEL(N)==NUMLEAVES + NUMBRANCHES, all the nodes are named. Unassigned
names default to 'Leaf #' and/or 'Branch #' as required.

Tree = phytree creates an empty phylogenetic tree object.

Examples

Create a Phylogenetic Tree

This example shows how to create a phylogenetic tree from a multiple sequence
alignment file.

Read a multiple sequence alignment file.

Sequences = multialignread('aagag.aln');

Calculate the distance between each pair of sequences.

distances = seqpdist(Sequences);

Construct a phylogenetic tree object from the pairwise distances calculated previously.

tree = seqlinkage(distances);

View the phylogenetic tree.

phytreeviewer(tree)

1 Alphabetical List

1-1406

More About
• “phytree object”

See Also
phytreeread | cluster | getbyname | getmatrix | pdist | plot | reroot
| subtree | weights | phytreeviewer | phytreewrite | seqlinkage |

 phytree

1-1407

seqneighjoin | seqpdist | get | getcanonical | getnewickstr | prune |
select | view

1 Alphabetical List

1-1408

phytreeread
Read phylogenetic tree file

Syntax

Tree = phytreeread(File)

[Tree, Boot]= phytreeread(File)

Input Arguments

File Newick-formatted tree files (ASCII text file). Enter a file name, a path
and file name, or a URL pointing to a file. File can also be a MATLAB
character array that contains the text for a file.

Output Arguments

Tree phytree object created with the function phytree.
Boot Column vector of bootstrap values for each tree node specified in File.

If File does not specify a bootstrap value for a node, it returns a NaN
value for that node. phytreeread considers the following values in
File to be bootstrap values:

• Values within square brackets ([]) after the branch or leaf node
lengths

• Values that appear instead of branch or leaf node labels

Description

Tree = phytreeread(File) reads a Newick-formatted tree file and returns a phytree
object containing data from the file.

The NEWICK tree format can be found at

 phytreeread

1-1409

http://evolution.genetics.washington.edu/phylip/newicktree.html

Note: This implementation allows only binary trees. Non-binary trees are translated into
a binary tree with extra branches of length 0.

[Tree, Boot]= phytreeread(File) returns Boot, a column vector of bootstrap
values for each tree node specified in File. If File does not specify a bootstrap value
for a node, it returns a NaN value for that node. phytreeread considers the following
values in File to be bootstrap values:

• Values within square brackets ([]) after the branch or leaf node lengths
• Values that appear instead of branch or leaf node labels

Examples
tr = phytreeread('pf00002.tree')

 Phylogenetic tree object with 33 leaves (32 branches)

More About
• “phytree object”

See Also
phytree | gethmmtree | phytreeviewer | phytreewrite

http://evolution.genetics.washington.edu/phylip/newicktree.html

1 Alphabetical List

1-1410

phytreeviewer

Visualize, edit, and explore phylogenetic tree data

Syntax

phytreeviewer

phytreeviewer(Tree)

phytreeviewer(File)

Description

phytreeviewer opens the Phylogenetic Tree app that allows you to view, edit, and
explore phylogenetic tree data.

phytreeviewer(Tree) loads a phytree object Tree into the app.

phytreeviewer(File) loads data from a Newick or ClustalW tree formatted file into
the app.

Input Arguments

Tree — Phylogenetic tree
Phytree object

Phylogenetic tree, specified as a Phytree object created with the functions phytree or
phytreeread.

File — Newick or ClustalW tree formatted file
string

Newick or ClustalW tree formatted file, specified as a string containing the file name, a
path, a URL or a MATLAB character array that contains the text for a Newick file.

 phytreeviewer

1-1411

Examples

View a Phylogenetic Tree

This example shows how to view a phylogenetic tree.

Load a sample phylogenetic tree.

tr= phytreeread('pf00002.tree')

 Phylogenetic tree object with 33 leaves (32 branches)

View the phylogenetic tree.

phytreeviewer(tr)

1 Alphabetical List

1-1412

 phytreeviewer

1-1413

Alternatively, you can click Phylogenetic Tree on the Apps tab to open the app, and view
the phylogenetic tree object tr .

See Also
phytree | cluster | view | phytreeread | phytreewrite | plot

1 Alphabetical List

1-1414

phytreewrite

Write phylogenetic tree object to Newick-formatted file

Syntax

phytreewrite(File, Tree)

phytreewrite(Tree)

phytreewrite(..., 'Distances', DistancesValue, ...)

phytreewrite(..., 'BranchNames', BranchNamesValue, ...)

Arguments

File String specifying a Newick-formatted file. Enter either a file name or
a path and file name supported by your operating system (ASCII text
file).

Tree Phylogenetic tree object, either created with phytree (object
constructor function) or imported using the phytreeread function.

Description

phytreewrite(File, Tree) copies the contents of a phytree object from the
MATLAB workspace to a file. Data in the file uses the Newick format for describing
trees.

The Newick tree format can be found at

http://evolution.genetics.washington.edu/phylip/newicktree.html

phytreewrite(Tree) opens the Save Phylogenetic Tree As dialog box for you to enter
or select a file name.

phytreewrite(..., 'PropertyName', PropertyValue, ...) calls
phytreewrite with optional properties that use property name/property value pairs.

http://evolution.genetics.washington.edu/phylip/newicktree.html

 phytreewrite

1-1415

You can specify one or more properties in any order. Enclose each PropertyName in
single quotation marks. Each PropertyName is case insensitive. These property name/
property value pairs are as follows:

phytreewrite(..., 'Distances', DistancesValue, ...) specifies whether to
exclude the distances from the output. DistancesValue can be true (default) or false.

phytreewrite(..., 'BranchNames', BranchNamesValue, ...) specifies whether
to exclude the branch names from the output. BranchNamesValue can be true (default)
or false.

Examples

Read tree data from a Newick-formatted file.

tr = phytreeread('pf00002.tree')

 Phylogenetic tree object with 33 leaves (32 branches)

Remove all the mouse proteins and view the pruned tree.

ind = getbyname(tr,'mouse');

tr = prune(tr,ind);

view(tr)

1 Alphabetical List

1-1416

Write pruned tree data to a file.

phytreewrite('newtree.tree',tr)

More About
• “getnewickstr”

See Also
multialignwrite | phytree object | phytree | phytreeread | phytreeviewer
| seqlinkage

 plot (clustergram)

1-1417

plot (clustergram)

Render clustergram and dendrograms for clustergram object

Syntax

plot(CGObject)

plot(CGObject, HFig)

HFig = plot(...)

Arguments

CGObject Clustergram object created with the function clustergram.
HFig Handle to a MATLAB Figure window.

Description

plot(CGObject) renders a heat map and dendrograms for CGObject, a clustergram
object, in a MATLAB Figure window.

plot(CGObject, HFig) renders a heat map and dendrograms for CGObject, a
clustergram object, in a MATLAB Figure window with the handle HFig.

HFig = plot(...) returns the handle to the figure. The graphic properties are stored
as application data in the figure handle.

Examples

Plot the clustergram object created in the first two steps of the “Examples” on page 1-446
section of the clustergram function reference page.

plot(cgo)

1 Alphabetical List

1-1418

More About
• “clustergram object”

See Also
clustergram | addXLabel | get | set | addTitle | addYLabel | view

 plot (DataMatrix)

1-1419

plot (DataMatrix)
Draw 2-D line plot of DataMatrix object

Syntax

plot(DMObj1)

plot(DMObj1, DMObj2)

plot(..., LineSpec)

Arguments

DMObj1,
DMObj2

DataMatrix objects, such as created by DataMatrix (object
constructor).

Note: If both DMObj1 and DMObj2 are input arguments, one of the
inputs can be a MATLAB numeric array.

LineSpec String specifying a line style, marker symbol, and color of the plotted
lines. For more information on these specifiers, see LineSpec.

Description

plot(DMObj1) plots the columns of a DataMatrix object DMObj1 versus their index.

plot(DMObj1, DMObj2) plots the data from DMObj1 and DMObj2, two DataMatrix
objects, or one DataMatrix object and one MATLAB numeric array.

• If DMObj1 and DMObj2 are both vectors, they must have the same number of
elements, and plot plots one vector versus the other vector, creating a single line.

• If one is a vector and one a scalar, plot plots discrete points vertically or horizontally,
at the scalar value.

• If one is a vector and one a matrix, the number of elements in the vector must equal
either the number of rows or the number of columns in the matrix, and plot plots the
vector versus each row or column in the matrix.

1 Alphabetical List

1-1420

• If both are matrices, they must have the same size (number of rows and columns), and
plot plots each column in DMObj1 versus the corresponding column in DMObj2.

plot(..., LineSpec) plots all lines as defined by LineSpec, a character string
specifying a line style, marker symbol, and/or color.

Note: For a list of line style, marker, and color specifiers, see LineSpec.

More About
• “DataMatrix object”

See Also
DataMatrix | plot

 plot (HeatMap)

1-1421

plot (HeatMap)

Render heat map for HeatMap object

Syntax

plot(HMObject)

plot(HMObject, HFig)

HFig = plot(...)

Arguments

HMObject HeatMap object created with the function HeatMap.
HFig Handle to a MATLAB Figure window.

Description

plot(HMObject) renders a heat map for HMObject, a HeatMap object, in a MATLAB
Figure window.

plot(HMObject, HFig) renders a heat map for HMObject, a HeatMap object, in a
MATLAB Figure window with the handle HFig.

HFig = plot(...) returns the handle to the figure. The graphic properties are stored
as application data in the figure handle.

Examples

Plot the HeatMap object created in the “Examples” on page 1- section of the
HeatMap function reference page.

plot(hmo)

1 Alphabetical List

1-1422

More About
• “HeatMap object”

See Also
HeatMap | addXLabel | view | addTitle | addYLabel

 plotChiSquaredFit

1-1423

plotChiSquaredFit

Plot goodnesss-of-fit for variance regression

Syntax

plotChiSquaredFit(test)

plotChiSquaredFit(test,Name,Value)

H = plotChiSquaredFit(___)

Description

plotChiSquaredFit(test) plots the empirical CDF of the chi-squared probabilities of
the ratio between the observed and the estimated variance stratified by count levels into
five equal-sized bins. Use this plot to assess the goodness-of-fit.

test, an output of the nbintest function, is a NegativeBinomialTest object. It
contains results from an unpaired hypothesis test for two independent samples.

Note: If the 'VarianceLink' name-value pair argument was set to 'Identity' when
you ran nbintest, then the chi-squared probability is computed using the ratio between
the observed variance to the mean.

plotChiSquaredFit(test,Name,Value) uses a name-value pair argument.

H = plotChiSquaredFit(___) returns handles to axes.

Examples

Perform unpaired hypothesis test for short-read count data

This example shows how to perform an unpaired hypothesis test for synthetic short-read
count data from two different biological conditions.

1 Alphabetical List

1-1424

The synthetic data in this example contains gene count data for 5000 genes, measured
from two different biological conditions, such as diseased and normal cells. For each
condition, there are five samples. Only 10% of the genes (500 genes) are differentially
expressed. Specifically, half of them (250 genes) are exactly 3-fold overexpressed. The
other 250 genes are 3-fold underexpressed. The rest of the gene expression data is
generated from the same negative binomial distribution for both conditions. Each sample
also has a different size factor (that is, the coverage or sampling depth).

Load the data.

clear all

load(fullfile(matlabroot,'examples','bioinfo','nbintest_data.mat'))

The variable K contains gene count data. The rows represent genes, and the columns
represent samples. In this case, the first five columns represent samples from the first
condition. The other five columns represent samples from the second condition. Display
the first few rows of K.

K(1:5,:)

ans =

 Columns 1 through 6

 13683 14140 8281 14309 12208 8045

 16028 16805 9813 16486 14076 9901

 814 862 492 910 758 521

 15870 16453 9857 16454 14267 9671

 9422 9393 5734 9598 8174 5381

 Columns 7 through 10

 9446 11317 14597 14592

 10927 13348 16999 17036

 573 753 870 936

 10997 13624 17151 17205

 6315 7752 9869 9795

In this example, the null hypothesis is true when the gene is not differentially expressed.
The variable H0 contains boolean indicators that indicate for which genes the null
hypothesis is true (marked as 1). In other words, H0 contains known labels that you will
use later to compare with predicted results.

 plotChiSquaredFit

1-1425

sum(H0)

ans =

 4500

Out of 5000 genes, 4500 are not differentially expressed in this synthetic data.

Run an unpaired hypothesis test for samples from two conditions using nbintest.
The assumption is that the data came from a negative binomial distribution, where the
variance is linked to the mean via a locally-regressed smooth function of the mean as
described in [1] by setting 'VarianceLink' to 'LocalRegression'.

tLocal = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','LocalRegression');

Use plotVarianceLink to plot a scatter plot for each experimental condition (for X and
Y conditions), with the sample variance on the common scale versus the estimate of the
condition-dependent mean. Use a linear scale for both axes. Include curves for all other
linkage options by setting 'Compare' to true.

plotVarianceLink(tLocal,'Scale','linear','Compare',true)

1 Alphabetical List

1-1426

 plotChiSquaredFit

1-1427

The Identity line represents the Poisson model, where the variance is identical to
the mean as described in [3]. Observe that the data seems to be overdispersed (that is,
most points are above the Identity line). The Constant line represents the negative
binomial model, where the variance is the sum of the shot noise term (mean) and a
constant multiplied by the squared mean as described in [2]. The Local Regression
and Constant linkage options appear to fit better with the overdispersed data.

Use plotChiSquaredFit to assess the goodness-of-fit for variance regression. It plots
the empirical CDF (ecdf) of the chi-squared probabilities. The probabilities are the ratio
between the observed and the estimated variance stratified by short-read count levels
into five equal-sized bins.

plotChiSquaredFit(tLocal)

1 Alphabetical List

1-1428

 plotChiSquaredFit

1-1429

Each figure shows five ecdf curves. Each curve represents one of the five short-read count
levels. For instance, the blue line represents the ecdf curve for a low short-read counts
between 0 and 1264. The red line represents high counts (more than 11438).

One way to interpret the curves is to check if the ecdf curves are above the diagonal line.
If they are above the line, then the variance is overestimated. If they are below the line,
then the variance is underestimated. In both figures, the variance seems to be correctly
estimated for higher counts (that is, the red line follows the diagonal line), but slightly
overestimated for lower count levels.

To assess the performance of the hypothesis test, construct a confusion matrix using the
known labels and the predicted p-values.

confusionmat(H0,(tLocal.pValue > .001))

1 Alphabetical List

1-1430

ans =

 493 7

 5 4495

Out of 500 differentially expressed genes, 493 are correctly predicted (true positives) and
7 of them are incorrectly predicted as not-differentially expressed genes (false negatives).
Out of 4500 genes that are not differentially expressed, 4495 are correctly predicted (true
negatives) and 5 of them are incorrectly predicted as differentially expressed genes (false
positives).

For a comparison, run the hypothesis test again assuming that counts are modeled by the
Poisson distribution, where the variance is identical to the mean.

tPoisson = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','Identity');

Plot the ecdf curves. Observe that all the curves are below the diagonal line, implying
that the variance is underestimated. Therefore, the negative binomial model fits the data
better.

plotChiSquaredFit(tPoisson)

 plotChiSquaredFit

1-1431

1 Alphabetical List

1-1432

Input Arguments

test — Unpaired hypothesis test result
NegativeBinomialTest object (default)

Unpaired hypothesis test results, specified as a NegativeBinomialTest object. test is
returned by the nbintest function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 plotChiSquaredFit

1-1433

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NumBins' — Number of equal-sized bins
5 (default) | positive integer

Number of equal-sized bins, specified as a comma-separated pair consisting of
'NumBins' and a positive integer.

Example: 'NumBins',3

Output Arguments

H — Handles to axes
vector of handles

Handles to axes, specified as a vector of handles.

See Also
mattest | nbintest | NegativeBinomialTest | plotVarianceLink

1 Alphabetical List

1-1434

plotPerPositionCountByQuality

Class: BioReadQualityStatistics

Plot fractions of reads with Phred scores in ranges

Syntax

plotPerPositionCountByQuality(QSObj)

H = plotPerPositionCountByQuality(QSObj)

Description

plotPerPositionCountByQuality(QSObj) generates a line plot displaying the
fractions of all reads that have Phred scores in the ranges of 0–10, 11–20, 21–30, and 31–
40 at each base position for the BioReadQualityStatistics object QSObj.

H = plotPerPositionCountByQuality(QSObj) returns the handle H to the axes
object containing the generated plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

 plotPerPositionCountByQuality

1-1435

Examples

Plot Fractions of Reads Stratified by Phread Scores

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq','FilterLength',40,...

 'QualityScoreThreshold',5);

Plot the fractions of all reads with Phred scores in the ranges of 0–10, 11–20, 21–30, and
31–40 at each base position.

plotPerPositionCountByQuality(QSObj)

ans =

 Axes (Quality Stratification) with properties:

 XLim: [0.1000 41]

 YLim: [0 100]

 XScale: 'linear'

 YScale: 'linear'

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

1 Alphabetical List

1-1436

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

 plotPerPositionGC

1-1437

plotPerPositionGC

Class: BioReadQualityStatistics

Plot percentages of G or C nucleotides at each base position

Syntax

plotPerPositionGC(QSObj)

H = plotPerPositionGC(QSObj)

Description

plotPerPositionGC(QSObj) generates a line plot displaying the percentages of G or C
nucleotides at each base position for the BioReadQualityStatistics object QSObj.

H = plotPerPositionGC(QSObj) returns the handle H to the axes object containing
the generated plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

1 Alphabetical List

1-1438

Examples

Plot Percentages of G or C Nucleotide

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq', ...

 'FilterLength', 40, ...

 'QualityScoreThreshold', 5);

Plot percentages of G or C nucleotide at each base position.

plotPerPositionGC(QSObj)

ans =

 Axes (GC Content) with properties:

 XLim: [0.1000 41]

 YLim: [0 100]

 XScale: 'linear'

 YScale: 'linear'

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

 plotPerPositionGC

1-1439

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

1 Alphabetical List

1-1440

plotPerPositionQuality
Class: BioReadQualityStatistics

Plot Phred score distributions

Syntax

plotPerPositionQuality(QSObj)

H = plotPerPositionQuality(QSObj)

Description

plotPerPositionQuality(QSObj) displays a series of box plots showing the Phred
quality score distribution at each base position for the BioReadQualityStatistics
object QSObj. Each box plot shows the median Phred score, the 25th and 75th
percentiles, and the most extreme scores that are not considered outliers. An outlier is
defined as a point that is more than 1.5 times the interquartile distance from the median.

H = plotPerPositionQuality(QSObj) returns the handle H to the axes object
containing the generated plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

 plotPerPositionQuality

1-1441

Examples

Plot Phred score distributions

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq', ...

 'FilterLength', 40, ...

 'QualityScoreThreshold', 5);

Plot Phred quality scores at given base positions.

plotPerPositionQuality(QSObj)

ans =

 Axes (Quality Scores) with properties:

 XLim: [0.1000 41]

 YLim: [0 40]

 XScale: 'linear'

 YScale: 'linear'

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

1 Alphabetical List

1-1442

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

 plotPerSequenceGC

1-1443

plotPerSequenceGC

Class: BioReadQualityStatistics

Plot G or C nucleotide distribution

Syntax

plotPerSequenceGC(QSObj)

H = plotPerSequenceGC(QSObj)

Description

plotPerSequenceGC(QSObj) displays a bar graph showing the distribution of G or C
content for short-read sequences of the BioReadQualityStatistics object QSObj.

H = plotPerSequenceGC(QSObj) returns the handle H to the axes object containing
the generated plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

1 Alphabetical List

1-1444

Examples

Plot G or C Nucleotide Distribution

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq','FilterLength',40,...

 'QualityScoreThreshold',5);

Plot G or C distribution.

plotPerSequenceGC(QSObj)

ans =

 Axes (GC Distribution) with properties:

 XLim: [0 100]

 YLim: [0 18]

 XScale: 'linear'

 YScale: 'linear'

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

 plotPerSequenceGC

1-1445

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

1 Alphabetical List

1-1446

plotPerSequenceQuality

Class: BioReadQualityStatistics

Plot distribution of average quality scores

Syntax

plotPerSequenceQuality(QSObj)

H = plotPerSequenceQuality(QSObj)

Description

plotPerSequenceQuality(QSObj) plots the distribution of average quality scores for
short-read sequences of the BioReadQualityStatistics object QSObj.

H = plotPerSequenceQuality(QSObj) returns the handle H to the axes object
containing the generated plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

 plotPerSequenceQuality

1-1447

Examples

Plot the Distribution of Average Quality Scores

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq','FilterLength',40,...

 'QualityScoreThreshold',5);

Display the distribution of average quality scores.

plotPerSequenceQuality(QSObj)

ans =

 Axes (Quality Distribution) with properties:

 XLim: [0 40]

 YLim: [0 50]

 XScale: 'linear'

 YScale: 'linear'

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

1 Alphabetical List

1-1448

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

 plot (phytree)

1-1449

plot (phytree)
Draw phylogenetic tree

Syntax

plot(Tree)

plot(Tree, ActiveBranches)

H = plot(...)

plot(..., 'Type', TypeValue, ...)

plot(..., 'Orientation', OrientationValue, ...)

plot(..., 'Rotation', RotationValue, ...)

plot(..., 'BranchLabels', BranchLabelsValue, ...)

plot(..., 'LeafLabels', LeafLabelsValue, ...)

plot(..., 'TerminalLabels', TerminalLabelsValue, ...)

plot(..., 'LLRotation', LLRotationValue, ...)

Input Arguments

Tree Phylogenetic tree object created, such as created with the
phytree constructor function.

ActiveBranches Logical array of size numBranches-by-1 indicating the active
branches, which are displayed in the Figure window.

TypeValue String specifying a method for drawing the phylogenetic tree.
Choices are:

• 'square' (default)
• 'angular'

• 'radial'

• 'equalangle'

• 'equaldaylight'

OrientationValue String specifying the position of the root node, and hence
the orientation of a phylogram or cladogram tree, when the
'Type' property is 'square' or 'angular'. Choices are:

1 Alphabetical List

1-1450

• 'left' (default)
• 'right'

• 'top'

• 'bottom'

RotationValue Scalar between 0 (default) and 360 specifying rotation angle
(in degrees) of the phylogenetic tree in the Figure window,
when the 'Type' property is 'radial', 'equalangle', or
'equaldaylight'.

BranchLabelsValue Controls the display of branch labels next to branch nodes.
Choices are true or false (default).

LeafLabelsValue Controls the display of leaf labels next to leaf nodes. Choices
are true or false. Default is:

• true — When the 'Type' property is 'radial',
'equalangle', or 'equaldaylight'

• false — When the 'Type' property is 'square' or
'angular'

TerminalLabels Controls the display of terminal labels over the axis
tick labels, when the 'Type' property is 'square' or
'angular'. Choices are true (default) or false.

LLRotationValue Controls the rotation of leaf labels so that the text aligns
to the root node, when the 'Type' property is 'radial',
'equalangle', or 'equaldaylight'. Choices are true or
false (default).

Output Arguments

H Structure with handles to seven graph elements. The structure
includes the following fields:

• axes

• BranchLines

• BranchDots

• LeafDots

 plot (phytree)

1-1451

• branchNodeLabels

• leafNodeLabels

• terminalNodeLabels

Tip Use the set function with the handles in this structure and
their related properties to modify the plot. For more information
on the properties you can modify using the axes handle, see
Axes Properties. For more information on the properties you
can modify using the BranchLines, BranchDots, or LeafDots
handle, see Primitive Line Properties. For more information on
the properties you can modify using the branchNodeLabels,
leafNodeLabels, or terminalNodeLabels handle, see Text
Properties.

Description

plot(Tree) draws a phylogenetic tree object into a figure as a phylogram. The
significant distances between branches and nodes are in the horizontal direction. Vertical
distances are arbitrary and have no significance.

plot(Tree, ActiveBranches) hides the nonactive branches and all of their
descendants in the Figure window. ActiveBranches is a logical array of size
numBranches-by-1 indicating the active branches.

H = plot(...) returns a structure with handles to seven graph elements.

plot(..., 'Type', TypeValue, ...) specifies a method for rendering the
phylogenetic tree. Choices are as follows.

1 Alphabetical List

1-1452

Rendering Type Description

'square' (default)

 plot (phytree)

1-1453

Rendering Type Description

'angular'

'radial'

1 Alphabetical List

1-1454

Rendering Type Description

'equalangle'

Tip This rendering type hides the significance of the root
node and emphasizes clusters, thereby making it useful for
visually assessing clusters and detecting outliers.

'equaldaylight'

Tip This rendering type hides the significance of the root
node and emphasizes clusters, thereby making it useful for
visually assessing clusters and detecting outliers.

 plot (phytree)

1-1455

plot(..., 'Orientation', OrientationValue, ...) specifies the orientation of
the root node, and hence the orientation of a phylogram or cladogram phylogenetic tree in
the Figure window, when the 'Type' property is 'square' or 'angular'.

plot(..., 'Rotation', RotationValue, ...) specifies the rotation angle (in
degrees) of the phylogenetic tree in the Figure window, when the 'Type' property is
'radial', 'equalangle', or 'equaldaylight'. Choices are any scalar between 0
(default) and 360.

plot(..., 'BranchLabels', BranchLabelsValue, ...) hides or displays branch
labels next to the branch nodes. Choices are true or false (default).

plot(..., 'LeafLabels', LeafLabelsValue, ...) hides or displays leaf labels
next to the leaf nodes. Choices are true or false. Default is:

• true — When the 'Type' property is 'radial', 'equalangle', or
'equaldaylight'

• false — When the 'Type' property is 'square' or 'angular'

plot(..., 'TerminalLabels', TerminalLabelsValue, ...) hides or displays
terminal labels over the axis tick labels, when the 'Type' property is 'square' or
'angular'. Choices are true (default) or false.

plot(..., 'LLRotation', LLRotationValue, ...) controls the rotation of leaf
labels so that the text aligns to the root node, when the 'Type' property is 'radial',
'equalangle', or 'equaldaylight'. Choices are true or false (default).

Examples

% Create a phytree object from a file

tr = phytreeread('pf00002.tree')

% Plot the tree and return a structure with handles to the

% graphic elements of the phytree object

h = plot(tr,'Type','radial')

% Modify the font size and color of the leaf node labels

% by using one of the handles in the return structure

set(h.leafNodeLabels,'FontSize',6,'Color',[1 0 0])

1 Alphabetical List

1-1456

More About
• “phytree object”

See Also
phytree | cluster | phytreeread | phytreeviewer | seqlinkage |
seqneighjoin | view

 plotSummary

1-1457

plotSummary

Class: BioRead

Plot summary statistics of BioRead object

Syntax

plotSummary(BRObj)

plotSummary(BRObj,Name,Value)

[H,qsObj] = plotSummary(___)

Description

plotSummary(BRObj) generates a summary statistics figure containing six plots about
the average quality score for each base position, average quality score distribution, read
count percentage for each base position, percentage of GC content for each base position,
GC content distribution, and nucleotide distribution.

plotSummary(BRObj,Name,Value) generates a summary statistics figure using
additional options specified by one or more name-value pair arguments.

[H,qsObj] = plotSummary(___) returns a column vector H of handles to the axes in
the generated figure and a BioReadQualityStatistics object qsObj using any of the
input arguments from the previous syntaxes.

Input Arguments

BRObj

BioRead or BioMap object.

Default:

1 Alphabetical List

1-1458

Name-Value Pair Arguments

'Encoding'

String specifying the format used for the characters encoding the sequence information
and quality scores in a sequence file. Supported formats are 'Sanger', 'Illumina13',
'Illumina15', 'Illumina18', and 'Solexa'.

Default: 'Illumina18'

'FilterLength'

Positive integer (n) specifying the first n characters of each read to be used. Use an empty
array to supress filtering.

Default: []

'QualityScoreThreshold'

Scalar value specifying a minimum average quality threshold for a read to be considered.
Any read with an average score of less than the specified threshold value is ignored. The
default value is –Inf, which causes all reads to be considered.

Default: -Inf

Note: If 'FilterLength' is set to L and 'QualityScoreThreshold' is set to T, then
a read is discarded if the average quality of the first L characters of the read is less than
T.

Output Arguments

H

Column vector of handles to the axes in the generated figure.

qsObj

BioReadQualityStatistics object that stores the data represented by the graphs.

 plotSummary

1-1459

Examples

Plot Summary Statistics of BioRead Object

Create a BioRead object from a FASTQ file.

BRObj = BioRead('SRR005164_1_50.fastq');

Plot summary statistics of the BioRead object BRObj using the first 40 characters of each
read with the minimum average quality score of 5.

plotSummary(BRObj,'FilterLength',40,'QualityScoreThreshold',5)

1 Alphabetical List

1-1460

 plotSummary

1-1461

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

1 Alphabetical List

1-1462

plotSummary
Class: BioReadQualityStatistics

Plot summary statistics of a BioReadQualityStatistics object

Syntax

plotSummary(QSObj)

H = plotSummary(QSObj)

Description

plotSummary(QSObj) plots summary statistics of the BioReadQualityStatistics
object QSObj that contains six plots about the average quality score for each base
position, average quality score distribution, read count percentage for each base position,
percentage of GC content for each base position, GC content distribution, and nucleotide
distribution.

H = plotSummary(QSObj) returns the handle H to axes object containing generated
plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

 plotSummary

1-1463

Examples

Plot Summary Statistics of BioReadQualityStatistics Object

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq','FilterLength',40,...

 'QualityScoreThreshold',5);

Plot summary statistics of QSObj.

plotSummary(QSObj);

1 Alphabetical List

1-1464

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

 plotTotalGC

1-1465

plotTotalGC

Class: BioReadQualityStatistics

Plot distribution of all nucleotides of short-read sequences

Syntax

plotTotalGC(QSObj)

H = plotTotalGC(QSObj)

Description

plotTotalGC(QSObj) plots the distribution of all nucleotides of short-read sequences in
the BioReadQualityStatistics object QSObj.

H = plotTotalGC(QSObj) returns the handle H to axes object containing generated
plot.

Input Arguments

QSObj

BioReadQualityStatistics object.

Default:

Output Arguments

H

Handle to axes object containing generated plot.

1 Alphabetical List

1-1466

Examples

Plot Distribution of All Nucleotides

Create a BioReadQualityStatistics object from a FASTQ file using only the first 40
characters of each read with a minimum average quality score of 5.

QSObj = BioReadQualityStatistics('SRR005164_1_50.fastq','FilterLength',40,...

 'QualityScoreThreshold',5);

Display the distribution of all nucleotides.

plotTotalGC(QSObj);

 plotTotalGC

1-1467

See Also
BioReadQualityStatistics | setQuality | BioRead | BioMap

1 Alphabetical List

1-1468

plotVarianceLink
Plot the sample variance versus the estimate of the condition-dependent mean

Syntax

plotVarianceLink(test)

plotVarianceLink(test,Name,Value)

H = plotVarianceLink(___)

Description

plotVarianceLink(test) displays one scatter plot for each experimental condition
with the sample variance on the common scale versus the estimate of the condition-
dependent mean.

test, an output of the nbintest function, is a NegativeBinomialTest object,
containing results from an unpaired hypothesis test for two independent samples.

If the 'PooledVariance' name-value pair argument was set to true when you ran
nbintest, then plotVarianceLink plots only one scatter plot. The function also plots
the variance regression according to the model specified by the 'VarianceLink' name-
value pair argument of nbintest.

plotVarianceLink(test,Name,Value) uses one or more name-value pair arguments.

H = plotVarianceLink(___) returns handles to axes.

Examples

Perform unpaired hypothesis test for short-read count data

This example shows how to perform an unpaired hypothesis test for synthetic short-read
count data from two different biological conditions.

The synthetic data in this example contains gene count data for 5000 genes, measured
from two different biological conditions, such as diseased and normal cells. For each

 plotVarianceLink

1-1469

condition, there are five samples. Only 10% of the genes (500 genes) are differentially
expressed. Specifically, half of them (250 genes) are exactly 3-fold overexpressed. The
other 250 genes are 3-fold underexpressed. The rest of the gene expression data is
generated from the same negative binomial distribution for both conditions. Each sample
also has a different size factor (that is, the coverage or sampling depth).

Load the data.

clear all

load(fullfile(matlabroot,'examples','bioinfo','nbintest_data.mat'))

The variable K contains gene count data. The rows represent genes, and the columns
represent samples. In this case, the first five columns represent samples from the first
condition. The other five columns represent samples from the second condition. Display
the first few rows of K.

K(1:5,:)

ans =

 Columns 1 through 6

 13683 14140 8281 14309 12208 8045

 16028 16805 9813 16486 14076 9901

 814 862 492 910 758 521

 15870 16453 9857 16454 14267 9671

 9422 9393 5734 9598 8174 5381

 Columns 7 through 10

 9446 11317 14597 14592

 10927 13348 16999 17036

 573 753 870 936

 10997 13624 17151 17205

 6315 7752 9869 9795

In this example, the null hypothesis is true when the gene is not differentially expressed.
The variable H0 contains boolean indicators that indicate for which genes the null
hypothesis is true (marked as 1). In other words, H0 contains known labels that you will
use later to compare with predicted results.

sum(H0)

1 Alphabetical List

1-1470

ans =

 4500

Out of 5000 genes, 4500 are not differentially expressed in this synthetic data.

Run an unpaired hypothesis test for samples from two conditions using nbintest.
The assumption is that the data came from a negative binomial distribution, where the
variance is linked to the mean via a locally-regressed smooth function of the mean as
described in [1] by setting 'VarianceLink' to 'LocalRegression'.

tLocal = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','LocalRegression');

Use plotVarianceLink to plot a scatter plot for each experimental condition (for X and
Y conditions), with the sample variance on the common scale versus the estimate of the
condition-dependent mean. Use a linear scale for both axes. Include curves for all other
linkage options by setting 'Compare' to true.

plotVarianceLink(tLocal,'Scale','linear','Compare',true)

 plotVarianceLink

1-1471

1 Alphabetical List

1-1472

The Identity line represents the Poisson model, where the variance is identical to
the mean as described in [3]. Observe that the data seems to be overdispersed (that is,
most points are above the Identity line). The Constant line represents the negative
binomial model, where the variance is the sum of the shot noise term (mean) and a
constant multiplied by the squared mean as described in [2]. The Local Regression
and Constant linkage options appear to fit better with the overdispersed data.

Use plotChiSquaredFit to assess the goodness-of-fit for variance regression. It plots
the empirical CDF (ecdf) of the chi-squared probabilities. The probabilities are the ratio
between the observed and the estimated variance stratified by short-read count levels
into five equal-sized bins.

plotChiSquaredFit(tLocal)

 plotVarianceLink

1-1473

1 Alphabetical List

1-1474

Each figure shows five ecdf curves. Each curve represents one of the five short-read count
levels. For instance, the blue line represents the ecdf curve for a low short-read counts
between 0 and 1264. The red line represents high counts (more than 11438).

One way to interpret the curves is to check if the ecdf curves are above the diagonal line.
If they are above the line, then the variance is overestimated. If they are below the line,
then the variance is underestimated. In both figures, the variance seems to be correctly
estimated for higher counts (that is, the red line follows the diagonal line), but slightly
overestimated for lower count levels.

To assess the performance of the hypothesis test, construct a confusion matrix using the
known labels and the predicted p-values.

confusionmat(H0,(tLocal.pValue > .001))

 plotVarianceLink

1-1475

ans =

 493 7

 5 4495

Out of 500 differentially expressed genes, 493 are correctly predicted (true positives) and
7 of them are incorrectly predicted as not-differentially expressed genes (false negatives).
Out of 4500 genes that are not differentially expressed, 4495 are correctly predicted (true
negatives) and 5 of them are incorrectly predicted as differentially expressed genes (false
positives).

For a comparison, run the hypothesis test again assuming that counts are modeled by the
Poisson distribution, where the variance is identical to the mean.

tPoisson = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','Identity');

Plot the ecdf curves. Observe that all the curves are below the diagonal line, implying
that the variance is underestimated. Therefore, the negative binomial model fits the data
better.

plotChiSquaredFit(tPoisson)

1 Alphabetical List

1-1476

 plotVarianceLink

1-1477

Input Arguments

test — Unpaired hypothesis test result
NegativeBinomialTest object (default)

Unpaired hypothesis test results, specified as a NegativeBinomialTest object. test is
returned by the nbintest function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1478

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Compare',true,'Scale','linear'

'Compare' — Logical flag to add a curve with the variance link for other models
false (default) | true

Logical flag to add a curve with the variance link for other models, specified as a comma-
separated pair consisting of 'Compare' and true or false. When it is set to true, the
plot shows curves for all the available linkage options, that is, 'LocalRegression',
'Constant', and 'Identity'.

Example: 'Compare',true

'Scale' — Scale for both axes
'log' (default) | 'linear'

Scale for both axes, specified as a comma-separated pair consisting of 'Scale' and
'log' or 'linear'.

Example: 'Scale','linear'

Output Arguments

H — Handles to axes
vector of handles

Handles to axes, specified as a vector of handles.

See Also
mattest | nbintest | NegativeBinomialTest | plotChiSquaredFit

 plus (DataMatrix)

1-1479

plus (DataMatrix)
Add DataMatrix objects

Syntax

DMObjNew = plus(DMObj1, DMObj2)

DMObjNew = DMObj1 + DMObj2

DMObjNew = plus(DMObj1, B)

DMObjNew = DMObj1 + B

DMObjNew = plus(B, DMObj1)

DMObjNew = B + DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by addition.

Description

DMObjNew = plus(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 +
DMObj2 performs an element-by-element addition of the DataMatrix objects DMObj1 and
DMObj2 and places the results in DMObjNew, another DataMatrix object. DMObj1 and
DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-
by-1 DataMatrix object). The size (number of rows and columns), row names, and column
names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar; then they are
the same as DMObj2.

1 Alphabetical List

1-1480

DMObjNew = plus(DMObj1, B) or the equivalent DMObjNew = DMObj1 + B performs
an element-by-element addition of DMObj1, a DataMatrix object, and B, a numeric or
logical array, and places the results in DMObjNew, another DataMatrix object. DMObj1
and B must have the same size (number of rows and columns), unless B is a scalar. The
size (number of rows and columns), row names, and column names for DMObjNew are the
same as DMObj1.

DMObjNew = plus(B, DMObj1) or the equivalent DMObjNew = B + DMObj1
performs an element-by-element addition of B, a numeric or logical array, and DMObj1,
a DataMatrix object, and places the results in DMObjNew, another DataMatrix object.
DMObj1 and B must have the same size (number of rows and columns), unless B is
a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

Note: Arithmetic operations between a scalar DataMatrix object and a nonscalar array
are not supported.

MATLAB calls DMObjNew = plus(X, Y) for the syntax DMObjNew = X + Y when X or
Y is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | minus

 power (DataMatrix)

1-1481

power (DataMatrix)
Array power DataMatrix objects

Syntax

DMObjNew = power(DMObj1, DMObj2)

DMObjNew = DMObj1 .^ DMObj2

DMObjNew = power(DMObj1, B)

DMObjNew = DMObj1 .^ B

DMObjNew = power(B, DMObj1)

DMObjNew = B .^ DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by array power.

Description

DMObjNew = power(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 .^
DMObj2 performs an element-by-element power of the DataMatrix objects DMObj1 and
DMObj2 and places the results in DMObjNew, another DataMatrix object. In other words,
power raises each element in DMObj1 by the corresponding element in DMObj2. DMObj1
and DMObj2 must have the same size (number of rows and columns), unless one is a
scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names,
and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar;
then they are the same as DMObj2.

1 Alphabetical List

1-1482

DMObjNew = power(DMObj1, B) or the equivalent DMObjNew = DMObj1 .^ B
performs an element-by-element power of the DataMatrix object DMObj1 and B, a
numeric or logical array, and places the results in DMObjNew, another DataMatrix object.
In other words, power raises each element in DMObj1 by the corresponding element
in B. DMObj1 and B must have the same size (number of rows and columns), unless B
is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

DMObjNew = power(B, DMObj1) or the equivalent DMObjNew = B .^ DMObj1
performs an element-by-element power of B, a numeric or logical array, and the
DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix
object. In other words, power raises each element in B by the corresponding element in
DMObj1.DMObj1 and B must have the same size (number of rows and columns), unless
B is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

Note: Arithmetic operations between a scalar DataMatrix object and a nonscalar array
are not supported.

MATLAB calls DMObjNew = power(X, Y) for the syntax DMObjNew = X .^ Y when X
or Y is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | times

 probelibraryinfo

1-1483

probelibraryinfo
Create table of probe set library information

Syntax

ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)

Input Arguments

CELStruct Structure created by the affyread function from an Affymetrix
CEL file.

CDFStruct Structure created by the affyread function from an Affymetrix
CDF library file associated with the CEL file.

Output Arguments

ProbeInfo Three-column matrix with the same number of rows as the
Probes field of the CELStruct.

• Column 1 — Probe set ID/name to which the probe belongs.
(Probes that do not belong to a probe set in the CDF library
file have probe set ID/name equal to 0.)

• Column 2 — Contains the probe pair number.
• Column 3 — Indicates if the probe is a perfect match (1) or

mismatch (-1) probe.

Description

ProbeInfo = probelibraryinfo(CELStruct, CDFStruct) creates a table of
information linking the probe data from CELStruct, a structure created from an
Affymetrix CEL file, with probe set information from CDFStruct, a structure created
from an Affymetrix CDF file.

1 Alphabetical List

1-1484

Note: Affymetrix probe pair indexing is 0-based, while MATLAB software indexing is 1-
based. The output from probelibraryinfo is 1-based.

Examples

The following example uses a sample CEL file and the CDF library file from the E. coli
Antisense Genome array, which you can download from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the sample data, you will need the Affymetrix Data Transfer Tool
to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer
Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

The following example assumes that the Ecoli-antisense-121502.CEL file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.
cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Extract probe set library information.

ProbeInfo = probelibraryinfo(celStruct, cdfStruct);

4 Determine the probe set to which the 1104th probe belongs.

cdfStruct.ProbeSets(ProbeInfo(1104,1)).Name

ans =

thrA_b0002_at

See Also
affyread | celintensityread | probesetlink | probesetlookup |
probesetplot | probesetvalues

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

 probesetlink

1-1485

probesetlink
Display probe set information on NetAffx Web site

Syntax

probesetlink(AffyStruct, PS)

URL = probesetlink(AffyStruct, PS)

probesetlink(AffyStruct, PS, ...'Source', SourceValue, ...)

probesetlink(AffyStruct, PS, ...'Browser', BrowserValue, ...)

URL = probesetlink(AffyStruct, PS, ...'NoDisplay',

NoDisplayValue, ...)

Input Arguments

AffyStruct Structure created by the affyread function from an Affymetrix
CHP file or an Affymetrix CDF library file.

PS Probe set index or the probe set ID/name.
SourceValue Controls the linking to the data source (for example, GenBank

or Flybase) for the probe set (instead of linking to the NetAffx™
Web site). Choices are true or false (default).

Note: This property requires the GIN library file associated with
the CHP or CDF file to be located in the same folder as the CDF
library file.

BrowserValue Controls the display of the probe set information in your system's
default Web browser. Choices are true or false (default).

NoDisplayValue Controls the return of URL without opening a Web browser.
Choices are true or false (default).

Output Arguments

URL URL for the probe set information.

1 Alphabetical List

1-1486

Description

probesetlink(AffyStruct, PS) opens a Web Browser window displaying
information on the NetAffx Web site about a probe set specified by PS, a probe set index
or the probe set ID/name, and AffyStruct, a structure created from an Affymetrix CHP
file or Affymetrix CDF library file.

URL = probesetlink(AffyStruct, PS) also returns the URL (linking to the NetAffx
Web site) for the probe set information.

probesetlink(AffyStruct, PS, ...'PropertyName', PropertyValue, ...)

calls probesetlink with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

probesetlink(AffyStruct, PS, ...'Source', SourceValue, ...) controls the
linking to the data source (for example, GenBank or Flybase) for the probe set (instead of
linking to the NetAffx Web site). Choices are true or false (default).

Note: The 'Source' property requires the GIN library file associated with the CHP or
CDF file to be located in the same folder as the CDF library file.

probesetlink(AffyStruct, PS, ...'Browser', BrowserValue, ...) controls
the display of the probe set information in your system's default Web browser. Choices
are true or false (default).

URL = probesetlink(AffyStruct, PS, ...'NoDisplay',

NoDisplayValue, ...) controls the return of the URL without opening a Web
browser. Choices are true or false (default).

Note: The NetAffx Web site requires you to register and provide a user name and
password.

 probesetlink

1-1487

Examples

The following example uses a sample CHP file and the CDF library file from the E. coli
Antisense Genome array, which you can download from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the sample data, you will need the Affymetrix Data Transfer Tool
to extract the CHP file from a DTT file. You can download the Affymetrix Data Transfer
Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

The following example assumes that the Ecoli-antisense-121502.CHP file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CHP file into a MATLAB structure.

chpStruct = affyread('Ecoli-antisense-121502.CHP',...

 'D:\Affymetrix\LibFiles\Ecoli');

2 Display information from the NetAffx Web site for the argG_b3172_at probe set.

probesetlink(chpStruct,'argG_b3172_at')

See Also
affyread | celintensityread | probelibraryinfo | probesetlookup |
probesetplot | probesetvalues

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

1 Alphabetical List

1-1488

probesetlookup
Look up information for Affymetrix probe set

Syntax

PSStruct = probesetlookup(AffyStruct, ID)

Input Arguments

AffyStruct Structure created by the affyread function from an Affymetrix CHP
file or an Affymetrix CDF library file for expression assays.

ID String or cell array of strings specifying one or more probe set IDs/
names or gene IDs.

Output Arguments

PSStruct Structure or array of structures containing the following fields for a
probe set:

• Identifier — Gene ID associated with the probe set
• ProbeSetName — Probe set ID/name
• CDFIndex — Index into the CDF structure for the probe set
• GINIndex — Index into the GIN structure for the probe set
• Description — Description of the probe set
• Source — Source(s) of the probe set
• SourceURL — Source URL(s) for the probe set

Description

PSStruct = probesetlookup(AffyStruct, ID) returns a structure or an array of
structures containing information for an Affymetrix probe set specified by ID, a string

 probesetlookup

1-1489

or cell array of strings specifying one or more probe set IDs/names or gene IDs, and by
AffyStruct, a structure created from an Affymetrix CHP file or Affymetrix CDF library
file for expression assays.

Note: This function works with CHP files and CDF files for expression assays only. It
requires that the GIN library file associated with the CHP file or CDF file to be located in
the same folder as the CDF library file.

Examples

The following example uses the CDF library file from the E. coli Antisense Genome
array, which you can download from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

The following example assumes that the Ecoli_ASv2.CDF library file is stored at D:
\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CDF library file into a MATLAB structure.
cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

2 Look up the gene ID (Identifier) associated with the argG_b3172_at probe set.

probesetlookup(cdfStruct,'argG_b3172_at')

ans =

 Identifier: '3315278'

 ProbeSetName: 'argG_b3172_at'

 CDFIndex: 5213

 GINIndex: 3074

 Description: [1x82 char]

 Source: 'NCBI EColi Genome'

 SourceURL: [1x74 char]

See Also
affyread | celintensityread | probelibraryinfo | probesetlink |
probesetplot | probesetvalues | rmabackadj

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

1 Alphabetical List

1-1490

probesetplot
Plot Affymetrix probe set intensity values

Syntax

probesetplot(CELStruct, CDFStruct, PS)

probesetplot(CELStruct, CDFStruct, PS, ...'GeneName',

GeneNameValue, ...)

probesetplot(CELStruct, CDFStruct, PS, ...'Field', FieldValue, ...)

probesetplot(CELStruct, CDFStruct, PS, ...'ShowStats',

ShowStatsValue, ...)

Arguments

CELStruct Structure created by the affyread function from an
Affymetrix CEL file.

CDFStruct Structure created by the affyread function from an
Affymetrix CDF library file associated with the CEL file.

PS Probe set index or the probe set ID/name.
GeneNameValue Controls whether the probe set name or the gene name is used

for the title of the plot. Choices are true or false (default).

Note: The 'GeneName' property requires the GIN library file
associated with the CEL and CDF files to be located in the
same folder as the CDF library file from which CDFStruct was
created.

FieldValue String specifying the type of data to plot. Choices are:

• 'Intensity' (default)
• 'StdDev'

• 'Background'

• 'Pixels'

 probesetplot

1-1491

• 'Outlier'

ShowStatsValue Controls whether the mean and standard deviation lines are
included in the plot. Choices are true or false (default).

Description

probesetplot(CELStruct, CDFStruct, PS) plots the PM (perfect match) and MM
(mismatch) intensity values for a specified probe set. CELStruct is a structure created
by the affyread function from an Affymetrix CEL file. CDFStruct is a structure
created by the affyread function from an Affymetrix CDF library file associated with
the CEL file. PS is the probe set index or the probe set ID/name.

Note: MATLAB software uses 1-based indexing for probe set numbers, while the
Affymetrix CDF file uses 0-based indexing for probe set numbers. For example,
CDFStruct.ProbeSets(1) has a ProbeSetNumber of 0 in the ProbePairs field.

probesetplot(CELStruct, CDFStruct, PS, ...'PropertyName',

PropertyValue, ...) calls probesetplot with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

probesetplot(CELStruct, CDFStruct, PS, ...'GeneName',

GeneNameValue, ...) controls whether the probe set name or the gene name is used
for the title of the plot. Choices are true or false (default).

Note: The 'GeneName' property requires the GIN library file associated with the
CEL and CDF files to be located in the same folder as the CDF library file from which
CDFStruct was created.

probesetplot(CELStruct, CDFStruct, PS, ...'Field', FieldValue, ...)

specifies the type of data to plot. Choices are:

• 'Intensity' (default)
• 'StdDev'

1 Alphabetical List

1-1492

• 'Background'

• 'Pixels'

• 'Outlier'

probesetplot(CELStruct, CDFStruct, PS, ...'ShowStats',

ShowStatsValue, ...) controls whether the mean and standard deviation lines are
included in the plot. Choices are true or false (default).

Examples

The following example use a sample CEL file and the CDF library file from the E. coli
Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the sample data, you will need the Affymetrix Data Transfer Tool
to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer
Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

The following example assumes that the Ecoli-antisense-121502.CEL file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Plot the PM and MM intensity values of the argG_b3172_at probe set, including
the mean and standard deviation.

probesetplot(celStruct, cdfStruct, 'argG_b3172_at','showstats', true)

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

 probesetplot

1-1493

See Also
affyread | celintensityread | probesetlink | probesetlookup |
probesetvalues

1 Alphabetical List

1-1494

probesetvalues
Create table of Affymetrix probe set intensity values

Syntax

PSValues = probesetvalues(CELStruct, CDFStruct, PS)

PSValues = probesetvalues(CELStruct, CDFStruct, PS, 'Background',

BackgroundValue)

ColumnNames = probesetvalues

Input Arguments

CELStruct Structure created by the affyread function from an
Affymetrix CEL file.

CDFStruct Structure created by the affyread function from an
Affymetrix CDF library file associated with the CEL file.

PS Probe set index or the probe set ID/name.
BackgroundValue Controls the background correction in the calculation. Choices

are:

• true (default) — Background values from the Background
field in the PSValues matrix are used to calculate the
probe intensity values.

• false — Background values are not calculated.
• A vector of precalculated background values (such as

returned by the zonebackadj function) whose length
is equal to the number of probes in CELStruct. These
background values are used to calculate the probe intensity
values.

Tip Including background correction in the calculation of
the probe intensity values can be slow. Therefore, setting
'Background' to false can speed up the calculation.

 probesetvalues

1-1495

However, the values returned in the 'Background' field of
the PSValues matrix will be zero.

Output Arguments

PSValues Twenty-column matrix with one row for each probe pair in
the probe set.

ColumnNames Cell array of strings containing the column names of the
PSValues matrix. This is returned only when you call
probesetvalues with no input arguments.

Description

PSValues = probesetvalues(CELStruct, CDFStruct, PS) creates a table of
intensity values for PS, a probe set, from the probe-level data in CELStruct, a structure
created by the affyread function from an Affymetrix CEL file. PS is a probe set index
or probe set ID/name from CDFStruct, a structure created by the affyread function
from an Affymetrix CDF library file associated with the CEL file. PSValues is a twenty-
column matrix with one row for each probe pair in the probe set. The columns correspond
to the following fields.

Column Field Description

1 'ProbeSetNumber' Number identifying the probe set to which the
probe pair belongs.

2 'ProbePairNumber' Index of the probe pair within the probe set.
3 'UseProbePair' This field is for backward compatibility only and

is not currently used.
4 'Background' Estimated background of probe intensity values

of the probe pair.
5 'PMPosX' x-coordinate of the perfect match probe.
6 'PMPosY' y-coordinate of the perfect match probe.
7 'PMIntensity' Intensity value of the perfect match probe.
8 'PMStdDev' Standard deviation of intensity value of the

perfect match probe.

1 Alphabetical List

1-1496

Column Field Description

9 'PMPixels' Number of pixels in the cell containing the
perfect match probe.

10 'PMOutlier' True/false flag indicating if the perfect match
probe was marked as an outlier.

11 'PMMasked' True/false flag indicating if the perfect match
probe was masked.

12 'MMPosX' x-coordinate of the mismatch probe.
13 'MMPosY' y-coordinate of the mismatch probe.
14 'MMIntensity' Intensity value of the mismatch probe.
15 'MMStdDev' Standard deviation of intensity value of the

mismatch probe.
16 'MMPixels' Number of pixels in the cell containing the

mismatch probe.
17 'MMOutlier' True/false flag indicating if the mismatch probe

was marked as an outlier.
18 'MMMasked' True/false flag indicating if the mismatch probe

was masked.
19 'GroupNumber' Number identifying the group to which the

probe pair belongs. For expression arrays, this is
always 1. For genotyping arrays, this is typically
1 (allele A, sense), 2 (allele B, sense), 3 (allele A,
antisense), or 4 (allele B, antisense).

20 'Direction' Number identifying the direction of the probe
pair. 1 = sense and 2 = antisense.

Note: MATLAB software uses 1-based indexing for probe set numbers, while the
Affymetrix CDF file uses 0-based indexing for probe set numbers. For example,
CDFStruct.ProbeSets(1) has a ProbeSetNumber of 0 in the ProbePairs field.

PSValues = probesetvalues(CELStruct, CDFStruct, PS, 'Background',

BackgroundValue) controls the background correction in the calculation.
BackgroundValue can be:

 probesetvalues

1-1497

• true (default) — Background values from the Background field in the PSValues
matrix are used to calculate the probe intensity values.

• false — Background values are not calculated.
• A vector of precalculated background values (such as returned by the zonebackadj

function) whose length is equal to the number of probes in CELStruct. These
background values are used to calculate the probe intensity values.

Tip Including background correction in the calculation of the probe intensity values
can be slow. Therefore, setting 'Background' to false can speed up the calculation.
However, the values returned in the 'Background' field of the PSValues matrix will be
zero.

ColumnNames = probesetvalues returns a cell array of strings containing the
column names of the PSValues matrix. ColumnNames is returned only when you call
probesetvalues without input arguments. The information contained in ColumnNames
is common to all Affymetrix GeneChip arrays.

Examples

The following example uses a sample CEL file and the CDF library file from the E. coli
Antisense Genome array, which you can download from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the sample data, you will need the Affymetrix Data Transfer Tool
to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer
Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

The following example assumes that the Ecoli-antisense-121502.CEL file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

1 Alphabetical List

1-1498

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Use the zonebackadj function to return a matrix or cell array of vectors containing
the estimated background values for each probe.
[baData,zones,background] = zonebackadj(celStruct,'cdf',cdfStruct);

4 Create a table of intensity values for the argG_b3172_at probe set.
psvals = probesetvalues(celStruct, cdfStruct, 'argG_b3172_at',...

 'background',background);

See Also
affyread | celintensityread | probelibraryinfo | probesetlink |
probesetlookup | probesetplot | rmabackadj | zonebackadj

 profalign

1-1499

profalign
Align two profiles using Needleman-Wunsch global alignment

Syntax

Prof = profalign(Prof1, Prof2)

[Prof, H1, H2] = profalign(Prof1, Prof2)

profalign(..., 'ScoringMatrix', ScoringMatrixValue, ...)

profalign(..., 'GapOpen', {G1Value, G2Value}, ...)

profalign(..., 'ExtendGap', {E1Value, E2Value}, ...)

profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue, ...)

profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue, ...)

profalign(..., 'ShowScore', ShowScoreValue, ...)

Description

Prof = profalign(Prof1, Prof2) returns a new profile (Prof) for the optimal
global alignment of two profiles (Prof1, Prof2). The profiles (Prof1, Prof2) are
numeric arrays of size [(4 or 5 or 20 or 21) x Profile Length] with counts
or weighted profiles. Weighted profiles are used to down-weight similar sequences and
up-weight divergent sequences. The output profile is a numeric matrix of size [(5 or
21) x New Profile Length] where the last row represents gaps. Original gaps in
the input profiles are preserved. The output profile is the result of adding the aligned
columns of the input profiles.

[Prof, H1, H2] = profalign(Prof1, Prof2) returns pointers that indicate how
to rearrange the columns of the original profiles into the new profile.

profalign(..., 'PropertyName', PropertyValue, ...) calls profalign with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

profalign(..., 'ScoringMatrix', ScoringMatrixValue, ...) defines the
scoring matrix to be used for the alignment.

ScoringMatrixValue can be either of the following:

1 Alphabetical List

1-1500

• String specifying the scoring matrix to use for the alignment. Choices for amino acid
sequences are:

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

• 'BLOSUM50' — When AlphabetValue equals 'AA'
• 'NUC44' — When AlphabetValue equals 'NT'

Note: The above scoring matrices, provided with the software, also include a structure
containing a scale factor that converts the units of the output score to bits. You can
also use the 'Scale' property to specify an additional scale factor to convert the
output score from bits to another unit.

• Matrix representing the scoring matrix to use for the alignment, such as returned by
the blosum, pam, dayhoff, gonnet, or nuc44 function.

Note: If you use a scoring matrix that you created or was created by one of the above
functions, the matrix does not include a scale factor. The output score will be returned
in the same units as the scoring matrix.

Note: If you need to compile profalign into a stand-alone application or
software component using MATLAB Compiler, use a matrix instead of a string for
ScoringMatrixValue.

profalign(..., 'GapOpen', {G1Value, G2Value}, ...) sets the penalties for
opening a gap in the first and second profiles respectively. G1Value and G2Value can be
either scalars or vectors. When using a vector, the number of elements is one more than
the length of the input profile. Every element indicates the position specific penalty for
opening a gap between two consecutive symbols in the sequence. The first and the last

 profalign

1-1501

elements are the gap penalties used at the ends of the sequence. The default gap open
penalties are {10,10}.

profalign(..., 'ExtendGap', {E1Value, E2Value}, ...) sets the penalties
for extending a gap in the first and second profile respectively. E1Value and E2Value
can be either scalars or vectors. When using a vector, the number of elements is one more
than the length of the input profile. Every element indicates the position specific penalty
for extending a gap between two consecutive symbols in the sequence. The first and the
last elements are the gap penalties used at the ends of the sequence. If ExtendGap is not
specified, then extensions to gaps are scored with the same value as GapOpen.

profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue, ...),
if ExistingGapAdjustValue is false, turns off the automatic adjustment
based on existing gaps of the position-specific penalties for opening a gap. When
ExistingGapAdjustValue is true (default), for every profile position, profalign
proportionally lowers the penalty for opening a gap toward the penalty of extending a
gap based on the proportion of gaps found in the contiguous symbols and on the weight of
the input profile.

profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue, ...),
when TerminalGapAdjustValue is true, adjusts the penalty for opening a gap at the
ends of the sequence to be equal to the penalty for extending a gap. Default is false.

profalign(..., 'ShowScore', ShowScoreValue, ...), when ShowScoreValue
is true, displays the scoring space and the winning path.

Examples
1 Read in sequences and create profiles.

ma1 = ['RGTANCDMQDA';'RGTAHCDMQDA';'RRRAPCDL-DA'];

ma2 = ['RGTHCDLADAT';'RGTACDMADAA'];

p1 = seqprofile(ma1,'gaps','all','counts',true);

p2 = seqprofile(ma2,'counts',true);

2 Merge two profiles into a single one by aligning them.

p = profalign(p1,p2);

seqlogo(p)

3 Use the output pointers to generate the multiple alignment.

[p, h1, h2] = profalign(p1,p2);

1 Alphabetical List

1-1502

ma = repmat('-',5,12);

ma(1:3,h1) = ma1;

ma(4:5,h2) = ma2;

disp(ma)

4 Increase the gap penalty before cysteine in the second profile.

gapVec = 10 + [p2(aa2int('C'),:) 0] * 10

p3 = profalign(p1,p2,'gapopen',{10,gapVec});

seqlogo(p3)

5 Add a new sequence to a profile without inserting new gaps into the profile.

gapVec = [0 inf(1,11) 0];

p4 = profalign(p3,seqprofile('PLHFMSVLWDVQQWP'),...

 'gapopen',{gapVec,10});

seqlogo(p4)

More About
• “hmmprofalign”
• “nwalign”
• “seqprofile”

See Also
multialign | seqconsensus

 proteinplot

1-1503

proteinplot

Open Protein Plot window to investigate properties of amino acid sequence

Syntax

proteinplot

proteinplot (SeqAA)

Arguments

SeqAA Either of the following:

• String of single-letter codes specifying an amino acid sequence. For
valid letter codes, see the table Mapping Amino Acid Letter Codes to
Integers. Unknown characters are mapped to 0.

• MATLAB structure containing a Sequence field that contains an
amino acid sequence, such as returned by fastaread, getgenpept,
genpeptread, getpdb, or pdbread.

Description

The Protein Plot window lets you analyze and compare properties of a single amino acid
sequence. It displays smoothed line plots of various properties such as the hydrophobicity
of the amino acids in the sequence.

proteinplot opens the Protein Plot window.

proteinplot (SeqAA) opens the Protein Plot window and loads SeqAA, an amino acid
sequence, into the window.

Tip You can analyze and compare properties of an amino acid sequence from the
MATLAB command line also by using the proteinpropplot function.

1 Alphabetical List

1-1504

Examples

Importing Sequences into the Protein Plot Window

You can import a sequence into the Protein Plot window from the MATLAB command
line.

1 Retrieve an amino acid sequence from the Protein Data Bank (PDB) database.

prion = getpdb('1HJM', 'SEQUENCEONLY', true);

2 Load the amino acid sequence into the Protein Plot window.

proteinplot(prion)

The Protein Plot window opens, and the sequence appears in the Sequence text box.

 proteinplot

1-1505

You can import a sequence after the Protein Plot window is open by doing either of the
following:

• Type or paste an amino acid sequence into the Sequence text box.
• Click the Import Sequence button to open the Import dialog box From the Import

From list, select one of the following:

• Workspace — To select a variable from the MATLAB Workspace
• Text File — To select a text file
• FASTA File — To select a FASTA-formatted file

1 Alphabetical List

1-1506

• GenPept File — To select a GenPept-formatted file
• GenPept Database — To specify an accession number in the GenPept database

Viewing Properties of Amino Acids

Select a property from the Properties drop-down list box to display a smoothed plot of
the property values along the sequence. You can select multiple properties from the list
by holding down Shift or Ctrl while selecting properties. When you select two properties,
the plots are displayed using a PLOTYY-style layout, with one y-axis on the left and one
on the right. For all other selections, a single y-axis is displayed. When displaying one or
two properties, the y values displayed are the actual property values. When displaying
three or more properties, the values are normalized to the range 0–1.

Accessing Information About the Properties

You can access information about the properties from the Help menu.

1 Select Help > References. The Help browser opens with a list of properties and
references.

2 Scroll down to locate the property of interest.

Using Other Features in the Protein Plot Window

The Terminal Selection boxes (N and C) let you choose to plot only part of the
sequence. By default, all of the sequence is plotted.

You can add your own properties by clicking on the Add button next to the Properties
list. This opens a Property dialog box that lets you specify the value for each of the
amino acids. The Display Text box lets you specify the text that will be displayed in the
Properties list on the main Protein Plot window. You can also save the property values
to a file for future use by typing a file name in the Filename text box.

The default smoothing method is an unweighted linear moving average with a window
length of five residues. You can change this by selecting Edit > Filter Window
Options. The dialog box lets you select the Window Size from 5 to 29 residues.
Increasing the window size produces a smoother plot. You can modify the shape of
the smoothing window by changing the Edge Weight factor. And you can choose the
smoothing function to be a linear moving average, an exponential moving average or a
linear Lowess smoothing.

 proteinplot

1-1507

The File menu lets you import a sequence, save the plot that you have created to a
Figure file, export the data values in the figure to a workspace variable or to a MAT-file,
export the figure to a normal Figure window for customizing, or print the figure.

The Edit menu lets you create a new property, to reset the property values to the default
values, and to modify the smoothing parameters with the Configuration Values menu
item.

The View menu lets you turn the toolbar on and off, and to add a legend to the plot.

The Tools menu lets you zoom in and zoom out of the plot, to view Data Statistics such
as mean, minimum and maximum values of the plot, and to normalize the values of the
plot from 0 to 1.

The Help menu lets you view this document and to see the references for the sequence
properties included with the Protein Plot window.

See Also
aacount | atomiccomp | molviewer | molweight | pdbdistplot |
proteinpropplot | seqviewer | plotyy

1 Alphabetical List

1-1508

proteinpropplot

Plot properties of amino acid sequence

Syntax

proteinpropplot (SeqAA)

proteinpropplot(SeqAA, ...'PropertyTitle', PropertyTitleValue, ...)

proteinpropplot(SeqAA, ...'Startat', StartatValue, ...)

proteinpropplot(SeqAA, ...'Endat', EndatValue, ...)

proteinpropplot(SeqAA, ...'Smoothing', SmoothingValue, ...)

proteinpropplot(SeqAA, ...'EdgeWeight', EdgeWeightValue, ...)

proteinpropplot(SeqAA, ...'WindowLength', WindowLengthValue, ...)

Arguments

SeqAA Amino acid sequence. Enter any of the following:

• Character string of letters representing an amino acid
• Vector of integers representing an amino acid, such as

returned by aa2int
• Structure containing a Sequence field that contains

an amino acid sequence, such as returned by getembl,
getgenpept, or getpdb

PropertyTitleValue String that specifies the property to plot. Default is
Hydrophobicity (Kyte & Doolittle). To display
a list of properties to plot, enter a empty string for
PropertyTitleValue. For example, type:

proteinpropplot(sequence, 'propertytitle', '')

Tip To access references for the properties, view the
proteinpropplot file.

 proteinpropplot

1-1509

StartatValue Integer that specifies the starting point for the plot from the
N-terminal end of the amino acid sequence SeqAA. Default
is 1.

EndatValue Integer that specifies the ending point for the plot from the
N-terminal end of the amino acid sequence SeqAA. Default
is length(SeqAA).

SmoothingValue String the specifies the smoothing method. Choices are:

• linear (default)
• exponential

• lowess

EdgeWeightValue Value that specifies the edge weight used for linear and
exponential smoothing methods. Decreasing this value
emphasizes peaks in the plot. Choices are any value #0 and
#1. Default is 1.

WindowLengthValue Integer that specifies the window length for the smoothing
method. Increasing this value gives a smoother plot that
shows less detail. Default is 11.

Description

proteinpropplot (SeqAA) displays a plot of the hydrophobicity (Kyte and Doolittle,
1982) of the residues in sequence SeqAA.

proteinpropplot(SeqAA, ...'PropertyName', PropertyValue, ...) calls
proteinpropplot with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

proteinpropplot(SeqAA, ...'PropertyTitle', PropertyTitleValue, ...)

specifies a property to plot for the amino acid sequence SeqAA. Default is
Hydrophobicity (Kyte & Doolittle). To display a list of possible properties to plot,
enter an empty string for PropertyTitleValue. For example, type:

proteinpropplot(sequence, 'propertytitle', '')

1 Alphabetical List

1-1510

Tip To access references for the properties, view the proteinpropplot file.

proteinpropplot(SeqAA, ...'Startat', StartatValue, ...) specifies the
starting point for the plot from the N-terminal end of the amino acid sequence SeqAA.
Default is 1.

proteinpropplot(SeqAA, ...'Endat', EndatValue, ...) specifies the ending
point for the plot from the N-terminal end of the amino acid sequence SeqAA. Default is
length(SeqAA).

proteinpropplot(SeqAA, ...'Smoothing', SmoothingValue, ...) specifies
the smoothing method. Choices are:

• linear (default)
• exponential

• lowess

proteinpropplot(SeqAA, ...'EdgeWeight', EdgeWeightValue, ...) specifies
the edge weight used for linear and exponential smoothing methods. Decreasing this
value emphasizes peaks in the plot. Choices are any value #0 and #1. Default is 1.

proteinpropplot(SeqAA, ...'WindowLength', WindowLengthValue, ...)

specifies the window length for the smoothing method. Increasing this value gives a
smoother plot that shows less detail. Default is 11.

Examples

Plotting Hydrophobicity

1 Use the getpdb function to retrieve a protein sequence.

prion = getpdb('1HJM', 'SEQUENCEONLY', true);

2 Plot the hydrophobicity (Kyte and Doolittle, 1982) of the residues in the sequence.

proteinpropplot(prion)

 proteinpropplot

1-1511

Plotting Parallel Beta Strand

1 Use the getgenpept function to retrieve a protein sequence.

s = getgenpept('aad50640');

2 Plot the conformational preference for parallel beta strand for the residues in the
sequence.

proteinpropplot(s,'propertytitle','Parallel beta strand')

1 Alphabetical List

1-1512

References

[1] Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropathic
character of a protein. J Mol Biol 157(1), 105–132.

See Also
aacount | atomiccomp | molviewer | molweight | pdbdistplot | proteinplot |
ramachandran | seqviewer | plotyy

 prune (phytree)

1-1513

prune (phytree)

Remove branch nodes from phylogenetic tree

Syntax

T2 = prune(T1, Nodes)

T2 = prune(T1, Nodes, 'Mode','Exclusive')

Arguments

T1 Phylogenetic object created with the phytree constructor
function.

Nodes Nodes to remove from tree.
Mode Property to control the method of pruning. Enter either

'Inclusive' or 'Exclusive'. The default value is
'Inclusive'.

Description

T2 = prune(T1, Nodes)removes the nodes listed in the vector Nodes from the tree
T1. prune removes any branch or leaf nodes listed in Nodes and all their descendants
from the tree T1, and returns the modified tree T2. The parent nodes are connected to the
'brothers' as required. Nodes in the tree are labeled as [1:numLeaves] for the leaves
and as [numLeaves+1:numLeaves+numBranches] for the branches. Nodes can also
be a logical array of size [numLeaves+numBranches x 1] indicating the nodes to be
removed.

T2 = prune(T1, Nodes, 'Mode','Exclusive') changes the Mode property for
pruning to 'Exclusive' and removes only the descendants of the nodes listed in the
vector Nodes. Nodes that do not have a predecessor become leaves in the list Nodes. In
this case, pruning is the process of reducing a tree by turning some branch nodes into leaf
nodes, and removing the leaf nodes under the original branch.

1 Alphabetical List

1-1514

Examples

Load a phylogenetic tree created from a protein family

tr = phytreeread('pf00002.tree');

view(tr)

Remove all the 'mouse' proteins

ind = getbyname(tr,'mouse');

 prune (phytree)

1-1515

tr = prune(tr,ind);

view(tr)

Remove potential outliers in the tree

[sel,sel_leaves] = select(tr,'criteria','distance',...

 'threshold',.3,...

 'reference','leaves',...

 'exclude','leaves',...

 'propagate','toleaves');

tr = prune(tr,~sel_leaves)

view(tr)

1 Alphabetical List

1-1516

More About
• “phytree object”

See Also
phytree | get | phytreeviewer | select

 pubMedID

1-1517

pubMedID

Class: bioma.ExpressionSet
Package: bioma

Retrieve or set PubMed IDs in ExpressionSet object

Syntax

PMIDs = pubMedID(ESObj)

NewESObj = pubMedID(ESObj, NewPMIDs)

Description

PMIDs = pubMedID(ESObj) returns a string or cell array of strings containing the
PubMed IDs from a MIAME object in an ExpressionSet object.

NewESObj = pubMedID(ESObj, NewPMIDs) replaces the PubMed IDs in the MIAME
object in ESObj, an ExpressionSet object, with NewPMIDs, a string or cell array of strings
specifying new PubMed IDs, and returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewPMIDs

String or cell array of strings containing new PubMed IDs.

Default:

1 Alphabetical List

1-1518

Output Arguments

PMIDs

String or cell array of strings containing the PubMed IDs from a MIAME object in an
ExpressionSet object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the PubMed IDs.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
PubMed identifiers stored in the MIAME object stored in the ExpressionSet object:
% Retrieve PubMed IDs from the MIAME object

PMIDs = pubMedID(ESObj)

See Also
bioma.ExpressionSet | bioma.data.MIAME

How To
• “Managing Gene Expression Data in Objects”

Related Links
• http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/

 quantilenorm

1-1519

quantilenorm
Quantile normalization over multiple arrays

Syntax

NormData = quantilenorm(Data)

NormData = quantilenorm(...,'MEDIAN', true)

NormData = quantilenorm(...,'DISPLAY', true)

Description

NormData = quantilenorm(Data), where the columns of Data correspond to separate
chips, normalizes the distributions of the values in each column.

Note: If Data contains NaN values, then NormData will also contain NaN values at the
corresponding positions.

NormData = quantilenorm(...,'MEDIAN', true) takes the median of the ranked
values instead of the mean.

NormData = quantilenorm(...,'DISPLAY', true) plots the distributions of the
columns and of the normalized data.

Examples
load yeastdata

normYeastValues = quantilenorm(yeastvalues,'display',1);

See Also
affygcrma | affyrma | malowess | manorm | rmabackadj | rmasummary

1 Alphabetical List

1-1520

ramachandran
Draw Ramachandran plot for Protein Data Bank (PDB) data

Syntax

ramachandran(PDBid)

ramachandran(File)

ramachandran(PDBStruct)

RamaStruct = ramachandran(...)

ramachandran(..., 'Chain', ChainValue, ...)

ramachandran(..., 'Plot', PlotValue, ...)

ramachandran(..., 'Model', ModelValue, ...)

ramachandran(..., 'Glycine', GlycineValue, ...)

ramachandran(..., 'Regions', RegionsValue, ...)

ramachandran(..., 'RegionDef', RegionDefValue, ...)

Input Arguments

PDBid String specifying a unique identifier for a protein structure
record in the PDB database.

Note: Each structure in the PDB database is represented by a
four-character alphanumeric identifier. For example, 4hhb is
the identifier for hemoglobin.

File String specifying a file name or a path and file name. The
referenced file is a Protein Data Bank (PDB)-formatted file. If
you specify only a file name, that file must be on the MATLAB
search path or in the MATLAB Current Directory.

PDBStruct MATLAB structure containing PDB-formatted data, such as
returned by getpdb or pdbread.

ChainValue String or cell array of strings that specifies the chain(s) to
compute the torsion angles for and plot.

Choices are:

 ramachandran

1-1521

• 'All' (default) — Torsion angles for all chains are
computed and plotted.

• A string specifying the chain ID, which is case sensitive.
• A cell array of strings specifying chain IDs, which are case

sensitive.
PlotValue String specifying how to plot chains. Choices are:

• 'None' — Plots nothing.
• 'Separate' — Plots torsion angles for all specified chains

in separate plots.
• 'Combined' (default) — Plots torsion angles for all

specified chains in one combined plot.
ModelValue Integer that specifies the structure model to consider. Default

is 1.
GlycineValue Controls the highlighting of glycine residues with a circle in

the plot. Choices are true or false (default).
RegionsValue Controls the drawing of Ramachandran reference regions in

the plot. Choices are true or false (default).

The default regions are core right-handed alpha, core beta,
core left-handed alpha, and allowed, with the core regions
corresponding to data points of preferred values of psi/phi
angle pairs, and the allowed regions corresponding to possible,
but disfavored values of psi/phi angle pairs, based on simple
energy considerations. The boundaries of these default regions
are based on the calculations by Morris et al., 1992.

Note: If using the default colormap, red = right-handed core
alpha, core beta, and core left-handed alpha, while yellow =
allowed.

1 Alphabetical List

1-1522

RegionDefValue MATLAB structure or array of structures (if specifying
multiple regions) containing information (name, color, and
boundaries) for custom reference regions in a Ramachandran
plot. Each structure must contain the following fields:

• Name — String specifying a name for the region.
• Color — String or three-element numeric vector of RGB

values specifying a color for the region in the plot.
• Patch — A 2-by-N matrix of values, the first row

containing torsion angle phi (Φ) values, and the second row
containing torsion angle psi (Ψ) values. When psi/phi angle
pairs are plotted, the data points specify boundaries for the
region. N is the number of data points needed to define the
region.

Tip If you specify custom reference regions in which a smaller
region is contained or covered by a larger region, list the
structure for the smaller region first in the array so that it is
plotted last and visible in the plot.

Output Arguments

RamaStruct MATLAB structure or array of structures (if protein contains
multiple chains). Each structure contains the following fields:

• Angles

• ResidueNum

• ResidueName

• Chain

• HPoints

For descriptions of the fields, see the following table.

 ramachandran

1-1523

Description

A Ramachandran plot is a plot of the torsion angle phi, Φ, (torsion angle between the C-
N-CA-C atoms) versus the torsion angle psi, Ψ, (torsion angle between the N-CA-C-N
atoms) for each residue of a protein sequence.

ramachandran(PDBid) generates the Ramachandran plot for the protein specified by
the PDB database identifier PDBid.

ramachandran(File) generates the Ramachandran plot for the protein specified by
File, a PDB-formatted file.

ramachandran(PDBStruct) generates the Ramachandran plot for the protein stored in
PDBStruct, a MATLAB structure containing PDB-formatted data, such as returned by
getpdb or pdbread.

RamaStruct = ramachandran(...) returns a MATLAB structure or array of
structures (if protein contains multiple chains). Each structure contains the following
fields.

Field Description

Angles Three-column matrix containing the torsion angles phi (Φ), psi (Ψ),
and omega (ω) for each residue in the sequence, ordered by residue
sequence number. The number of rows in the matrix is equal to the
number of rows in the ResidueNum column vector, which can be used
to determine which residue corresponds to each row in the Angles
matrix.

Note: The Angles matrix contains a row for each number in the
range of residue sequence numbers, including residue sequence
numbers missing from the PDB file. Rows corresponding to residue
sequence numbers missing from the PDB file contain the value NaN.

ResidueNum Column vector containing the residue sequence numbers from the
PDB file.

Note: The ResidueNum vector starts with one of the following:

1 Alphabetical List

1-1524

Field Description

• The lowest residue sequence number (if the lowest residue
sequence number is negative or zero)

• The number 1 (if the lowest residue sequence number is positive)
The ResidueNum vector ends with the highest residue sequence
number and includes all numbers in the range, including residue
sequence numbers missing from the PDB file.

The angles listed in the Angles matrix are in the same order as the
residue sequence numbers in the ResidueNum vector. Therefore,
you can use the ResidueNum vector to determine which residue
corresponds to each row in the Angles matrix.

ResidueName Column vector containing the residue names for the protein.
Chain A string specifying the chains in the protein.
HPoints Handle to the data points in the plot.

ramachandran(..., 'PropertyName', PropertyValue, ...) calls
ramachandran with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

ramachandran(..., 'Chain', ChainValue, ...) specifies the chain(s) to compute
the torsion angles for and plot. Choices are:

• 'All' (default) — Torsion angles for all chains are computed and plotted.
• A string specifying the chain ID, which is case sensitive.
• A cell array of strings specifying chain IDs, which are case sensitive.

ramachandran(..., 'Plot', PlotValue, ...) specifies how to plot chains.
Choices are:

• 'None' — Plots nothing.
• 'Separate' — Plots torsion angles for all specified chains in separate plots.
• 'Combined' (default) — Plots torsion angles for all specified chains in one combined

plot.

 ramachandran

1-1525

ramachandran(..., 'Model', ModelValue, ...) specifies the structure model to
consider. Default is 1.

ramachandran(..., 'Glycine', GlycineValue, ...) controls the highlighting of
glycine residues with a circle in the plot. Choices are true or false (default).

ramachandran(..., 'Regions', RegionsValue, ...) controls the drawing of
Ramachandran reference regions in the plot. Choices are true or false (default).

The default regions are core right-handed alpha, core beta, core left-handed alpha, and
allowed, with the core regions corresponding to data points of preferred values of psi/
phi angle pairs, and the allowed regions corresponding to possible, but disfavored values
of psi/phi angle pairs, based on simple energy considerations. The boundaries of these
default regions are based on the calculations by Morris et al., 1992.

Note: If using the default colormap, then red = core right-handed alpha, core beta, and
core left-handed alpha, while yellow = allowed.

ramachandran(..., 'RegionDef', RegionDefValue, ...) specifies information
(name, color, and boundary) for custom reference regions in a Ramachandran plot.
RegionDefValue is a MATLAB structure or array of structures containing the following
fields:

• Name — String specifying a name for the region.
• Color — String or three-element numeric vector of RGB values specifying a color for

the region in the plot.
• Patch — A 2-by-N matrix of values, the first row containing torsion angle phi (Φ)

values, and the second row containing torsion angle psi (Ψ) values. When psi/phi
angle pairs are plotted, the data points specify a boundary for the region. N is the
number of data points needed to define the region.

Tip If you specify custom reference regions in which a smaller region is contained or
covered by a larger region, list the structure for the smaller region first in the array so
that it is plotted last and visible in the plot.

1 Alphabetical List

1-1526

Examples

Drawing a Ramachandran Plot

Draw the Ramachandran plot for the human serum albumin complexed with
octadecanoic acid, which has a PDB database identifier of 1E7I.

ramachandran('1E7I')

Drawing a Ramachandran Plot for a Specific Chain

1 Use the getpdb function to retrieve protein structure data for the human growth
hormone from the PDB database, and save the information to a file.

getpdb('1a22','ToFile','1a22.pdb');

2 Compute the torsion angles and draw the Ramachandran plot for chain A of the
human growth hormone, represented in the pdb file, 1a22.pdb.

ChainA1a22Struct = ramachandran('1a22.pdb','chain','A')

 ramachandran

1-1527

ChainA1a22Struct =

 Angles: [191x3 double]

 ResidueNum: [191x1 double]

 ResidueName: {191x1 cell}

 Chain: 'A'

 HPoints: 370.0012

Drawing Ramachandran Plots with Highlighted Glycine Residues and Ramachandran Regions

1 Use the getpdb function to retrieve protein structure data for the human growth
hormone from the PDB database, and store the information in a structure.

Struct1a22 = getpdb('1a22');

2 Draw a combined Ramachandran plot for all chains of the human growth hormone,
represented in the pdb structure, 1a22Struct. Highlight the glycine residues (with
a circle), and draw the reference Ramachandran regions in the plot.

1 Alphabetical List

1-1528

ramachandran(Struct1a22,'glycine',true,'regions',true);

Tip Click a data point to display a data tip with information about the residue. Click
a region to display a data tip defining the region. Press and hold the Alt key to
display multiple data tips.

3 Draw a separate Ramachandran plot for each chain of the human growth hormone,
represented in the pdb structure, 1a22Struct. Highlight the glycine residues (with
a circle) and draw the reference Ramachandran regions in the plot.

ramachandran(Struct1a22,'plot','separate','chain','all',...

 'glycine',true,'regions',true)

 ramachandran

1-1529

1 Alphabetical List

1-1530

Writing a Tab-Delimited Report File from a Ramachandran Structure

1 Create an array of two structures containing torsion angles for chains A and D in the
Calcium/Calmodulin-dependent protein kinase, which has a PDB database identifier
of 1hkx.

a = ramachandran('1hkx', 'chain', {'A', 'D'})

a =

1x2 struct array with fields:

 Angles

 ResidueNum

 ResidueName

 Chain

 HPoints

 ramachandran

1-1531

2 Write a tab-delimited report file containing torsion angles phi (Φ) and psi (Ψ) for
chains A and D in the Calcium/Calmodulin-dependent protein kinase.

fid = fopen('rama_1hkx_report.txt', 'wt');

for c = 1:numel(a)

 for i = 1:length(a(c).Angles)

 if ~all(isnan(a(c).Angles(i,:)))

 fprintf(fid,'%s\t%d\t%s\t%f\t%f\n', a(c).Chain, ...

 a(c).ResidueNum(i), a(c).ResidueName{i}, ...

 a(c).Angles(i,1:2));

 end

 end

end

fclose(fid);

3 View the file you created in the MATLAB Editor.

edit rama_1hkx_report.txt

References

[1] Morris, A.L., MacArthur, M.W., Hutchinson, E.G., and Thornton, J.M. (1992).
Stereochemical Quality of Protein Structure Coordinates. PROTEINS: Structure,
Function, and Genetics 12, 345–364.

1 Alphabetical List

1-1532

See Also
getpdb | molviewer | pdbdistplot | pdbread | proteinpropplot

 randfeatures

1-1533

randfeatures
Generate randomized subset of features

Syntax

[IDX, Z] = randfeatures(X, Group, 'PropertyName', PropertyValue...)

randfeatures(..., 'Classifier', C)

randfeatures(..., 'ClassOptions', CO)

randfeatures(..., 'PerformanceThreshold', PT)

randfeatures(..., 'ConfidenceThreshold', CT)

randfeatures(..., 'SubsetSize', SS)

randfeatures(..., 'PoolSize', PS)

randfeatures(..., 'NumberOfIndices', N)

randfeatures(..., 'CrossNorm', CN)

randfeatures(..., 'Verbose', VerboseValue)

Description

[IDX, Z] = randfeatures(X, Group, 'PropertyName', PropertyValue...)

performs a randomized subset feature search reinforced by classification. randfeatures
randomly generates subsets of features used to classify the samples. Every subset
is evaluated with the apparent error. Only the best subsets are kept, and they are
joined into a single final pool. The cardinality for every feature in the pool gives the
measurement of the significance.

X contains the training samples. Every column of X is an observed vector. Group contains
the class labels. Group can be a numeric vector or a cell array of strings; numel(Group)
must be the same as the number of columns in X, and numel(unique(Group)) must
be greater than or equal to 2. Z is the classification significance for every feature. IDX
contains the indices after sorting Z; i.e., the first one points to the most significant
feature.

randfeatures(..., 'Classifier', C) sets the classifier. Options are

'da' (default) Discriminant analysis

'knn' K nearest neighbors

1 Alphabetical List

1-1534

randfeatures(..., 'ClassOptions', CO) is a cell with extra options for the
selected classifier. When you specify the discriminant analysis model ('da') as a
classifier, randfeatures uses the classify function with its default parameters. For
the KNN classifier, randfeatures uses fitcknn with the following default options.
{'Distance','correlation','NumNeighbors',5}.

randfeatures(..., 'PerformanceThreshold', PT) sets the correct classification
threshold used to pick the subsets included in the final pool. For the 'da' model, the
default is 0.8. For the 'knn' model, the default is 0.7.

randfeatures(..., 'ConfidenceThreshold', CT) uses the posterior probability
of the discriminant analysis to invalidate classified subvectors with low confidence.
When using the 'da' model, the default is 0.95.^(number of classes). When using
the 'knn' model, the default is 1, meaning any classified subvector must have all k
neighbors classified to the same class in order to be kept in the pool.

randfeatures(..., 'SubsetSize', SS) sets the number of features considered in
every subset. Default is 20.

randfeatures(..., 'PoolSize', PS) sets the targeted number of accepted subsets
for the final pool. Default is 1000.

randfeatures(..., 'NumberOfIndices', N) sets the number of output indices in
IDX. Default is the same as the number of features.

randfeatures(..., 'CrossNorm', CN) applies independent normalization across
the observations for every feature. Cross-normalization ensures comparability among
different features, although it is not always necessary because the selected classifier
properties might already account for this. Options are

'none' (default) Intensities are not cross-normalized.

'meanvar' x_new = (x - mean(x))/std(x)

'softmax' x_new = (1+exp((mean(x)-x)/std(x)))^-1

'minmax' x_new = (x - min(x))/(max(x)-min(x))

randfeatures(..., 'Verbose', VerboseValue), when Verbose is true, turns off
verbosity. Default is true.

Examples
Find a reduced set of genes that is sufficient for classification of all the cancer types in
the t-matrix NCI60 data set. Load sample data.

 randfeatures

1-1535

load NCI60tmatrix

Select features.

I = randfeatures(X,GROUP,'SubsetSize',15,'Classifier','da');

Test features with a linear discriminant classifier.

C = classify(X(I(1:25),:)',X(I(1:25),:)',GROUP);

cp = classperf(GROUP,C);

cp.CorrectRate

See Also
classperf | crossvalind | rankfeatures | classify | sequentialfs |
svmclassify

1 Alphabetical List

1-1536

randseq

Generate random sequence from finite alphabet

Syntax

Seq = randseq(SeqLength)

Seq = randseq(SeqLength, ...'Alphabet', AlphabetValue, ...)

Seq = randseq(SeqLength, ...'Weights', WeightsValue, ...)

Seq =

randseq(SeqLength, ...'FromStructure', FromStructureValue, ...)

Seq = randseq(SeqLength, ...'Case', CaseValue, ...)

Seq = randseq(SeqLength, ...'DataType', DataTypeValue, ...)

Arguments

SeqLength Integer that specifies the number of nucleotides or amino
acids in the random sequence .

AlphabetValue String that specifies the alphabet for the sequence.
Choices are 'dna'(default), 'rna', or 'amino'.

WeightsValue Property to specify a weighted random sequence.
FromStructureValue Property to specify a weighted random sequence using

output structures from the functions from basecount,
dimercount, codoncount, or aacount.

CaseValue String that specifies the case of letters in a sequence
when Alphabet is 'char'. Choices are'upper' (default)
or 'lower'.

DataTypeValue String that specifies the data type for a sequence. Choices
are 'char'(default) for letter sequences, and 'uint8' or
'double' for numeric sequences.

Creates a sequence as an array of DataType.

 randseq

1-1537

Description

Seq = randseq(SeqLength) creates a random sequence with a length specified by
SeqLength.

Seq = randseq(SeqLength, ...'PropertyName', PropertyValue, ...) calls
randseq with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

Seq = randseq(SeqLength, ...'Alphabet', AlphabetValue, ...) generates a
sequence from a specific alphabet.

Seq = randseq(SeqLength, ...'Weights', WeightsValue, ...) creates a
weighted random sequence where the ith letter of the sequence alphabet is selected
with weight W(i). The weight vector is usually a probability vector or a frequency count
vector. Note that the ith element of the nucleotide alphabet is given by int2nt(i), and
the ith element of the amino acid alphabet is given by int2aa(i).

Seq =

randseq(SeqLength, ...'FromStructure', FromStructureValue, ...)

creates a weighted random sequence with weights given by the output structure from
basecount, dimercount, codoncount, or aacount.

Seq = randseq(SeqLength, ...'Case', CaseValue, ...) specifies the case for a
letter sequence.

Seq = randseq(SeqLength, ...'DataType', DataTypeValue, ...) specifies
the data type for the sequence array.

Examples

Generate a random DNA sequence.

randseq(20)

ans =

TAGCTGGCCAAGCGAGCTTG

Generate a random RNA sequence.

1 Alphabetical List

1-1538

randseq(20,'alphabet','rna')

ans =

GCUGCGGCGGUUGUAUCCUG

Generate a random protein sequence.

randseq(20,'alphabet','amino')

ans =

DYKMCLYEFGMFGHFTGHKK

See Also
hmmgenerate | rand | randsample | randperm

 rankfeatures

1-1539

rankfeatures

Rank key features by class separability criteria

Syntax

[IDX, Z] = rankfeatures(X, Group)

[IDX, Z] = rankfeatures(X, Group, ...'Criterion',

CriterionValue, ...)

[IDX, Z] = rankfeatures(X, Group, ...'CCWeighting', ALPHA, ...)

[IDX, Z] = rankfeatures(X, Group, ...'NWeighting', BETA, ...)

[IDX, Z] = rankfeatures(X, Group, ...'NumberOfIndices', N, ...)

[IDX, Z] = rankfeatures(X, Group, ...'CrossNorm', CN, ...)

Description

[IDX, Z] = rankfeatures(X, Group) ranks the features in X using an independent
evaluation criterion for binary classification. X is a matrix where every column is an
observed vector and the number of rows corresponds to the original number of features.
Group contains the class labels.

IDX is the list of indices to the rows in X with the most significant features. Z is the
absolute value of the criterion used (see below).

Group can be a numeric vector or a cell array of strings; numel(Group) is the same as
the number of columns in X, and numel(unique(Group)) is equal to 2.

[IDX, Z] = rankfeatures(X, Group, ...'PropertyName',

PropertyValue, ...) calls rankfeatures with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

[IDX, Z] = rankfeatures(X, Group, ...'Criterion',

CriterionValue, ...) sets the criterion used to assess the significance of every
feature for separating two labeled groups. Choices are:

1 Alphabetical List

1-1540

• 'ttest' (default) — Absolute value two-sample t-test with pooled variance estimate.
• 'entropy' — Relative entropy, also known as Kullback-Leibler distance or

divergence.
• 'bhattacharyya' — Minimum attainable classification error or Chernoff bound.
• 'roc' — Area between the empirical receiver operating characteristic (ROC) curve

and the random classifier slope.
• 'wilcoxon' — Absolute value of the standardized u-statistic of a two-sample

unpaired Wilcoxon test, also known as Mann-Whitney.

Note: 'ttest', 'entropy', and 'bhattacharyya' assume normal distributed
classes while 'roc' and 'wilcoxon' are nonparametric tests. All tests are feature
independent.

[IDX, Z] = rankfeatures(X, Group, ...'CCWeighting', ALPHA, ...)

uses correlation information to outweigh the Z value of potential features using Z
* (1-ALPHA*(RHO)), where RHO is the average of the absolute values of the cross-
correlation coefficient between the candidate feature and all previously selected features.
ALPHA sets the weighting factor. It is a scalar value between 0 and 1. When ALPHA is 0
(default) potential features are not weighted. A large value of RHO (close to 1) outweighs
the significance statistic; this means that features that are highly correlated with the
features already picked are less likely to be included in the output list.

[IDX, Z] = rankfeatures(X, Group, ...'NWeighting', BETA, ...) uses
regional information to outweigh the Z value of potential features using Z * (1-exp(-
(DIST/BETA).^2)), where DIST is the distance (in rows) between the candidate feature
and previously selected features. BETA sets the weighting factor. It is greater than or
equal to 0. When BETA is 0 (default) potential features are not weighted. A small DIST
(close to 0) outweighs the significance statistics of only close features. This means that
features that are close to already picked features are less likely to be included in the
output list. This option is useful for extracting features from time series with temporal
correlation.

BETA can also be a function of the feature location, specified using @ or an anonymous
function. In both cases rankfeatures passes the row position of the feature to BETA()
and expects back a value greater than or equal to 0.

Note: You can use 'CCWeighting' and 'NWeighting' together.

 rankfeatures

1-1541

[IDX, Z] = rankfeatures(X, Group, ...'NumberOfIndices', N, ...) sets
the number of output indices in IDX. Default is the same as the number of features when
ALPHA and BETA are 0, or 20 otherwise.

[IDX, Z] = rankfeatures(X, Group, ...'CrossNorm', CN, ...) applies
independent normalization across the observations for every feature. Cross-
normalization ensures comparability among different features, although it is not always
necessary because the selected criterion might already account for this. Choices are:

• 'none' (default) — Intensities are not cross-normalized.
• 'meanvar' — x_new = (x - mean(x))/std(x)
• 'softmax' — x_new = (1+exp((mean(x)-x)/std(x)))^-1
• 'minmax' — x_new = (x - min(x))/(max(x)-min(x))

Examples

1 Find a reduced set of genes that is sufficient for differentiating breast cancer cells
from all other types of cancer in the t-matrix NCI60 data set. Load sample data.

load NCI60tmatrix

2 Get a logical index vector to the breast cancer cells.

BC = GROUP == 8;

3 Select features.

I = rankfeatures(X,BC,'NumberOfIndices',12);

4 Test features with a linear discriminant classifier.

C = classify(X(I,:)',X(I,:)',double(BC));

cp = classperf(BC,C);

cp.CorrectRate

ans =

 1

5 Use cross-correlation weighting to further reduce the required number of genes.

I = rankfeatures(X,BC,'CCWeighting',0.7,'NumberOfIndices',8);

C = classify(X(I,:)',X(I,:)',double(BC));

1 Alphabetical List

1-1542

cp = classperf(BC,C);

cp.CorrectRate

ans =

 1

6 Find the discriminant peaks of two groups of signals with Gaussian pulses
modulated by two different sources.

load GaussianPulses

f = rankfeatures(y',grp,'NWeighting',@(x) x/10+5,'NumberOfIndices',5);

plot(t,y(grp==1,:),'b',t,y(grp==2,:),'g',t(f),1.35,'vr')

 rankfeatures

1-1543

See Also
classperf | crossvalind | randfeatures | classify | sequentialfs |
svmclassify

1 Alphabetical List

1-1544

rdivide (DataMatrix)
Right array divide DataMatrix objects

Syntax

DMObjNew = rdivide(DMObj1, DMObj2)

DMObjNew = DMObj1 ./ DMObj2

DMObjNew = rdivide(DMObj1, B)

DMObjNew = DMObj1 ./ B

DMObjNew = rdivide(B, DMObj1)

DMObjNew = B ./ DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by right array division.

Description

DMObjNew = rdivide(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 ./
DMObj2 performs an element-by-element right array division of the DataMatrix objects
DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object. In
other words, rdivide divides each element in DMObj1 by the corresponding element in
DMObj2. DMObj1 and DMObj2 must have the same size (number of rows and columns),
unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns),
row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is
a scalar; then they are the same as DMObj2.

 rdivide (DataMatrix)

1-1545

DMObjNew = rdivide(DMObj1, B) or the equivalent DMObjNew = DMObj1 ./
B performs an element-by-element right array division of the DataMatrix object
DMObj1 and B, a numeric or logical array, and places the results in DMObjNew, another
DataMatrix object. In other words, rdivide divides each element in DMObj1 by the
corresponding element in B. DMObj1 and B must have the same size (number of rows and
columns), unless B is a scalar. The size (number of rows and columns), row names, and
column names for DMObjNew are the same as DMObj1.

DMObjNew = rdivide(B, DMObj1) or the equivalent DMObjNew = B ./ DMObj1
performs an element-by-element right array division of B, a numeric or logical array, and
the DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix
object. In other words, rdivide divides each element in B by the corresponding element
in DMObj1.DMObj1 and B must have the same size (number of rows and columns), unless
B is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

Note: Arithmetic operations between a scalar DataMatrix object and a nonscalar array
are not supported.

MATLAB calls DMObjNew = rdivide(X, Y) for the syntax DMObjNew = X ./ Y
when X or Y is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | times | ldivide

1 Alphabetical List

1-1546

read
Class: BioIndexedFile

Read one or more entries from source file associated with BioIndexedFile object

Syntax

Output = read(BioIFobj, Indices)

Output = read(BioIFobj, Key)

Description

Output = read(BioIFobj, Indices) reads the entries specified by Indices from
the source file associated with BioIFobj, a BioIndexedFile object. Indices is a vector of
positive integers specifying indices to entries in the source file. The read method reads
and parses the entries using the function specified by the Interpreter property of the
BioIndexedFile object. A one-to-one relationship exists between the number and order
of elements in Indices and Output, even if Indices has repeated entries. Output
is a structure or an array of structures containing the parsed data returned by the
interpreter function.

Output = read(BioIFobj, Key) reads the entries specified by Key from the source
file associated with BioIFobj, a BioIndexedFile object. Key is a string or cell array of
strings specifying one or more keys to entries in the source file. The read method reads
and parses the entries using the function specified by the Interpreter property of the
BioIndexedFile object. If the keys in the source file are not unique, the read method
reads all entries that match a specified key, all at the position of the key in the Key cell
array. If the keys in the source file are unique, there is a one-to-one relationship between
the number and order of elements in Key and Output.

Tips

Before using the read method, make sure the Interpreter property of the
BioIndexedFile object is set appropriately. The Interpreter property is a handle to a
function that parses the entries in the source file. The interpreter function must accept

 read

1-1547

a single string of one or more concatenated entries and return a structure or an array of
structures containing the interpreted data.

If the BioIndexedFile object was created from a source file with an application-specific
format such as 'SAM', 'FASTQ', or 'FASTA', the default Interpreter property is a
handle to a function appropriate for that file type and typically does not require you to
change it. If the BioIndexedFile object was created from a source file with a 'TABLE',
'MRTAB', or 'FLAT' format, then the default Interpreter property is [], which means
the interpreter is an anonymous function in which the output is equivalent to the input.

For information on setting the Interpreter property, see BioIndexedFile class.

Input Arguments
BioIFobj

Object of the BioIndexedFile class.

Default:

Indices

Vector of positive integers specifying indices to entries in the source file associated
with BioIFobj, the BioIndexedFile object. The number of elements in Indices must
be less than or equal to the number of entries in the source file. There is a one-to-one
relationship between the number and order of elements in Indices and Output, even if
Indices has repeated entries.

Default:

Key

String or cell array of strings specifying one or more keys in the source file.

Default:

Output Arguments
Output

Structure or an array of structures containing the parsed data returned by the
interpreter function.

1 Alphabetical List

1-1548

Examples

Construct a BioIndexedFile object to access a table containing cross-references between
gene names and gene ontology (GO) terms:

% Create variable containing full absolute path of source file

sourcefile = which('yeastgenes.sgd');

% Create a BioIndexedFile object from the source file. Indicate

% the source file is a tab-delimited file where contiguous rows

% with the same key are considered a single entry. Store the

% index file in the Current Folder. Indicate that keys are

% located in column 3 and that header lines are prefaced with !

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

Read the GO term from all entries that are associated with the gene YAT2:

% Access entries that have the string YAT2 in their keys

YAT2_entries = getEntryByKey(gene2goObj, 'YAT2');

% Adjust the object interpreter to return only the column

% containing the GO term

gene2goObj.Interpreter = @(x) regexp(x,'GO:\d+','match')

% Parse the entries with a key of YAT2 and return all GO terms

% from those entries

GO_YAT2_entries = read(gene2goObj, 'YAT2')

GO_YAT2_entries =

'GO:0004092' 'GO:0005737' 'GO:0006066' 'GO:0006066' 'GO:0009437'

See Also
BioIndexedFile.getSubset | BioIndexedFile

How To
• “Work with Large Multi-Entry Text Files”

 rebasecuts

1-1549

rebasecuts
Find restriction enzymes that cut nucleotide sequence

Syntax

[Enzymes, Sites] = rebasecuts(SeqNT)

rebasecuts(SeqNT, Group)

rebasecuts(SeqNT, [Q, R])

rebasecuts(SeqNT, S)

Input Arguments

SeqNT Nucleotide sequence.
Group Cell array of strings representing the names of valid restriction

enzymes.
Q, R Base positions that limit the search to all sites between base Q and

base R.
S Base position that limits the search to all sites after base S.

Output Arguments

Enzymes Cell array with the names of restriction enzymes from REBASE®, the
Restriction Enzyme Database.

Sites Vector of cut sites identified with the base position number before every
cut.

Description

[Enzymes, Sites] = rebasecuts(SeqNT) finds all the restriction enzymes that cut
SeqNT, a nucleotide sequence.

1 Alphabetical List

1-1550

rebasecuts(SeqNT, Group) limits the search to Group, a list of enzymes.

rebasecuts(SeqNT, [Q, R]) limits the search to those enzymes that cut after the
base position specified by Q and before the base position specified by R.

rebasecuts(SeqNT, S) limits the search to those enzymes that cut just after the base
position specified by S.

REBASE, the Restriction Enzyme Database, is a collection of information about
restriction enzymes and related proteins. For more information about REBASE, see:

http://rebase.neb.com/rebase/rebase.html

Examples

1 Create a nucleotide sequence.

seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Find all possible enzymes and cleavage sites in the sequence.

 [enzymes, sites] = rebasecuts(seq)

3 Find where restriction enzymes CfoI and Tru9I cut the sequence.

[enzymes, sites] = rebasecuts(seq, {'CfoI','Tru9I'})

enzymes =

 'CfoI'

 'CfoI'

 'Tru9I'

sites =

 13

 39

 45

4 Find all possible enzymes that cut after base 7.

enzymes = rebasecuts(seq, 7)

enzymes =

http://rebase.neb.com/rebase/rebase.html

 rebasecuts

1-1551

 'Csp6I'

 'CviQI'

 'RsaNI'

5 Find all possible enzymes that cut between bases 11 and 37.

enzymes = rebasecuts(seq, [11 37])

enzymes =

 'AccII'

 'AspLEI'

 'BmiI'

 'Bsh1236I'

 'BspFNI'

 'BspLI'

 'BstFNI'

 'BstHHI'

 'BstUI'

 'CfoI'

 'FnuDII'

 'GlaI'

 'HhaI'

 'Hin6I'

 'HinP1I'

 'Hpy188I'

 'HspAI'

 'MvnI'

 'NlaIV'

 'PspN4I'

 'SetI'

References

[1] Roberts, R.J., Vincze, T., Posfai, J., and Macelis, D. (2007). REBASE—enzymes and
genes for DNA restriction and modification. Nucl. Acids Res. 35, D269–D270.

[2] Official REBASE Web site: http://rebase.neb.com.

See Also
cleave | cleavelookup | restrict | seq2regexp | seqshowwords | regexp

http://rebase.neb.com

1 Alphabetical List

1-1552

redbluecmap

Create red and blue colormap

Syntax

redbluecmap(Length)

Arguments

Length Positive integer that specifies the length of (or the number of colors in)
the colormap. Choices are positive integers ≥ 3 or ≤ 11. Default is 11.

Description

redbluecmap(Length) returns a Length-by-3 matrix containing a red and blue
diverging color palette. Low values are dark blue, values in the center of the map are
white, and high values are dark red. Length is a positive integer ≥ 3 and ≤ 11, which
determines the number of colors in the colormap. Default is 11.

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeastvalues, a matrix of gene expression data. Create a clustergram object and
display the dendrograms and heat map from the gene expression data in the first 30
rows of the yeastvalues matrix.

load filteredyeastdata

cgo = clustergram(yeastvalues(1:30,:))

Clustergram object with 30 rows of nodes and 7 columns of nodes.

 redbluecmap

1-1553

2 Reset the colormap of the heat map to redbluecmap.

set(cgo,'Colormap',redbluecmap);

1 Alphabetical List

1-1554

References

[1] http://colorbrewer.org

See Also
clustergram | redgreencmap | colormap | colormapeditor

http://colorbrewer.org

 redgreencmap

1-1555

redgreencmap
Create red and green colormap

Syntax
redgreencmap(Length)

redgreencmap(Length, 'Interpolation', InterpolationValue)

Arguments
Length Length of the colormap. Enter either 256 or 64. Default is

the length of the colormap of the current figure.
InterpolationValue Property that lets you set the algorithm for color

interpolation. Choices are:

• 'linear'

• 'quadratic'

• 'cubic'

• 'sigmoid' (default)

Note: The sigmoid interpolation is tanh.

Description
redgreencmap(Length) returns a Length-by-3 matrix containing a red and green
colormap. Low values are bright green, values in the center of the map are black, and
high values are red. Enter either 256 or 64 for Length. If Length is empty, the length of
the map will be the same as the length of the colormap of the current figure.

redgreencmap(Length, 'Interpolation', InterpolationValue) lets you set
the algorithm for color interpolation. Choices are:

• 'linear'

• 'quadratic'

1 Alphabetical List

1-1556

• 'cubic'

• 'sigmoid' (default)

Note: The sigmoid interpolation is tanh.

Examples

1 Create a MATLAB structure from the microarray data in a GenePix Results (GPR)
file, then display an image of the 'F635 Median' field.

pd = gprread('mouse_a1pd.gpr');

maimage(pd,'F635 Median')

2 Reset the colormap of the current figure.

colormap(redgreencmap)

 redgreencmap

1-1557

See Also
clustergram | redbluecmap | colormap | colormapeditor

1 Alphabetical List

1-1558

reorder (phytree)
Reorder leaves of phylogenetic tree

Syntax

Tree1Reordered = reorder(Tree1, Order)

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Order,

'Approximate', ApproximateValue)

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Tree2)

Input Arguments

Tree1, Tree2 Phytree objects.
Order Vector with position indices for each leaf.
ApproximateValue Controls the use of the optimal leaf-ordering calculation to

find the closest order possible to the suggested one without
dividing the clades or producing crossing branches. Enter
true to use the calculation. Default is false.

Output Arguments

Tree1Reordered Phytree object with reordered leaves.
OptimalOrder Vector of position indices for each leaf in Tree1Reordered,

determined by the optimal leaf-ordering calculation.

Description

Tree1Reordered = reorder(Tree1, Order) reorders the leaves of the phylogenetic
tree Tree1, without modifying its structure and distances, creating a new phylogenetic
tree, Tree1Reordered. Order is a vector of position indices for each leaf. If Order is

 reorder (phytree)

1-1559

invalid, that is, if it divides the clades (or produces crossing branches), then reorder
returns an error message.

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Order,

'Approximate', ApproximateValue) controls the use of the optimal leaf-ordering
calculation, which finds the best approximate order closest to the suggested one, without
dividing the clades or producing crossing branches. Enter true to use the calculation and
return Tree1Reordered, the reordered tree, and OptimalOrder, a vector of position
indices for each leaf in Tree1Reordered, determined by the optimal leaf-ordering
calculation. Default is false.

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Tree2) uses the optimal
leaf-ordering calculation to reorder the leaves in Tree1 such that it matches the order of
leaves in Tree2 as closely as possible, without dividing the clades or producing crossing
branches. Tree1Reordered is the reordered tree, and OptimalOrder is a vector of
position indices for each leaf in Tree1Reordered, determined by the optimal leaf-
ordering calculation

Examples

Reordering Leaves Using a Valid Order

1 Create and view a phylogenetic tree.

b = [1 2; 3 4; 5 6; 7 8; 9 10];

tree = phytree(b)

 Phylogenetic tree object with 6 leaves (5 branches)

view(tree)

2 Reorder the leaves on the phylogenetic tree, and then view the reordered tree.

 treeReordered = reorder(tree, [5, 6, 3, 4, 1, 2])

 view(treeReordered)

Finding Best Approximate Order When Using an Invalid Order

1 Create a phylogenetic tree by reading a Newick-formatted tree file (ASCII text file).

tree = phytreeread('pf00002.tree')

 Phylogenetic tree object with 33 leaves (32 branches)

2 Create a row vector of the leaf names in alphabetical order.

1 Alphabetical List

1-1560

[dummy,order] = sort(get(tree,'LeafNames'));

3 Reorder the phylogenetic tree to match as closely as possible the row vector of
alphabetically ordered leaf names, without dividing the clades or having crossing
branches.

treeReordered = reorder(tree,order,'approximate',true)

 Phylogenetic tree object with 33 leaves (32 branches)

4 View the original and the reordered phylogenetic trees.

view(tree)

view(treeReordered)

Reordering Leaves to Match Leaf Order in Another Phylogenetic Tree

1 Create a phylogenetic tree by reading sequence data from a FASTA file, calculating
the pairwise distances between sequences, and then using the neighbor-joining
method.

seqs = fastaread('pf00002.fa')

seqs =

33x1 struct array with fields:

 Header

 Sequence

dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');

NJtree = seqneighjoin(dist,'equivar',seqs)

 Phylogenetic tree object with 33 leaves (32 branches)

2 Create another phylogenetic tree from the same sequence data and pairwise
distances between sequences, using the single linkage method.

HCtree = seqlinkage(dist,'single',seqs)

 Phylogenetic tree object with 33 leaves (32 branches)

3 Use the optimal leaf-ordering calculation to reorder the leaves in HCtree such that
it matches the order of leaves in NJtree as closely as possible, without dividing the
clades or having crossing branches.

HCtree_reordered = reorder(HCtree,NJtree)

 Phylogenetic tree object with 33 leaves (32 branches)

4 View the reordered phylogenetic tree and the tree used to reorder it.

 reorder (phytree)

1-1561

view(HCtree_reordered)

view(NJtree)

More About
• “phytree object”

See Also
phytree | getbyname | get | prune

1 Alphabetical List

1-1562

reroot (phytree)

Change root of phylogenetic tree

Syntax

Tree2 = reroot(Tree1)

Tree2 = reroot(Tree1, Node)

Tree2 = reroot(Tree1, Node, Distance)

Arguments

Tree1 Phylogenetic tree (phytree object) created with the function
phytree.

Node Node index returned by the phytree object method getbyname.
Distance Distance from the reference branch.

Description

Tree2 = reroot(Tree1) changes the root of a phylogenetic tree (Tree1) using a
midpoint method. The midpoint is the location where the mean values of the branch
lengths, on either side of the tree, are equalized. The original root is deleted from the
tree.

Tree2 = reroot(Tree1, Node) changes the root of a phylogenetic tree (Tree1) to
a branch node using the node index (Node). The new root is placed at half the distance
between the branch node and its parent.

Tree2 = reroot(Tree1, Node, Distance) changes the root of a phylogenetic tree
(Tree1) to a new root at a given distance (Distance) from the reference branch node
(Node) toward the original root of the tree. Note: The new branch representing the root in
the new tree (Tree2) is labeled 'Root'.

 reroot (phytree)

1-1563

Examples

1 Create an ultrametric tree.

tr_1 = phytree([5 7;8 9;6 11; 1 2;3 4;10 12;...

 14 16; 15 17;13 18])

plot(tr_1,'branchlabels',true)

A figure with the phylogenetic tree displays.

2 Place the root at 'Branch 7'.

sel = getbyname(tr_1,'Branch 7');

tr_2 = reroot(tr_1,sel)

plot(tr_2,'branchlabels',true)

A figure of a phylogenetic tree displays with the root moved to the center of branch 7.

1 Alphabetical List

1-1564

3 Move the root to a branch that makes the tree as ultrametric as possible.

tr_3 = reroot(tr_2)

plot(tr_3,'branchlabels',true)

A figure of the new tree displays with the root moved from the center of branch 7 to
branch 8.

 reroot (phytree)

1-1565

More About
• “phytree object”

See Also
phytree | getbyname | select | seqneighjoin | get | prune

1 Alphabetical List

1-1566

restrict

Split nucleotide sequence at restriction site

Syntax

Fragments = restrict(SeqNT, Enzyme)

Fragments = restrict(SeqNT, NTPattern, Position)

[Fragments, CuttingSites] = restrict(...)

[Fragments, CuttingSites, Lengths] = restrict(...)

... = restrict(..., 'PartialDigest', PartialDigestValue)

Arguments

SeqNT One of the following:

• String of codes specifying a nucleotide sequence. For
valid letter codes, see the table Mapping Nucleotide
Letter Codes to Integers.

• Row vector of integers specifying a nucleotide
sequence. For valid integers, see the table Mapping
Nucleotide Integers to Letter Codes.

• MATLAB structure containing a Sequence field that
contains a nucleotide sequence, such as returned
by fastaread, fastqread, emblread, getembl,
genbankread, or getgenbank.

Enzyme String specifying a name of a restriction enzyme from
REBASE, the Restriction Enzyme Database.

Tip Some enzymes specify cutting rules for both a strand
and its complement strand. restrict applies the cutting
rule only for the 5' —> 3' strand. For a workaround to
applying an enzyme cutting rule for both strands, see
Splitting a Double-Stranded Nucleotide Sequence.

 restrict

1-1567

NTPattern Short nucleotide sequence recognition pattern to search
for in SeqNT, a larger sequence. NTPattern can be either
of the following:

• Character string
• “Regular expression”

Position Either of the following:

• Integer specifying a position in the SeqNT to cut,
relative to NTPattern.

• Two-element vector specifying two positions in the
SeqNT to cut, relative to NTPattern.

Note: Position 0 corresponds to a cut before the first base
of NTPattern.

PartialDigestValue Value from 0 to 1 (default) specifying the probability that
a cleavage site will be cut.

Description

Fragments = restrict(SeqNT, Enzyme) cuts SeqNT, a nucleotide sequence, into
fragments at the restriction sites of Enzyme, a restriction enzyme. The restrict
function stores the return values in Fragments, a cell array of sequences.

Fragments = restrict(SeqNT, NTPattern, Position) cuts SeqNT, a nucleotide
sequence, into fragments at restriction sites specified by NTPattern, a nucleotide
recognition pattern, and Position.

[Fragments, CuttingSites] = restrict(...) returns a numeric vector with the
indices representing the cutting sites. The restrict function adds a 0 to the beginning
of the CuttingSites vector so that the number of elements in CuttingSites equals
the number of elements in Fragments. You can use CuttingSites + 1 to point to the
first base of every fragment respective to the original sequence.

[Fragments, CuttingSites, Lengths] = restrict(...) returns a numeric
vector with the lengths of every fragment.

1 Alphabetical List

1-1568

... = restrict(..., 'PartialDigest', PartialDigestValue) simulates a
partial digest where each restriction site in the sequence has a PartialDigestValue or
probability of being cut.

REBASE, the Restriction Enzyme Database, is a collection of information about
restriction enzymes and related proteins. For more information about REBASE or to
search REBASE for the name of a restriction enzyme, see:

http://rebase.neb.com/rebase/rebase.html

Examples

Splitting a Nucleotide Sequence by Specifying an Enzyme

1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Use the restriction enzyme HspAI (which specifies a recognition sequence of GCGC
and a cleavage position of 1) to cleave the nucleotide sequence.

fragmentsEnzyme = restrict(Seq,'HspAI')

MATLAB returns:

fragmentsEnzyme =

 'AGAGGGGTACG'

 'CGCTCTGAAAAGCGGGAACCTCGTGG'

 'CGCTTTATTAA'

Splitting a Nucleotide Sequence by Specifying a Pattern and Position

1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Use the sequence pattern GCGC with the point of cleavage at position 3 to cleave the
nucleotide sequence.

fragmentsPattern = restrict(Seq,'GCGC',3)

MATLAB returns:

http://rebase.neb.com/rebase/rebase.html

 restrict

1-1569

fragmentsPattern =

 'AGAGGGGTACGCG'

 'CTCTGAAAAGCGGGAACCTCGTGGCG'

 'CTTTATTAA'

Splitting a Nucleotide Sequence by Specifying a Regular Expression for the Pattern

1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Use a regular expression to specify the sequence pattern.

fragmentsRegExp = restrict(Seq,'GCG[^C]',3)

MATLAB returns:

fragmentsRegExp =

 'AGAGGGGTACGCGCTCTGAAAAGCG'

 'GGAACCTCGTGGCGCTTTATTAA'

Returning the Cutting Sites and Fragment Lengths

1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Capture the cutting sites and fragment lengths as well as the fragments.

[fragments, cut_sites, lengths] = restrict(Seq,'HspAI')

MATLAB returns:

fragments =

 'AGAGGGGTACG'

 'CGCTCTGAAAAGCGGGAACCTCGTGG'

 'CGCTTTATTAA'

cut_sites =

 0

 11

 37

lengths =

1 Alphabetical List

1-1570

 11

 26

 11

Splitting a Double-Stranded Nucleotide Sequence

Some enzymes specify cutting rules for both a strand and its complement strand.
restrict applies the cutting rule only for the 5' —> 3' strand. You can apply this rule
manually for the complement strand.

1 Enter a nucleotide sequence.

seq = 'CCCGCNNNNNNN';

2 Use the seqcomplement function to determine the complement strand, which is in
the 3' —> 5' direction.

seqc = seqcomplement(seq)

MATLAB returns:

seqc =

GGGCGNNNNNNN

3 Cut the first strand using the restriction enzyme FauI (which specifies a recognition
sequence pattern of CCCGC and a cleavage position of 9).

cuts_strand1 = restrict(seq, 'FauI')

MATLAB returns:

cuts_strand1 =

 'CCCGCNNNN'

 'NNN'

4 Cut the complement strand according the rule specified by FauI (which specifies a
recognition sequence pattern of GGGCG with the point of cleavage at position 11).

cuts_strand2 = restrict(seqc, 'GGGCG', 11)

MATLAB returns:

cuts_strand2 =

 'GGGCGNNNNNN'

 restrict

1-1571

 'N'

References

[1] Roberts, R.J., Vincze, T., Posfai, J., and Macelis, D. (2007). REBASE—enzymes and
genes for DNA restriction and modification. Nucl. Acids Res. 35, D269–D270.

[2] Official REBASE Web site: http://rebase.neb.com.

See Also
cleave | cleavelookup | rebasecuts | seq2regexp | seqcomplement |
seqshowwords | regexp

http://rebase.neb.com

1 Alphabetical List

1-1572

revgeneticcode
Return reverse mapping (amino acid to nucleotide codon) for genetic code

Syntax

Map = revgeneticcode

Map = revgeneticcode(GeneticCode)

Map = revgeneticcode(..., 'Alphabet', AlphabetValue, ...)

Map = revgeneticcode(..., 'ThreeLetterCodes',

ThreeLetterCodesValue, ...)

Input Arguments

GeneticCode Integer or string specifying a genetic code number or
code name from the table Genetic Code. Default is 1 or
'Standard'.

Tip If you use a code name, you can truncate the name
to the first two letters of the name.

AlphabetValue String specifying the nucleotide alphabet to use in the
map. Choices are:

• 'DNA' (default) — Uses the symbols A, C, G, and T.
• 'RNA' — Uses the symbols A, C, G, and U.

ThreeLetterCodesValue Controls the use of three-letter amino acid codes as
field names in the return structure Map. Choices are
true for three-letter codes or false for one-letter
codes. Default is false.

Output Arguments

Map Structure containing the reverse mapping of amino
acids to nucleotide codons for the standard genetic

 revgeneticcode

1-1573

code. The Map structure contains a field for each amino
acid.

Description

Map = revgeneticcode returns a structure containing the reverse mapping of amino
acids to nucleotide codons for the standard genetic code. The Map structure contains a
field for each amino acid.

Map = revgeneticcode(GeneticCode) returns a structure containing the reverse
mapping of amino acids to nucleotide codons for the specified genetic code. GeneticCode
is either:

• An integer or string specifying a code number or code name from the table Genetic
Code

• The transl_table (code) number from the NCBI Web page describing genetic codes:

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

Tip If you use a code name, you can truncate the name to the first two letters of the
name.

Map = revgeneticcode(..., 'PropertyName', PropertyValue, ...) calls
revgeneticcode with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

Map = revgeneticcode(..., 'Alphabet', AlphabetValue, ...) specifies the
nucleotide alphabet to use in the map. AlphabetValue can be 'DNA', which uses the
symbols A, C, G, and T, or 'RNA', which uses the symbols A, C, G, and U. Default is 'DNA'.

Map = revgeneticcode(..., 'ThreeLetterCodes',

ThreeLetterCodesValue, ...) controls the use of three-letter amino acid codes as
field names in the return structure Map. ThreeLetterCodesValue can be true for
three-letter codes or false for one-letter codes. Default is false.

Genetic Code

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

1 Alphabetical List

1-1574

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Examples

• Return the reverse mapping of amino acids to nucleotide codons for the Standard
genetic code.

map = revgeneticcode

map =

 Name: 'Standard'

 A: {'GCT' 'GCC' 'GCA' 'GCG'}

 R: {'CGT' 'CGC' 'CGA' 'CGG' 'AGA' 'AGG'}

 N: {'AAT' 'AAC'}

 revgeneticcode

1-1575

 D: {'GAT' 'GAC'}

 C: {'TGT' 'TGC'}

 Q: {'CAA' 'CAG'}

 E: {'GAA' 'GAG'}

 G: {'GGT' 'GGC' 'GGA' 'GGG'}

 H: {'CAT' 'CAC'}

 I: {'ATT' 'ATC' 'ATA'}

 L: {'TTA' 'TTG' 'CTT' 'CTC' 'CTA' 'CTG'}

 K: {'AAA' 'AAG'}

 M: {'ATG'}

 F: {'TTT' 'TTC'}

 P: {'CCT' 'CCC' 'CCA' 'CCG'}

 S: {'TCT' 'TCC' 'TCA' 'TCG' 'AGT' 'AGC'}

 T: {'ACT' 'ACC' 'ACA' 'ACG'}

 W: {'TGG'}

 Y: {'TAT' 'TAC'}

 V: {'GTT' 'GTC' 'GTA' 'GTG'}

 Stops: {'TAA' 'TAG' 'TGA'}

 Starts: {'TTG' 'CTG' 'ATG'}

• Return the reverse mapping of amino acids to nucleotide codons for the Mold,
Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma genetic code,
using the rna alphabet.

moldmap = revgeneticcode(4,'Alphabet','rna');

• Return the reverse mapping of amino acids to nucleotide codons for the Flatworm
Mitochondrial genetic code, using three-letter codes for the field names in the return
structure.

wormmap = revgeneticcode('Flatworm Mitochondrial',...

 'ThreeLetterCodes',true);

References

[1] NCBI Web page describing genetic codes:

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

See Also
aa2nt | aminolookup | baselookup | geneticcode | nt2aa

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

1 Alphabetical List

1-1576

rmabackadj
Perform background adjustment on Affymetrix microarray probe-level data using Robust
Multi-array Average (RMA) procedure

Syntax

BackAdjustedMatrix = rmabackadj(PMData)

BackAdjustedMatrix = rmabackadj(..., 'Method', MethodValue, ...)

BackAdjustedMatrix = rmabackadj(..., 'Truncate', TruncateValue, ...)

BackAdjustedMatrix = rmabackadj(..., 'Showplot', ShowplotValue, ...)

Input Arguments

PMData Matrix of intensity values where each row corresponds to a perfect
match (PM) probe and each column corresponds to an Affymetrix
CEL file. (Each CEL file is generated from a separate chip. All
chips should be of the same type.)

MethodValue Specifies the estimation method for the background adjustment
model parameters. Enter either 'RMA' (to use estimation method
described by Bolstad, 2005) or 'MLE' (to estimate the parameters
using maximum likelihood). Default is 'RMA'.

TruncateValue Specifies the background noise model. Enter either true (use a
truncated Gaussian distribution) or false (use a nontruncated
Gaussian distribution). Default is true.

ShowplotValue Controls the plotting of a histogram showing the distribution of
PM probe intensity values (blue) and the convoluted probability
distribution function (red), with estimated parameters mu, sigma
and alpha. Enter either 'all' (plot a histogram for each column
or chip) or specify a subset of columns (chips) by entering the
column number, list of numbers, or range of numbers.

For example:

• ..., 'Showplot', 3, ...) plots the intensity values in
column 3.

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

 rmabackadj

1-1577

• ..., 'Showplot', [3,5,7], ...) plots the intensity
values in columns 3, 5, and 7.

• ..., 'Showplot', 3:9, ...) plots the intensity values in
columns 3 to 9.

Output Arguments

BackAdjustedMatrix Matrix of background-adjusted probe intensity values.

Description

BackAdjustedMatrix = rmabackadj(PMData) returns the background adjusted
values of probe intensity values in the matrix, PMData. Note that each row in PMData
corresponds to a perfect match (PM) probe and each column in PMData corresponds to an
Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should
be of the same type.) Details on the background adjustment are described by Bolstad,
2005.

BackAdjustedMatrix = rmabackadj(..., 'PropertyName',

PropertyValue, ...) calls rmabackadj with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

BackAdjustedMatrix = rmabackadj(..., 'Method', MethodValue, ...)

specifies the estimation method for the background adjustment model parameters. When
MethodValue is 'RMA', rmabackadj implements the estimation method described by
Bolstad, 2005. When MethodValue is 'MLE', rmabackadj estimates the parameters
using maximum likelihood. Default is 'RMA'.

BackAdjustedMatrix = rmabackadj(..., 'Truncate', TruncateValue, ...)

specifies the background noise model used. When TruncateValue is false,
rmabackadj uses nontruncated Gaussian as the background noise model. Default is
true.

BackAdjustedMatrix = rmabackadj(..., 'Showplot', ShowplotValue, ...)

lets you plot a histogram showing the distribution of PM probe intensity values (blue)

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf
http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf
http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-1578

and the convoluted probability distribution function (red), with estimated parameters
mu, sigma and alpha. When ShowplotValue is 'all', rmabackadj plots a histogram
for each column or chip. When ShowplotValue is a number, list of numbers, or range of
numbers, rmabackadj plots a histogram for the indicated column number (chip).

For example:

• (..., 'Showplot', 3,...) plots the intensity values in column 3 of PMData.
• (..., 'Showplot', [3,5,7],...) plots the intensity values in columns 3, 5, and

7 of PMData.
• (..., 'Showplot', 3:9,...) plots the intensity values in columns 3 to 9 of

PMData.

 rmabackadj

1-1579

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
Affymetrix probe-level data, including pmMatrix, a matrix of PM probe intensity
values from multiple CEL files.

load prostatecancerrawdata

2 Perform background adjustment on the PM probe intensity values in the matrix,
pmMatrix, creating a new matrix, BackgroundAdjustedMatrix.

 BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

3 Perform background adjustment on the PM probe intensity values in only column 3
of the matrix, pmMatrix, creating a new matrix, BackgroundAdjustedChip3.

 BackgroundAdjustedChip3 = rmabackadj(pmMatrix(:,3));

The prostatecancerrawdata.mat file used in the previous example contains data
from Best et al., 2005.

References

[1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.,
Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics 4, 249–264.

[2] Bolstad, B. (2005). “affy: Built-in Processing Methods” http://www.bioconductor.org/
packages/2.1/bioc/vignettes/affy/ inst/doc/builtinMethods.pdf

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affyinvarsetnorm | affyread | affyrma | celintensityread |
probelibraryinfo | probesetlink | probesetlookup | probesetvalues |
quantilenorm | rmasummary

http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf
http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/inst/doc/builtinMethods.pdf

1 Alphabetical List

1-1580

rmasummary
Calculate gene expression values from Affymetrix microarray probe-level data using
Robust Multi-array Average (RMA) procedure

Syntax

ExpressionMatrix = rmasummary(ProbeIndices, Data)

ExpressionMatrix = rmasummary(ProbeIndices, Data, 'Output',

OutputValue)

Arguments

ProbeIndices Column vector of probe indices. The convention for probe
indices is, for each probe set, to label each probe 0 to N – 1,
where N is the number of probes in the probe set.

Tip Use the ProbeIndices field in the structure returned by
celintensityread as the ProbeIndices input.

Data Matrix of natural-scale intensity values where each row
corresponds to a perfect match (PM) probe and each column
corresponds to an Affymetrix CEL file. (Each CEL file is
generated from a separate chip. All chips should be of the
same type.)

Tip Using a single-precision matrix for Data decreases
memory usage.

Tip You can use the matrix from the PMIntensities field in
the structure returned by celintensityread as the Data
input. However, first ensure the matrix has been background
adjusted, using the rmabackadj or gcrmabackadjfunction,
and normalized, using the quantilenorm function.

 rmasummary

1-1581

OutputValue Specifies the scale of the returned gene expression values.
OutputValue can be:

• 'log'

• 'log2'

• 'log10'

• 'linear'

• @functionname

In the last instance, the data is transformed as defined by the
function functionname. Default is 'log2'.

Description

ExpressionMatrix = rmasummary(ProbeIndices, Data) returns gene (probe
set) expression values after calculating them from natural-scale probe intensities in the
matrix Data, using the column vector of probe indices, ProbeIndices. Note that each
row in Data corresponds to a perfect match (PM) probe, and each column corresponds
to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips
should be of the same type.) Note that the column vector ProbeIndices designates
probes within each probe set by labeling each probe 0 to N – 1, where N is the number of
probes in the probe set. Note that each row in ExpressionMatrix corresponds to a gene
(probe set) and each column in ExpressionMatrix corresponds to an Affymetrix CEL
file, which represents a single chip.

For a given probe set n, with J probe pairs, let Yijn denote the background-adjusted, base
2 log transformed and quantile-normalized PM probe intensity value of chip i and probe
j. Yijn follows a linear additive model:
Yijn = Uin + Ajn + Eijn; i = 1, ..., I; j = 1, ..., J; n = 1, ..., N

where:
Uin = Gene expression of the probe set n on chip i
Ajn = Probe affinity effect for the jth probe in the probe set
Eijn = Residual for the jth probe on the ith chip

The RMA method assumes A1 + A2 + ... + AJ = 0 for all probe sets. A robust procedure,
median polish, estimates Ui as the log scale measure of expression.

1 Alphabetical List

1-1582

Note: There is no column in ExpressionMatrix that contains probe set or gene
information.

ExpressionMatrix = rmasummary(..., 'PropertyName',

PropertyValue, ...) calls rmasummary with optional properties that use property
name/property value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

ExpressionMatrix = rmasummary(ProbeIndices, Data, 'Output',

OutputValue) specifies the scale of the returned gene expression values. OutputValue
can be:

• 'log'

• 'log2'

• 'log10'

• 'linear'

• @functionname

In the last instance, the data is transformed as defined by the function functionname.
Default is 'log2'.

Examples

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains
Affymetrix data variables, including pmMatrix, a matrix of PM probe intensity
values from multiple CEL files.

load prostatecancerrawdata

2 Perform background adjustment on the PM probe intensity values in the matrix,
pmMatrix, using the rmabackadj function, thereby creating a new matrix,
BackgroundAdjustedMatrix.

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

3 Normalize the data in BackgroundAdjustedMatrix, using the quantilenorm
function.

NormMatrix = quantilenorm(BackgroundAdjustedMatrix);

 rmasummary

1-1583

4 Calculate gene expression values from the probe intensities in NormMatrix, creating
a new matrix, ExpressionMatrix. (Use the probeIndices column vector provided
to supply information on the probe indices.)

ExpressionMatrix = rmasummary(probeIndices, NormMatrix);

The prostatecancerrawdata.mat file used in the previous example contains data
from Best et al., 2005.

References

[1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.,
Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics. 4, 249–264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading,
Massachusetts: Addison-Wesley Publishing Company), pp. 165–202.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A.,
Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H.,
Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D.,
Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary
prostate cancer after androgen ablation therapy. Clinical Cancer Research 11,
6823–6834.

See Also
affygcrma | affyinvarsetnorm | affyrma | celintensityread | gcrmabackadj
| mainvarsetnorm | malowess | manorm | quantilenorm | rmabackadj

1 Alphabetical List

1-1584

rna2dna
Convert RNA sequence to DNA sequence

Syntax

SeqDNA = rna2dna(SeqRNA)

Arguments

SeqRNA RNA sequence specified by any of the following:

• Character string with the characters A, C, G, U, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N,

• Row vector of integers from the table Mapping Nucleotide Integers
to Letter Codes.

• MATLAB structure containing a Sequence field that contains
an RNA sequence, such as returned by fastaread, fastqread,
emblread, getembl, genbankread, or getgenbank.

Description

SeqDNA = rna2dna(SeqRNA) converts an RNA sequence to a DNA sequence by
converting any uracil nucleotides (U) in the RNA sequence to thymine nucleotides (T).
The DNA sequence is returned in the same format as the RNA sequence. For example, if
SeqRNA is a vector of integers, then so is SeqDNA.

Examples

Convert an RNA sequence to a DNA sequence.

rna2dna('ACGAUGAGUCAUGCUU')

ans =

 rna2dna

1-1585

ACGATGAGTCATGCTT

See Also
dna2rna | regexp | strrep

1 Alphabetical List

1-1586

rnaconvert
Convert secondary structure of RNA sequence between bracket and matrix notations

Syntax

RNAStruct2 = rnaconvert(RNAStruct)

Input Arguments

RNAStruct Secondary structure of an RNA sequence represented by either:

• Bracket notation
• Connectivity matrix

Tip Use the rnafold function to create RNAStruct.

Output Arguments

RNAStruct2 Secondary structure of an RNA sequence represented by either:

• Bracket notation — String of dots and brackets, where each dot
represents an unpaired base, while a pair of equally nested, opening
and closing brackets represents a base pair.

• Connectivity matrix — Binary, upper-triangular matrix, where
RNAmatrix(i, j) = 1 if and only if the ith residue in the RNA
sequence Seq is paired with the jth residue of Seq.

Description

RNAStruct2 = rnaconvert(RNAStruct) returns RNAStruct2, the secondary
structure of an RNA sequence, in matrix notation (if RNAStruct is in bracket notation),
or in bracket notation (if RNAStruct is in matrix notation).

 rnaconvert

1-1587

Examples

Converting from Bracket to Matrix Notation

1 Create a string representing a secondary structure of an RNA sequence in bracket
notation.

Bracket = '(((..((((.......)))).((.....)).))).';

2 Convert the secondary structure to a connectivity matrix representation.

Matrix = rnaconvert(Bracket);

Converting from Matrix to Bracket Notation

1 Create a connectivity matrix representing a secondary structure of an RNA
sequence.

 Matrix2 = zeros(12);

 Matrix2(1,12) = 1;

 Matrix2(2,11) = 1;

 Matrix2(3,10) = 1;

 Matrix2(4,9) = 1;

2 Convert the secondary structure to bracket notation.

Bracket2 = rnaconvert(Matrix2)

Bracket2 =

((((....))))

See Also
rnafold | rnaplot

1 Alphabetical List

1-1588

rnafold
Predict minimum free-energy secondary structure of RNA sequence

Syntax

rnafold(Seq)

RNAbracket = rnafold(Seq)

[RNAbracket, Energy] = rnafold(Seq)

[RNAbracket, Energy, RNAmatrix] = rnafold(Seq)

... = rnafold(Seq, ...'MinLoopSize', MinLoopSizeValue, ...)

... = rnafold(Seq, ...'NoGU', NoGUValue, ...)

... = rnafold(Seq, ...'Progress', ProgressValue, ...)

Input Arguments

Seq Either of the following:

• String specifying an RNA sequence.
• MATLAB structure containing a Sequence field that

specifies an RNA sequence.
MinLoopSizeValue Integer specifying the minimum size of the loops (in bases) to

be considered when computing the free energy. Default is 3.
NoGUValue Controls whether GU or UG pairs are forbidden to form.

Choices are true or false (default).
ProgressValue Controls the display of a progress bar during the computation

of the minimum free-energy secondary structure. Choices are
true or false (default).

Output Arguments

RNAbracket String of dots and brackets indicating the bracket notation
for the minimum-free energy secondary structure of an RNA
sequence. In the bracket notation, each dot represents an

 rnafold

1-1589

unpaired base, while a pair of equally nested, opening and
closing brackets represents a base pair.

Energy Value specifying the energy (in kcal/mol) of the minimum free-
energy secondary structure of an RNA sequence.

RNAmatrix Connectivity matrix representing the minimum free-energy
secondary structure of an RNA sequence. A binary, upper-
triangular matrix where RNAmatrix(i, j) = 1 if and only
if the ith residue in the RNA sequence Seq is paired with the
jth residue of Seq.

Description

rnafold(Seq) predicts and displays the secondary structure (in bracket notation)
associated with the minimum free energy for the RNA sequence, Seq, using the
thermodynamic nearest-neighbor approach.

Note: For long sequences, this prediction can be time consuming. For example, a
600-nucleotide sequence can take several minutes, and sequences greater than 1000
nucleotides can take over 1 hour, depending on your system.

RNAbracket = rnafold(Seq) predicts and returns the secondary structure associated
with the minimum free energy for the RNA sequence, Seq, using the thermodynamic
nearest-neighbor approach. The returned structure, RNAbracket, is in bracket notation,
that is a vector of dots and brackets, where each dot represents an unpaired base, while a
pair of equally nested, opening and closing brackets represents a base pair.

[RNAbracket, Energy] = rnafold(Seq) also returns Energy, the energy value (in
kcal/mol) of the minimum free-energy secondary structure of the RNA sequence.

[RNAbracket, Energy, RNAmatrix] = rnafold(Seq) also returns RNAmatrix, a
connectivity matrix representing the secondary structure associated with the minimum
free energy. RNAmatrix is an upper triangular matrix where RNAmatrix(i, j) = 1
if and only if the ith residue in the RNA sequence Seq is paired with the jth residue of
Seq.

... = rnafold(Seq, ...'PropertyName', PropertyValue, ...) calls rnafold
with optional properties that use property name/property value pairs. You can specify

1 Alphabetical List

1-1590

one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

... = rnafold(Seq, ...'MinLoopSize', MinLoopSizeValue, ...) specifies
the minimum size of the loops (in bases) to be considered when computing the free
energy. Default is 3.

... = rnafold(Seq, ...'NoGU', NoGUValue, ...) controls whether GU or UG
pairs are forbidden to form. Choices are true or false (default).

... = rnafold(Seq, ...'Progress', ProgressValue, ...) controls the
display of a progress bar during the computation of the minimum free-energy secondary
structure. Choices are true or false (default).

Examples

Determine the minimum free-energy secondary structure (in both bracket and matrix
notation) and the energy value of the following RNA sequence:

seq = 'ACCCCCUCCUUCCUUGGAUCAAGGGGCUCAA';

[bracket, energy, matrix] = rnafold(seq);bracket

bracket =

..(((((...((....))...))))).....

References

[1] Wuchty, S., Fontana, W., Hofacker, I., and Schuster, P. (1999). Complete suboptimal
folding of RNA and the stability of secondary structures. Biopolymers 49, 145–
165.

[2] Matthews, D., Sabina, J., Zuker, M., and Turner, D. (1999). Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA secondary
structure. J. Mol. Biol. 288, 911–940.

See Also
rnaconvert | rnaplot

 rnaplot

1-1591

rnaplot
Draw secondary structure of RNA sequence

Syntax

rnaplot(RNA2ndStruct)

ha = rnaplot(RNA2ndStruct)

[ha, H] = rnaplot(RNA2ndStruct)

rnaplot(RNA2ndStruct, ...'Sequence', SequenceValue, ...)

rnaplot(RNA2ndStruct, ...'Format', FormatValue, ...)

rnaplot(RNA2ndStruct, ...'Selection', SelectionValue, ...)

rnaplot(RNA2ndStruct, ...'ColorBy', ColorByValue, ...)

Input Arguments

RNA2ndStruct Secondary structure of an RNA sequence represented by either:

• String specifying bracket notation
• Connectivity matrix

Tip Use the rnafold function to create RNA2ndStruct.
SequenceValue Sequence of the RNA secondary structure being plotted, specified

by either of the following:

• String of characters
• Structure containing a Sequence field that contains an RNA

sequence

This information is used in the data tip displayed by clicking a
base in the plot of the RNA secondary structure RNA2ndStruct.
This information is required if you specify the 'Diagram'
format or if you specify to highlight any of the following paired
selections: 'AU', 'UA', 'GC', 'CG', 'GU' or 'UG'.

FormatValue String specifying the format of the plot. Choices are:

1 Alphabetical List

1-1592

• 'Circle' (default)
• 'Diagram'

• 'Dotdiagram'

• 'Graph'

• 'Mountain'

• 'Tree'

Note: If you specify 'Diagram', you must also use the
'Sequence' property to provide the RNA sequence.

SelectionValue Either of the following:

• Numeric array specifying the indices of residues to highlight
in the plot.

• String specifying the subset of residues to highlight in the
plot. Choices are:

• 'Paired'

• 'Unpaired'

• 'AU' or 'UA'
• 'GC' or 'CG'
• 'GU' or 'UG'

Note: If you specify 'AU', 'UA', 'GC', 'CG', 'GU', or 'UG',
you must also use the 'Sequence' property to provide the RNA
sequence.

 rnaplot

1-1593

ColorByValue String specifying a color scheme for the plot. Choices are:

• 'State' (default) — Color by pair state: paired bases and
unpaired bases.

• 'Residue' — Color by residue type (A, C, G, and U).
• 'Pair' — Color by pair type (AU/UA, GC/CG, and GU/UG).

Note: If you specify 'residue' or 'pair', you must also use
the 'Sequence' property to provide the RNA sequence.

Note: Because internal nodes of a tree correspond to paired
residues, you cannot specify 'residue' if you specify 'Tree'
for the 'Format' property.

Output Arguments

ha Handle to the figure axis.
H A structure of handles containing a subset of the following fields,

based on what you specify for the 'Selection' and 'ColorBy'
properties:

• Paired

• Unpaired

• A

• C

• G

• U

• AU

• GC

• GU

• Selected

1 Alphabetical List

1-1594

Description

rnaplot(RNA2ndStruct) draws the RNA secondary structure specified by
RNA2ndStruct, the secondary structure of an RNA sequence represented by a string
specifying bracket notation or a connectivity matrix.

ha = rnaplot(RNA2ndStruct) returns ha, a handle to the figure axis.

[ha, H] = rnaplot(RNA2ndStruct) also returns H, a structure of handles, which you
can use to graph elements in a MATLAB Figure window.

Tip Use the handles returned in H to change properties of the graph elements, such as
color, marker size, and marker type.

H contains a subset of the following fields, based on what you specify for the
'Selection' and 'ColorBy' properties.

Field Description

Paired Handles to all paired residues
Unpaired Handles to all unpaired residues
A Handles to all A residues
C Handles to all C residues
G Handles to all G residues
U Handles to all U residues
AU Handles to all AU or UA pairs
GC Handles to all GC or CG pairs
GU Handles to all GU or UG pairs
Selected Handles to all selected residues

rnaplot(RNA2ndStruct, ...'PropertyName', PropertyValue, ...) calls
rnaplot with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

 rnaplot

1-1595

rnaplot(RNA2ndStruct, ...'Sequence', SequenceValue, ...) draws the RNA
secondary structure specified by RNA2ndStruct, and annotates it with the sequence
positions supplied by SequenceValue, the RNA sequence specified by a string of
characters or a structure containing a Sequence field.

rnaplot(RNA2ndStruct, ...'Format', FormatValue, ...) draws the RNA
secondary structure specified by RNA2ndStruct, using the format specified by
FormatValue.

FormatValue is a string specifying the format of the plot. Choices are as follows.

Format Description

'Circle' (default) Each base is represented by a dot on the circumference of a
circle of arbitrary size. Lines connect bases that pair with each
other.

'Diagram' Two-dimensional representation of the RNA secondary
structure. Each base is represented and identified by a letter.
The backbone and hydrogen bonds between base pairs are
represented by lines.

1 Alphabetical List

1-1596

Format Description

Note: If you specify 'Diagram', you must also use the
'Sequence' property to provide the RNA sequence.

'Dotdiagram' Two-dimensional representation of the RNA secondary
structure. Each base is represented and identified by a dot.
The backbone and hydrogen bonds between base pairs are
represented by lines.

 rnaplot

1-1597

Format Description

'Graph' Bases are displayed in their sequence position along the
abscissa (x-axis) of a graph. Semi-elliptical lines connect bases
that pair with each other. The height of the lines is proportional
to the distance between paired bases.

'Mountain' Each base is represented by a dot in a two-dimensional plot,
where the base position is in the abscissa (x-axis) and the
number of base pairs enclosing a given base is in the ordinate
(y-axis).

1 Alphabetical List

1-1598

Format Description

'Tree' Each base is represented by a node in a tree graph. Leaf nodes
indicate unpaired bases, while each internal node indicates a
base pair. The tree root is a fictitious node, not associated with
any base in the secondary structure.

rnaplot(RNA2ndStruct, ...'Selection', SelectionValue, ...) draws the
RNA secondary structure specified by RNA2ndStruct, highlighting a subset of residues
specified by SelectionValue. SelectionValue can be either:

• Numeric array specifying the indices of residues to highlight in the plot.
• String specifying the subset of residues to highlight in the plot. Choices are:

• 'Paired'

• 'Unpaired'

• 'AU' or 'UA'
• 'GC' or 'CG'
• 'GU' or 'UG'

Note: If you specify 'AU', 'UA', 'GC', 'CG', 'GU', or 'UG', you must also use the
'Sequence' property to provide the RNA sequence.

 rnaplot

1-1599

rnaplot(RNA2ndStruct, ...'ColorBy', ColorByValue, ...) draws the RNA
secondary structure specified by RNA2ndStruct, using a color scheme specified by
ColorByValue, a string indicating a color scheme. Choices are:

• 'State' (default) — Color by pair state: paired bases and unpaired bases.
• 'Residue' — Color by residue type (A, C, G, and U).
• 'Pair' — Color by pair type (AU/UA, GC/CG, and GU/UG).

Note: If you specify 'Residue' or 'Pair', you must also use the 'Sequence' property
to provide the RNA sequence.

Note: Because internal nodes of a tree correspond to paired residues, you cannot specify
'Residue' if you specify 'Tree' for the 'Format' property.

Examples

1 Determine the minimum free-energy secondary structure of an RNA sequence and
plot it in circle format:
seq = 'GCGCCCGUAGCUCAAUUGGAUAGAGCGUUUGACUACGGAUCAAAAGGUUAGGGGUUCGACUCCUCUCGGGCGCG';

ss = rnafold(seq);

rnaplot(ss)

1 Alphabetical List

1-1600

2 Plot the RNA sequence secondary structure in graph format and color it by pair type.

rnaplot(ss, 'sequence', seq, 'format', 'graph', 'colorby', 'pair')

 rnaplot

1-1601

3 Plot the RNA sequence secondary structure in mountain format and color it by
residue type. Use the handle to add a title to the plot.

ha = rnaplot(ss, 'sequence', seq, 'format', 'mountain',...

 'colorby', 'residue')

title(ha, 'Bacillus halodurans, tRNA Arg')

1 Alphabetical List

1-1602

4 Mutate the first six positions in the sequence and observe the effect the change has
on the secondary structure by highlighting the first six residues.

seqMut = seq;

seqMut(1:6) = 'AAAAAA';

ssMut = rnafold(seqMut);

rnaplot(ss, 'sequence', seq, 'format', 'dotdiagram', 'selection', 1:6);

rnaplot(ssMut, 'sequence', seqMut, 'format', 'dotdiagram', 'selection', 1:6);

 rnaplot

1-1603

1 Alphabetical List

1-1604

Tip If necessary, click-drag the legend to prevent it from covering the plot. Click a base in
the plot to display a data tip with information on that base.

See Also
rnaconvert | rnafold

 rownames (DataMatrix)

1-1605

rownames (DataMatrix)

Retrieve or set row names of DataMatrix object

Syntax

ReturnRowNames = rownames(DMObj)

ReturnRowNames = rownames(DMObj, RowIndices)

DMObjNew = rownames(DMObj, RowIndices, RowNames)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

RowIndices One or more rows in DMObj, specified by any of the following:

• Positive integer
• Vector of positive integers
• String specifying a row name
• Cell array of strings
• Logical vector

RowNames Row names specified by any of the following:

• Numeric vector
• Cell array of strings
• Character array
• Single string, which is used as a prefix for row names, with

row numbers appended to the prefix
• Logical true or false (default). If true, unique row names

are assigned using the format row1, row2, row3, etc. If
false, no row names are assigned.

1 Alphabetical List

1-1606

Note: The number of elements in RowNames must equal the
number of elements in RowIndices.

Output Arguments

ReturnRowNames String or cell array of strings containing row names in DMObj.
DMObjNew DataMatrix object created with names specified by RowIndices

and RowNames.

Description

ReturnRowNames = rownames(DMObj) returns ReturnRowNames, a cell array of
strings specifying the row names in DMObj, a DataMatrix object.

ReturnRowNames = rownames(DMObj, RowIndices) returns the row names
specified by RowIndices. RowIndices can be a positive integer, vector of positive
integers, string specifying a row name, cell array of strings, or a logical vector.

DMObjNew = rownames(DMObj, RowIndices, RowNames) returns DMObjNew, a
DataMatrix object with rows specified by RowIndices set to the names specified by
RowNames. The number of elements in RowIndices must equal the number of elements
in RowNames.

More About
• “DataMatrix object”

See Also
DataMatrix | colnames

 saminfo

1-1607

saminfo
Return information about Sequence Alignment/Map (SAM) file

Syntax

InfoStruct = saminfo(File)

InfoStruct = saminfo(File,Name,Value)

Description

InfoStruct = saminfo(File) returns a MATLAB structure containing summary
information about a SAM-formatted file.

InfoStruct = saminfo(File,Name,Value) returns a MATLAB structure with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

File

String specifying a file name or path and file name of a SAM-formatted file. If you specify
only a file name, that file must be on the MATLAB search path or in the Current Folder.

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NumOfReads'

Logical that controls the inclusion of a NumReads field in InfoStruct, the output
structure.

1 Alphabetical List

1-1608

Note: Setting NumOfReads to true can significantly increase the time to create the
output structure.

Default: false

'ScanDictionary'

Logical that controls the scanning of the SAM-formatted file to determine the
reference names and the number of reads aligned to each reference. If true, the
ScannedDictionary and ScannedDictionaryCount fields contain this information.

Default: false

Output Arguments

InfoStruct

MATLAB structure containing summary information about a SAM-formatted file. The
structure contains these fields.

Field Description

Filename Name of the SAM-formatted file.
FilePath Path to the file.
FileSize Size of the file in bytes.
FileModDate Modification date of the file.
NumReads* Number of sequence reads in the file.
ScannedDictionary* Cell array of strings specifying the names of

the reference sequences in the SAM-formatted
file.

ScannedDictionaryCount* Cell array specifying the number of reads
aligned to each reference sequence.

Header** Structure containing the file format version,
sort order, and group order.

SequenceDictionary** Structure containing the:

• Sequence name

 saminfo

1-1609

Field Description

• Sequence length
• Genome assembly identifier
• MD5 checksum of sequence
• URI of sequence
• Species

ReadGroup** Structure containing the:

• Read group identifier
• Sample
• Library
• Description
• Platform unit
• Predicted median insert size
• Sequencing center
• Date
• Platform

Program** Structure containing the:

• Program name
• Version
• Command line

* — The NumReads field is empty if you do not set the NumOfReads name-value pair
argument to true. The ScannedDictionary and ScannedDictionaryCount fields are
empty if you do not set the ScanDictionary name-value pair argument to true.

** — These structures and their fields appear in the output structure only if they are in
the SAM file. The information in these structures depends on the information in the SAM
file.

Examples

Return information about the ex1.sam file included with Bioinformatics Toolbox:

1 Alphabetical List

1-1610

info = saminfo('ex1.sam')

info =

 Filename: 'ex1.sam'

 FilePath: [1x89 char]

 FileSize: 254270

 FileModDate: '12-May-2011 14:23:25'

 Header: [1x1 struct]

 SequenceDictionary: [1x1 struct]

 ReadGroup: [1x2 struct]

 NumReads: []

 ScannedDictionary: {0x1 cell}

 ScannedDictionaryCount: [0x1 uint64]

Return information about the ex1.sam file including the number of sequence reads:

info = saminfo('ex1.sam','numofreads', true)

info =

 Filename: 'ex1.sam'

 FilePath: [1x89 char]

 FileSize: 254270

 FileModDate: '12-May-2011 14:23:25'

 Header: [1x1 struct]

 SequenceDictionary: [1x1 struct]

 ReadGroup: [1x2 struct]

 NumReads: 1501

 ScannedDictionary: {0x1 cell}

 ScannedDictionaryCount: [0x1 uint64]

More About

Tips
Use saminfo to investigate the size and content of a SAM file before using the samread
function to read the file contents into a MATLAB structure.
• “Manage Short-Read Sequence Data in Objects”
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 saminfo

1-1611

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
BioIndexedFile | BioMap | samread | fastqread | fastqwrite | fastqinfo |
fastainfo | fastaread | fastawrite | sffinfo | sffread

1 Alphabetical List

1-1612

samplealign

Align two data sets containing sequential observations by introducing gaps

Syntax

[I, J] = samplealign(X, Y)

[I, J] = samplealign(X, Y, ...'Band', BandValue, ...)

[I, J] = samplealign(X, Y, ...'Width', WidthValue, ...)

[I, J] = samplealign(X, Y, ...'Gap', GapValue, ...)

[I, J] = samplealign(X, Y, ...'Quantile', QuantileValue, ...)

[I, J] = samplealign(X, Y, ...'Distance', DistanceValue, ...)

[I, J] = samplealign(X, Y, ...'Weights', WeightsValue, ...)

[I, J] = samplealign(X, Y, ...'ShowConstraints',

ShowConstraintsValue, ...)

[I, J] = samplealign(X, Y, ...'ShowNetwork', ShowNetworkValue, ...)

[I, J] = samplealign(X, Y, ...'ShowAlignment',

ShowAlignmentValue, ...)

Input Arguments

X, Y Matrices of data where rows correspond to observations
or samples, and columns correspond to features or
dimensions. X and Y can have a different number of
rows, but they must have the same number of columns.
The first column is the reference dimension and
must contain unique values in ascending order. The
reference dimension could contain sample indices of the
observations or a measurable value, such as time.

BandValue Either of the following:

• Scalar.
• Function specified using @(z), where z is the mid-

point between a given observation in one data set and
a given observation in the other data set.

 samplealign

1-1613

BandValue specifies a maximum allowable distance
between observations (along the reference dimension
only) in the two data sets, thus limiting the number of
potential matches between observations in two data sets.
If S is the value in the reference dimension for a given
observation (row) in one data set, then that observation
is matched only with observations in the other data set
whose values in the reference dimension fall within S
± BandValue. Then, only these potential matches are
passed to the algorithm for further scoring. Default
BandValue is Inf.

WidthValue Either of the following:

• Two-element vector, [U, V]
• Scalar that is used for both U and V

WidthValue limits the number of potential matches
between observations in two data sets; that is, each
observation in X is scored to the closest U observations
in Y, and each observation in Y is scored to the closest V
observations in X. Then, only these potential matches are
passed to the algorithm for further scoring. Closeness
is measured using only the first column (reference
dimension) in each data set. Default is Inf if 'Band' is
specified; otherwise default is 10.

1 Alphabetical List

1-1614

GapValue Any of the following:

• Cell array, {G, H}, where G is either a scalar or a
function handle specified using @(X), and H is either
a scalar or a function handle specified using @(Y).
The functions @(X) and @(Y) must calculate the
penalty for each observation (row) when it is matched
to a gap in the other data set. The functions @(X)
and @(Y) must return a column vector with the same
number of rows as X or Y, containing the gap penalty
for each observation (row).

• Single function handle specified using @(Z), which
is used for both G and H. The function @(Z) must
calculate the penalty for each observation (row) in
both X and Y when it is matched to a gap in the other
data set. The function @(Z) must take as arguments
X and Y. The function @(Z) must return a column
vector with the same number of rows as X or Y,
containing the gap penalty for each observation (row).

• Scalar that is used for both G and H.

GapValue specifies the position-dependent terms for
assigning gap penalties. The calculated value, GPX, is
the gap penalty for matching observations from the
first data set X to gaps inserted in the second data set
Y, and is the product of two terms: GPX = G * QMS. The
term G takes its value as a function of the observations
in X. Similarly, GPY is the gap penalty for matching
observations from Y to gaps inserted in X, and is the
product of two terms: GPY = H * QMS. The term H takes its
value as a function of the observations in Y. By default,
the term QMS is the 0.75 quantile of the score for the
pairs of observations that are potential matches (that
is, pairs that comply with the 'Band' and 'Width'
constraints). Default GapValue is 1.

 samplealign

1-1615

QuantileValue Scalar between 0 and 1 that specifies the quantile value
used to calculate the term QMS, which is used by the
'Gap' property to calculate gap penalties. Default is
0.75.

DistanceValue Function handle specified using @(R,S). The function
@(R,S) must:

• Calculate the distance between pairs of observations
that are potential matches.

• Take as arguments, R and S, matrices that have the
same number of rows and columns, and whose paired
rows represent all potential matches of observations
in X and Y respectively.

• Return a column vector of positive values with the
same number of elements as rows in R and S.

Default is the Euclidean distance between the pairs.

Caution All columns in X and Y, including the reference
dimension, are considered when calculating distances.
If you do not want to include the reference dimension in
the distance calculations, use the 'Weight' property to
exclude it.

1 Alphabetical List

1-1616

WeightsValue Either of the following:

• Logical row vector with the same number of elements
as columns in X and Y, that specifies columns in X
and Y.

• Numeric row vector with the same number of
elements as columns in X and Y, that specifies the
relative weights of the columns (features).

This property controls the inclusion/exclusion of columns
(features) or the emphasis of columns (features) when
calculating the distance score between observations
that are potential matches, that is, when using the
'Distance' property. Default is a logical row vector
with all elements set to true.

Tip Using a numeric row vector for WeightsValue
and setting some values to 0 can simplify the distance
calculation when the data sets have many columns
(features).

Note: The weight values are not considered when using
the 'Band', 'Width', or 'Gap' property.

ShowConstraintsValue Controls the display of the search space constrained by
the specified 'Band' and 'Width' input parameters,
thereby giving an indication of the memory required
to run the algorithm with the specific 'Band' and
'Width' parameters on your data sets. Choices are
true or false (default).

ShowNetworkValue Controls the display of the dynamic programming
network, the match scores, the gap penalties, and the
winning path. Choices are true or false (default).

 samplealign

1-1617

ShowAlignmentValue Controls the display of the first and second columns of
the X and Y data sets in the abscissa and the ordinate
respectively, of a two-dimensional plot. Choices are
true, false (default), or an integer specifying a column
of the X and Y data sets to plot as the ordinate.

Output Arguments

I Column vector containing indices of rows (observations)
in X that match to a row (observation) in Y. Missing
indices indicate that row (observation) is matched to a
gap.

J Column vector containing indices of rows (observations)
in Y that match to a row (observation) in X. Missing
indices indicate that row (observation) is matched to a
gap.

Description

[I, J] = samplealign(X, Y) aligns the observations in two matrices of data, X
and Y, by introducing gaps. X and Y are matrices of data where rows correspond to
observations or samples, and columns correspond to features or dimensions. X and Y
can have different number of rows, but must have the same number of columns. The
first column is the reference dimension and must contain unique values in ascending
order. The reference dimension could contain sample indices of the observations
or a measurable value, such as time. The samplealign function uses a dynamic
programming algorithm to minimize the sum of positive scores resulting from pairs of
observations that are potential matches and the penalties resulting from the insertion
of gaps. Return values I and J are column vectors containing indices that indicate the
matches for each row (observation) in X and Y respectively.

Tip If you do not specify return values, samplealign does not run the dynamic
programming algorithm. Running samplealign without return values, but setting the
'ShowConstraints', 'ShowNetwork', or 'ShowAlignment' property to true, lets
you explore the constrained search space, the dynamic programming network, or the
aligned observations, without running into potential memory problems.

1 Alphabetical List

1-1618

[I, J] = samplealign(X, Y, ...'PropertyName', PropertyValue, ...)

calls samplealign with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotation marks and is case insensitive. These property name/property
value pairs are as follows:

[I, J] = samplealign(X, Y, ...'Band', BandValue, ...) specifies a
maximum allowable distance between observations (along the reference dimension only)
in the two data sets, thus limiting the number of potential matches between observations
in the two data sets. If S is the value in the reference dimension for a given observation
(row) in one data set, then that observation is matched only with observations in the
other data set whose values in the reference dimension fall within S ± BandValue. Then,
only these potential matches are passed to the algorithm for further scoring. BandValue
can be a scalar or a function specified using @(z), where z is the mid-point between a
given observation in one data set and a given observation in the other data set. Default
BandValue is Inf.

This constraint reduces the time and memory complexity of the algorithm from O(MN)
to O(sqrt(MN)*K), where M and N are the number of observations in X and Y respectively,
and K is a small constant such that K<<M and K<<N. Adjust BandValue to the maximum
expected shift between the reference dimensions in the two data sets, that is, between
X(:,1) and Y(:,1).

[I, J] = samplealign(X, Y, ...'Width', WidthValue, ...) limits the
number of potential matches between observations in two data sets; that is, each
observation in X is scored to the closest U observations in Y, and each observation in Y is
scored to the closest V observations in X. Then, only these potential matches are passed
to the algorithm for further scoring. WidthValue is either a two-element vector, [U, V] or
a scalar that is used for both U and V. Closeness is measured using only the first column
(reference dimension) in each data set. Default is Inf if 'Band' is specified; otherwise
default is 10.

This constraint reduces the time and memory complexity of the algorithm from O(MN)
to O(sqrt(MN)*sqrt(UV)), where M and N are the number of observations in X and Y
respectively, and U and V are small such that U<<M and V<<N.

Note: If you specify both 'Band' and 'Width', only pairs of observations that meet both
constraints are considered potential matches and passed to the algorithm for scoring.

 samplealign

1-1619

Tip Specify 'Width' when you do not have a good estimate for the 'Band' property.
To get an indication of the memory required to run the algorithm with specific 'Band'
and 'Width' parameters on your data sets, run samplealign, but do not specify return
values and set 'ShowConstraints' to true.

[I, J] = samplealign(X, Y, ...'Gap', GapValue, ...) specifies the position-
dependent terms for assigning gap penalties.

GapValue is any of the following:

• Cell array, {G, H}, where G is either a scalar or a function handle specified using @(X),
and H is either a scalar or a function handle specified using @(Y). The functions @(X)
and @(Y) must calculate the penalty for each observation (row) when it is matched
to a gap in the other data set. The functions @(X) and @(Y) must return a column
vector with the same number of rows as X or Y, containing the gap penalty for each
observation (row).

• Single function handle specified using @(Z), that is used for both G and H. The
function @(Z) must calculate the penalty for each observation (row) in both X and
Y when it is matched to a gap in the other data set. The function @(Z) must take as
arguments X and Y. The function @(Z) must return a column vector with the same
number of rows as X or Y, containing the gap penalty for each observation (row).

• Scalar that is used for both G and H.

The calculated value, GPX, is the gap penalty for matching observations from the first
data set X to gaps inserted in the second data set Y, and is the product of two terms: GPX
= G * QMS. The term G takes its value as a function of the observations in X. Similarly,
GPY is the gap penalty for matching observations from Y to gaps inserted in X, and is
the product of two terms: GPY = H * QMS. The term H takes its value as a function of the
observations in Y. By default, the term QMS is the 0.75 quantile of the score for the pairs
of observations that are potential matches (that is, pairs that comply with the 'Band'
and 'Width' constraints).

If G and H are positive scalars, then GPX and GPY are independent of the observation
where the gap is being inserted.

Default GapValue is 1, that is, both G and H are 1, which indicates that the default
penalty for gap insertions in both sequences is equivalent to the quantile (set by the
'Quantile' property, default = 0.75) of the score for the pairs of observations that are
potential matches.

1 Alphabetical List

1-1620

Note: GapValue defaults to a relatively safe value. However, the success of the algorithm
depends on the fine tuning of the gap penalties, which is application dependent. When
the gap penalties are large relative to the score of the correct matches, samplealign
returns alignments with fewer gaps, but with more incorrectly aligned regions. When the
gap penalties are smaller, the output alignment contains longer regions with gaps and
fewer matched observations. Set 'ShowNetwork' to true to compare the gap penalties
to the score of matched observations in different regions of the alignment.

[I, J] = samplealign(X, Y, ...'Quantile', QuantileValue, ...) specifies
the quantile value used to calculate the term QMS, which is used by the 'Gap' property to
calculate gap penalties. QuantileValue is a scalar between 0 and 1. Default is 0.75.

Tip Set QuantileValue to an empty array ([]) to make the gap penalities independent
of QMS, that is, GPX and GPY are functions of only the G and H input parameters
respectively.

[I, J] = samplealign(X, Y, ...'Distance', DistanceValue, ...) specifies
a function to calculate the distance between pairs of observations that are potential
matches. DistanceValue is a function handle specified using @(R,S). The function
@(R,S) must take as arguments, R and S, matrices that have the same number of rows
and columns, and whose paired rows represent all potential matches of observations in X
and Y respectively. The function @(R,S) must return a column vector of positive values
with the same number of elements as rows in R and S. Default is the Euclidean distance
between the pairs.

Caution All columns in X and Y, including the reference dimension, are considered when
calculating distances. If you do not want to include the reference dimension in the
distance calculations, use the 'Weight' property to exclude it.

[I, J] = samplealign(X, Y, ...'Weights', WeightsValue, ...) controls
the inclusion/exclusion of columns (features) or the emphasis of columns (features) when
calculating the distance score between observations that are potential matches, that is
when using the 'Distance' property. WeightsValue can be a logical row vector that
specifies columns in X and Y. WeightsValue can also be a numeric row vector with the

 samplealign

1-1621

same number of elements as columns in X and Y, that specifies the relative weights of the
columns (features). Default is a logical row vector with all elements set to true.

Tip Using a numeric row vector for WeightsValue and setting some values to 0 can
simplify the distance calculation when the data sets have many columns (features).

Note: The weight values are not considered when computing the constrained alignment
space, that is when using the 'Band' or 'Width' properties, or when calculating the gap
penalties, that is when using the 'Gap' property.

[I, J] = samplealign(X, Y, ...'ShowConstraints',

ShowConstraintsValue, ...) controls the display of the search space constrained by
the input parameters 'Band' and 'Width', giving an indication of the memory required
to run the algorithm with specific 'Band' and 'Width' on your data sets. Choices are
true or false (default).

[I, J] = samplealign(X, Y, ...'ShowNetwork', ShowNetworkValue, ...)

controls the display of the dynamic programming network, the match scores, the gap
penalties, and the winning path. Choices are true or false (default).

[I, J] = samplealign(X, Y, ...'ShowAlignment',

ShowAlignmentValue, ...) controls the display of the first and second columns of
the X and Y data sets in the abscissa and the ordinate respectively, of a two-dimensional
plot. Links between all the potential matches that meet the constraints are displayed,
and the matches belonging to the output alignment are highlighted. Choices are true,
false (default), or an integer specifying a column of the X and Y data sets to plot as the
ordinate.

Examples

Warping a sine wave with a smooth function to more closely follow cyclical sunspot activity

1 Load sunspot.dat, a data file included with the MATLAB software, that contains
the variable sunspot, which is a two-column matrix containing variations in
sunspot activity over the last 300 years. The first column is the reference dimension
(years), and the second column contains sunspot activity values. Sunspot activity is
cyclical, reaching a maximum about every 11 years.

1 Alphabetical List

1-1622

load sunspot.dat

2 Create a sine wave with a known period of sunspot activity.

years = (1700:1990)';

T = 11.038;

f = @(y) 60 + 60 * sin(y*(2*pi/T));

3 Align the observations between the sine wave and the sunspot activity by
introducing gaps.

[i,j] = samplealign([years f(years)],sunspot,'weights',...

 [0 1],'showalignment',true);

4 Estimate a smooth function to warp the sine wave.

 samplealign

1-1623

[p,s,mu] = polyfit(years(i),years(j),15);

wy = @(y) polyval(p,(y-mu(1))./mu(2));

5 Plot the sunspot cycles, unwarped sine wave, and warped sine wave.

years = (1700:1/12:1990)';

figure

plot(sunspot(:,1),sunspot(:,2),years,f(years),wy(years),...

 f(years))

legend('Sunspots','Unwarped Sine Wave','Warped Sine Wave')

title('Smooth Warping Example')

Recovering a nonlinear warping between two signals containing noisy Gaussian peaks

1 Create two signals with noisy Gaussian peaks.

1 Alphabetical List

1-1624

rand('twister',5489)

peakLoc = [30 60 90 130 150 200 230 300 380 430];

peakInt = [7 1 3 10 3 6 1 8 3 10];

time = 1:450;

comp = exp(-(bsxfun(@minus,time,peakLoc')./5).^2);

sig_1 = (peakInt + rand(1,10)) * comp + rand(1,450);

sig_2 = (peakInt + rand(1,10)) * comp + rand(1,450);

2 Define a nonlinear warping function.

wf = @(t) 1 + (t<=100).*0.01.*(t.^2) + (t>100).*...

 (310+150*tanh(t./100-3));

3 Warp the second signal to distort it.

sig_2 = interp1(time,sig_2,wf(time),'pchip');

4 Align the observations between the two signals by introducing gaps.

[i,j] = samplealign([time;sig_1]',[time;sig_2]',...

 'weights',[0,1],'band',35,'quantile',.5);

5 Plot the reference signal, distorted signal, and warped (corrected) signal.

figure

sig_3 = interp1(time,sig_2,interp1(i,j,time,'pchip'),'pchip');

plot(time,sig_1,time,sig_2,time,sig_3)

legend('Reference','Distorted Signal','Corrected Signal')

title('Non-linear Warping Example')

 samplealign

1-1625

6 Plot the real and the estimated warping functions.

figure

plot(time,wf(time),time,interp1(j,i,time,'pchip'))

legend('Distorting Function','Estimated Warping')

1 Alphabetical List

1-1626

Note: For examples of using function handles for the Band, Gap, and Distance
properties, see Visualizing and Preprocessing Hyphenated Mass-Spectrometry Data Sets
for Metabolite and Protein/Peptide Profiling.

References

[1] Myers, C.S. and Rabiner, L.R. (1981). A comparative study of several dynamic time-
warping algorithms for connected word recognition. The Bell System Technical
Journal 60:7, 1389–1409.

 samplealign

1-1627

[2] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. Acoustics, Speech and Signal Processing
ASSP-26(1), 43–49.

See Also
msalign | msheatmap | mspalign | msppresample | msresample

1 Alphabetical List

1-1628

sampleData
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set sample metadata in ExpressionSet object

Syntax

MetaDataObj = sampleData(ESObj)

NewESObj = sampleData(ESObj, NewMetaDataObj)

Description

MetaDataObj = sampleData(ESObj) returns a MetaData object containing the
sample metadata from an ExpressionSet object.

NewESObj = sampleData(ESObj, NewMetaDataObj) replaces the sample metadata
in ESObj, an ExpressionSet object, with NewMetaDataObj, and returns NewESObj, a
new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewMetaDataObj

Object of the bioma.data.MetaData class, containing sample metadata, stored in two
“dataset” arrays. The sample names and variable names in NewMetaDataObj must
match the sample names and variable names in the MetaDataObj being replaced in the
ExpressionSet object, ESObj.

Default:

 sampleData

1-1629

Output Arguments

MetaDataObj

Object of the bioma.data.MetaData class, containing the sample metadata, stored in
two “dataset” arrays.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the MetaData
object containing the sample metadata.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the
MetaData object that contains sample metadata, stored in the ExpressionSet object:
% Retrieve the sample data

NewMDObj = sampleData(ESObj);

See Also
bioma.ExpressionSet | bioma.data.ExptData | sampleNames | featureData

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-1630

sampleNames
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set sample names in ExpressionSet object

Syntax

SamNames = sampleNames(ESObj)

SamNames = sampleNames(ESObj, Subset)

NewESObj = sampleNames(ESObj, Subset, NewSamNames)

Description

SamNames = sampleNames(ESObj) returns a cell array of strings specifying all sample
names in an ExpressionSet object.

SamNames = sampleNames(ESObj, Subset) returns a cell array of strings specifying
a subset the sample names in an ExpressionSet object.

NewESObj = sampleNames(ESObj, Subset, NewSamNames) replaces the sample
names specified by Subset in ESObj, an ExpressionSet object, with NewSamNames, and
returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

Subset

One of the following to specify a subset of the sample names in an ExpressionSet object:

 sampleNames

1-1631

• String specifying a sample name
• Cell array of strings specifying sample names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewSamNames

New sample names for specific sample names within an ExpressionSet object, specified
by one of the following:

• Numeric vector
• String or cell array of strings
• String, which sampleNames uses as a prefix for the sample names, with sample

numbers appended to the prefix
• Logical true or false (default). If true, sampleNames assigns unique sample

names using the format Sample1, Sample2, etc.

The number of sample names in NewSamNames must equal the number of samples
specified by Subset.

Default:

Output Arguments

SamNames

Cell array of strings specifying all or some of the sample names in an ExpressionSet
object. The sample names are the column names in the DataMatrix objects in the
ExpressionSet object. The sample names are also the row names of the VarValues
dataset array in the MetaData object in the ExpressionSet object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing specific sample
names.

1 Alphabetical List

1-1632

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the sample
names from it:
% Retrieve the sample names

SNames = sampleNames(ESObj);

See Also
bioma.ExpressionSet | bioma.data.ExptData | bioma.data.MetaData |
featureNames | DataMatrix

How To
• “Managing Gene Expression Data in Objects”

 sampleNames

1-1633

sampleNames
Class: bioma.data.ExptData
Package: bioma.data

Retrieve or set sample names in ExptData object

Syntax

SamNames = sampleNames(EDObj)

SamNames = sampleNames(EDObj, Subset)

NewEDObj = sampleNames(EDObj, Subset, NewSamNames)

Description

SamNames = sampleNames(EDObj) returns a cell array of strings specifying all sample
names in an ExptData object.

SamNames = sampleNames(EDObj, Subset) returns a cell array of strings specifying
a subset the sample names in an ExptData object.

NewEDObj = sampleNames(EDObj, Subset, NewSamNames) replaces the sample
names specified by Subset in EDObj, an ExptData object, with NewSamNames, and
returns NewEDObj, a new ExptData object.

Input Arguments

EDObj

Object of the bioma.data.ExptData class.

Default:

Subset

One of the following to specify a subset of the sample names in an ExptData object:

1 Alphabetical List

1-1634

• String specifying a sample name
• Cell array of strings specifying sample names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewSamNames

New sample names for specific sample names within an ExptData object, specified by one
of the following:

• Numeric vector
• String or cell array of strings
• String, which sampleNames uses as a prefix for the sample names, with sample

numbers appended to the prefix
• Logical true or false (default). If true, sampleNames assigns unique sample

names using the format Sample1, Sample2, etc.

The number of sample names in NewSamNames must equal the number of samples
specified by Subset.

Default:

Output Arguments

SamNames

Cell array of strings specifying all or some of the sample names in an ExptData object.
The sample names are the column names in the DataMatrix objects in the ExptData
object.

NewEDObj

Object of the bioma.data.ExptData class, returned after replacing specific sample
names.

 sampleNames

1-1635

Examples

Construct an ExptData object, and then retrieve the sample names from it:

% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Retrieve sample names

SNames = sampleNames(EDObj);

See Also
bioma.data.ExptData | dmNames | DataMatrix | elementNames | featureNames

How To
• “Representing Expression Data Values in ExptData Objects”

1 Alphabetical List

1-1636

sampleNames
Class: bioma.data.MetaData
Package: bioma.data

Retrieve or set sample names in MetaData object

Syntax

SamFeatNames = sampleNames(MDObj)

SamFeatNames = sampleNames(MDObj, Subset)

NewMDObj = sampleNames(MDObj, Subset, NewSamFeatNames)

Description

SamFeatNames = sampleNames(MDObj) returns a cell array of strings specifying all
sample names in a MetaData object.

SamFeatNames = sampleNames(MDObj, Subset) returns a cell array of strings
specifying a subset the sample names in a MetaData object.

NewMDObj = sampleNames(MDObj, Subset, NewSamFeatNames) replaces
the sample names specified by Subset in MDObj, a MetaData object, with
NewSamFeatNames, and returns NewMDObj, a new MetaData object.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

Subset

One of the following to specify a subset of the sample names in a MetaData object:

 sampleNames

1-1637

• String specifying a sample name
• Cell array of strings specifying sample names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewSamFeatNames

New sample names for specific names within a MetaData object, specified by one of the
following:

• Numeric vector
• String or cell array of strings
• String, which sampleNames uses as a prefix for the sample or feature names, with

numbers appended to the prefix
• Logical true or false (default). If true, sampleNames assigns unique names using

the format Sample1, Sample2, etc.

The number of names in NewSamFeatNames must equal the number of samples specified
by Subset.

Default:

Output Arguments

SamFeatNames

Cell array of strings specifying all or some of the sample names in a MetaData object.
The sample names are also the row names of the VarValues dataset array in the
MetaData object.

NewMDObj

Object of the bioma.data.MetaData class, returned after replacing specific sample
names.

1 Alphabetical List

1-1638

Examples

Construct a MetaData object, and then retrieve the sample names from it:
% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Retrieve the sample names

SNames = sampleNames(MDObj2)

See Also
bioma.data.MetaData | variableDesc | variableValues | variableNames

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

 sampleVarDesc

1-1639

sampleVarDesc
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set sample variable descriptions in ExpressionSet object

Syntax

DSVarDescriptions = sampleVarDesc(ESObj)

NewESObj = sampleVarDesc(ESObj, NewDSVarDescriptions)

Description

DSVarDescriptions = sampleVarDesc(ESObj) returns a dataset array
containing the sample variable names and descriptions from the MetaData object in an
ExpressionSet object.

NewESObj = sampleVarDesc(ESObj, NewDSVarDescriptions) replaces the sample
variable descriptions in ESObj, an ExpressionSet object, with NewDSVarDescriptions,
and returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewDSVarDescriptions

Descriptions of the sample variable names, specified by either of the following:

• A new “dataset” array containing the sample variable names and descriptions. In
this dataset array, each row corresponds to a variable. The first column contains
the variable name, and the second column (VariableDescription) contains a

1 Alphabetical List

1-1640

description of the variable. The row names (variable names) must match the row
names (variable names) in DSVarDescriptions, the dataset array being replaced in
the MetaData object in the ExpressionSet object, ESObj.

• Cell array of strings containing descriptions of the sample variables. The number
of elements in VarDesc must equal the number of row names (variable names) in
DSVarDescriptions, the dataset array being replaced in the MetaData object in the
ExpressionSet object, ESObj.

Default:

Output Arguments

DSVarDescriptions

A “dataset” array containing the sample variable names and descriptions from the
MetaData object of an ExpressionSet object. In this dataset array, each row corresponds
to a variable. The first column contains the variable name, and the second column
(VariableDescription) contains a description of the variable.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the dataset array
containing the sample variable descriptions.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the sample
variable descriptions in the ExpressionSet object:
% Retrieve the sample variable descriptions

SVarDescriptions = sampleVarDesc(ESObj)

See Also
bioma.ExpressionSet | bioma.data.MetaData | variableDesc

How To
• “Managing Gene Expression Data in Objects”

 sampleVarNames

1-1641

sampleVarNames
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set sample variable names in ExpressionSet object

Syntax

SamVarNames = sampleVarNames(ESObj)

SamVarNames = sampleVarNames(ESObj, Subset)

NewESObj = sampleVarNames(ESObj, Subset, NewSamVarNames)

Description

SamVarNames = sampleVarNames(ESObj) returns a cell array of strings specifying all
sample variable names in an ExpressionSet object.

SamVarNames = sampleVarNames(ESObj, Subset) returns a cell array of strings
specifying a subset the sample variable names in an ExpressionSet object.

NewESObj = sampleVarNames(ESObj, Subset, NewSamVarNames) replaces the
sample variable names specified by Subset in ESObj, an ExpressionSet object, with
NewSamVarNames, and returns NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

Subset

One of the following to specify a subset of the sample variable names in an ExpressionSet
object:

1 Alphabetical List

1-1642

• String specifying a sample variable name
• Cell array of strings specifying sample variable names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewSamVarNames

New sample variable names for specific sample variable names within an ExpressionSet
object, specified by one of the following:

• Numeric vector
• String or cell array of strings
• String, which sampleVarNames uses as a prefix for the sample variable names, with

sample variable numbers appended to the prefix
• Logical true or false (default). If true, sampleVarNames assigns unique sample

variable names using the format Var1, Var2, etc.

The number of sample variable names in NewSamVarNames must equal the number of
sample variable names specified by Subset.

Default:

Output Arguments

SamVarNames

Cell array of strings specifying all or some of the sample variable names in an
ExpressionSet object. The sample variable names are the column names of the
VarValues dataset array. The sample variable names are also the row names of the
VarDescriptions dataset array. Both dataset arrays are in the MetaData object in the
ExpressionSet object.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing specific sample
names.

 sampleVarNames

1-1643

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the sample
variable names from the ExpressionSet object:
% Retrieve the sample variable names

VNames = sampleVarNames(ESObj)

See Also
bioma.ExpressionSet | bioma.data.MetaData | sampleNames | featureNames |
featureVarNames

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-1644

sampleVarValues
Class: bioma.ExpressionSet
Package: bioma

Retrieve or set sample variable values in ExpressionSet object

Syntax

DSVarValues = sampleVarValues(ESObj)

NewESObj = sampleVarValues(ESObj, NewDSVarValues)

Description

DSVarValues = sampleVarValues(ESObj) returns a dataset array containing
the measured value of each variable per sample from the MetaData object of an
ExpressionSet object.

NewESObj = sampleVarValues(ESObj, NewDSVarValues) replaces the sample
variable values in ESObj, an ExpressionSet object, with NewDSVarValues, and returns
NewESObj, a new ExpressionSet object.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

NewDSVarValues

A new “dataset” array containing a value for each variable per sample. In this dataset
array, the columns correspond to variables and rows correspond to samples. The row
names (sample names) must match the row names (sample names) in DSVarValues, the
dataset array being replaced in the MetaData object in the ExpressionSet object, ESObj.

 sampleVarValues

1-1645

Default:

Output Arguments

DSVarValues

A “dataset” array containing the measured value of each variable per sample from
the MetaData object of an ExpressionSet object. In this dataset array, the columns
correspond to variables and rows correspond to samples.

NewESObj

Object of the bioma.ExpressionSet class, returned after replacing the dataset array
containing the sample variable values.

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Retrieve the sample
variable values in ExpressionSet object:
% Retrieve the sample variable values

SVarValues = sampleVarValues(ESObj);

See Also
bioma.ExpressionSet | bioma.data.MetaData | variableValues

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-1646

samread

Read data from Sequence Alignment/Map (SAM) file

Syntax

SAMStruct = samread(File)

[SAMStruct, HeaderStruct]= samread(File)

... = samread(File,'ParameterName',ParameterValue)

Description

SAMStruct = samread(File) reads a SAM-formatted file and returns the data in a
MATLAB array of structures.

[SAMStruct, HeaderStruct]= samread(File) returns the alignment and header
data in two separate variables.

... = samread(File,'ParameterName',ParameterValue) accepts one or more
comma-separated parameter name/value pairs. Specify ParameterName inside single
quotes.

Input Arguments

File

Either of the following:

• String specifying a file name or path and file name of a SAM-formatted file. If you
specify only a file name, that file must be on the MATLAB search path or in the
current folder.

• MATLAB string containing the text of a SAM-formatted file.

Default:

 samread

1-1647

Parameter Name/Value Pairs

'Tags'

Controls the reading of the optional tags in addition to the first 11 fields for each
alignment in the SAM-formatted file. Choices are true (default) or false.

Default:

'ReadGroup'

String specifying the read group ID for which to read alignment records from. Default is
to read records from all groups.

Tip For a list of the read groups (if present), return the header information in a separate
Header structure and view the ReadGroup field in this structure.

Default:

'BlockRead'

Scalar or vector that controls the reading of a single sequence entry or block of sequence
entries from a SAM-formatted file containing multiple sequences. Enter a scalar N, to
read the Nth entry in the file. Enter a 1-by-2 vector [M1, M2], to read a block of entries
starting at the M1 entry and ending at the M2 entry. To read all remaining entries in the
file starting at the M1 entry, enter a positive value for M1 and enter Inf for M2.

Default:

Output Arguments
SAMStruct

An N-by-1 array of structures containing sequence alignment and mapping information
from a SAM-formatted file, where N is the number of alignment records stored in the
SAM-formatted file. Each structure contains the following fields.

Field Description

QueryName Name of read sequence (if unpaired) or name of
sequence pair (if paired).

1 Alphabetical List

1-1648

Field Description

Tip You can use this information to populate
the Header property of the BioMap object.

Flag Integer indicating the bit-wise information
that specifies the status of each of 11 flags
described by the SAM format specification.

Tip You can use the bitget function to
determine the status of a specific SAM flag.

ReferenceName Name of the reference sequence.
Position Position (one-based offset) of the forward

reference sequence where the left-most base of
the alignment of the read sequence starts.

MappingQuality Integer specifying the mapping quality score
for the read sequence.

CigarString CIGAR-formatted string representing how
the read sequence aligns with the reference
sequence.

MateReferenceName Name of the reference sequence associated
with the mate. If this name is the same as
ReferenceName, then this value is =. If there
is no mate, then this value is *.

MatePosition Position (one-based offset) of the forward
reference sequence where the left-most base of
the alignment of the mate of the read sequence
starts.

InsertSize The number of base positions between the read
sequence and its mate, when both are mapped
to the same reference sequence. Otherwise,
this value is 0.

Sequence String containing the letter representations
of the read sequence. It is the reverse-
complement if the read sequence aligns to the
reverse strand of the reference sequence.

http://samtools.sourceforge.net/SAM1.pdf

 samread

1-1649

Field Description

Quality String containing the ASCII representation
of the per-base quality score for the read
sequence. The quality score is reversed if the
read sequence aligns to the reverse strand of
the reference sequence.

Tags List of applicable SAM tags and their values.

HeaderStruct

Structure containing header information for the SAM-formatted file in the following
fields.

Field Description

Header* Structure containing the file format version,
sort order, and group order.

SequenceDictionary* Structure containing the:

• Sequence name
• Sequence length
• Genome assembly identifier
• MD5 checksum of sequence
• URI of sequence
• Species

ReadGroup* Structure containing the:

• Read group identifier
• Sample
• Library
• Description
• Platform unit
• Predicted median insert size
• Sequencing center
• Date

1 Alphabetical List

1-1650

Field Description

• Platform
Program* Structure containing the:

• Program name
• Version
• Command line

* — These structures and their fields appear in the output structure only if they are
present in the SAM file. The information in these structures depends on the information
present in the SAM file.

Examples

Read the header information and the alignment data from the ex1.sam file included
with Bioinformatics Toolbox, and then return the information in two separate variables:

[data header] = samread('ex1.sam');

Read a block of entries, excluding the tags, from the ex1.sam file, and then return the
information in an array of structures:

% Read entries 5 through 10 and do not include the tags

data = samread('ex1.sam','blockread', [5 10], 'tags', false);

More About

Tips

• Use the saminfo function to investigate the size and content of a SAM-formatted file
before using the samread function to read the file contents into a MATLAB array of
structures.

• If your SAM-formatted file is too large to read using available memory, try one of the
following:

• Use the BlockRead parameter with the samread function to read a subset of
entries.

 samread

1-1651

• Create a BioIndexedFile object from the SAM-formatted file, then access the
entries using methods of the BioIndexedFile class.

• Use the SAMStruct output argument that samread returns to create a BioMap
object, which lets you explore, access, filter, and manipulate all or a subset of the
data, before doing subsequent analyses or viewing the data.

• “Manage Short-Read Sequence Data in Objects”
• “Work with Large Multi-Entry Text Files”
• Sequence Read Archive
• SAM format specification

References

[1] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Goncalo, A., and Durbin, R. (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 16, 2078–2079.

See Also
BioIndexedFile | BioMap | saminfo | bowtieread | soapread | fastqread |
bamread | bamindexread | baminfo | fastqwrite | fastqinfo | fastainfo |
fastaread | fastawrite | sffinfo | sffread

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-1652

scfread
Read trace data from SCF file

Syntax

Sample = scfread(File)

[Sample, Probability] = scfread(File)

[Sample, Probability, Comments] = scfread(File)

[A, C, G, T] = scfread (File)

[A, C, G, T, ProbA, ProbC, ProbG, ProbT] = scfread (File)

[A, C, G, T, ProbA, ProbC, ProbG, ProbT, Comments, PkIndex, Base] =

scfread (File)

Arguments

File String specifying the file name or a path and file name of an SCF formatted
file.

Description

scfread reads data from an SCF formatted file into MATLAB structures.

Sample = scfread(File) reads an SCF formatted file and returns the sample data in
the structure Sample, which contains the following fields:

Field Description

A Column vector containing intensity of A fluorescence tag
C Column vector containing intensity of C fluorescence tag
G Column vector containing intensity of G fluorescence tag
T Column vector containing intensity of T fluorescence tag

[Sample, Probability] = scfread(File) also returns the probability data in the
structure Probability, which contains the following fields:

 scfread

1-1653

Field Description

peak_index Column vector containing the position in the SCF file for the start of
the data for each peak

prob_A Column vector containing the probability of each base in the
sequence being an A

prob_C Column vector containing the probability of each base in the
sequence being a C

prob_G Column vector containing the probability of each base in the
sequence being a G

prob_T Column vector containing the probability of each base in the
sequence being a T

base Column vector containing the called bases for the sequence

[Sample, Probability, Comments] = scfread(File) also returns the comment
information from the SCF file in a character array Comments.

[A, C, G, T] = scfread (File) returns the sample data for the four bases in
separate variables.

[A, C, G, T, ProbA, ProbC, ProbG, ProbT] = scfread (File) also returns
the probabilities data for the four bases in separate variables.

[A, C, G, T, ProbA, ProbC, ProbG, ProbT, Comments, PkIndex, Base] =

scfread (File) also returns the peak indices and called bases in separate variables.

SCF files store data from DNA sequencing instruments. Each file includes sample data,
sequence information, and the relative probabilities of each of the four bases.

Examples
[sampleStruct, probStruct, Comments] = scfread('sample.scf')

sampleStruct =

 A: [10827x1 double]

 C: [10827x1 double]

 G: [10827x1 double]

 T: [10827x1 double]

1 Alphabetical List

1-1654

probStruct =

 peak_index: [742x1 double]

 prob_A: [742x1 double]

 prob_C: [742x1 double]

 prob_G: [742x1 double]

 prob_T: [742x1 double]

 base: [742x1 char]

Comments =

SIGN=A=121,C=103,G=119,T=82

SPAC= 16.25

PRIM=0

MACH=Arkansas_SN312

DYEP=DT3700POP5{BD}v2.mob

NAME=HCIUP1D61207

LANE=6

GELN=

PROC=

RTRK=

CONV=phred version=0.990722.h

COMM=

SRCE=ABI 373A or 377

See Also
genbankread | traceplot

 select (phytree)

1-1655

select (phytree)
Select tree branches and leaves in phytree object

Syntax

S = select(Tree, N)

[S, Selleaves, Selbranches] = select(...)

select(..., 'Reference', ReferenceValue, ...)

select(..., 'Criteria', CriteriaValue, ...)

select(..., 'Threshold', ThresholdValue, ...)

select(..., 'Exclude', ExcludeValue, ...)

select(..., 'Propagate', PropagateValue, ...)

Arguments

Tree Phylogenetic tree (phytree object) created with the function
phytree.

N Number of closest nodes to the root node.
ReferenceValue Property to select a reference point for measuring distance.
CriteriaValue Property to select a criteria for measuring distance.
ThresholdValue Property to select a distance value. Nodes with distances

below this value are selected.
ExcludeValue Property to remove (exclude) branch or leaf nodes from

the output. Enter 'none', 'branchs', or 'leaves'. The
default value is 'none'.

PropagateValue Property to select propagating nodes toward the leaves or
the root.

Description

S = select(Tree, N) returns a logical vector (S) of size [NumNodes x 1] indicating
the N closest nodes to the root node of a phytree object (Tree) where NumNodes =

1 Alphabetical List

1-1656

NumLeaves + NumBranches. The first criterion select uses is branch levels, then
patristic distance (also known as tree distance). By default, select uses inf as the
value of N, and select(Tree) returns a vector with values of true.

[S, Selleaves, Selbranches] = select(...) returns two additional logical
vectors, one for the selected leaves and one for the selected branches.

select(..., 'PropertyName', PropertyValue, ...) calls select with optional
properties that use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single quotation marks
and is case insensitive. These property name/property value pairs are as follows:

select(..., 'Reference', ReferenceValue, ...) changes the reference point(s)
to measure the closeness. Reference can be the root (default) or leaves. When using
leaves, a node can have multiple distances to its descendant leaves (nonultrametric tree).
If this the case, select considers the minimum distance to any descendant leaf.

select(..., 'Criteria', CriteriaValue, ...) changes the criteria select
uses to measure closeness. If C = 'levels' (default), the first criterion is branch levels
and then patristic distance. If C = 'distance', the first criterion is patristic distance
and then branch levels.

select(..., 'Threshold', ThresholdValue, ...) selects all the nodes where
closeness is less than or equal to the threshold value (ThresholdValue). Notice, you
can also use either of the properties 'criteria' or 'reference', if N is not specified,
then N = infF; otherwise you can limit the number of selected nodes by N.

select(..., 'Exclude', ExcludeValue, ...) when ExcludeValue =
'branches', sets a postfilter that excludes all the branch nodes from S, or when
ExcludeValue = 'leaves', all the leaf nodes. The default is 'none'.

select(..., 'Propagate', PropagateValue, ...) activates a postfunctionality
that propagates the selected nodes to the leaves when P=='toleaves' or toward the
root finding a common ancestor when P == 'toroot'. The default value is 'none'. P
may also be 'both'. The 'Propagate' property acts after the 'Exclude' property.

Examples
% Load a phylogenetic tree created from a protein family:

tr = phytreeread('pf00002.tree');

 select (phytree)

1-1657

% To find close products for a given protein (e.g. vipr2_human):

ind = getbyname(tr,'vipr2_human');

[sel,sel_leaves] = select(tr,'criteria','distance',...

 'threshold',0.6,'reference',ind);

view(tr,sel_leaves)

% To find potential outliers in the tree, use

[sel,sel_leaves] = select(tr,'criteria','distance',...

 'threshold',.3,...

 'reference','leaves',...

 'exclude','leaves',...

 'propagate','toleaves');

view(tr,~sel_leaves)

More About
• “phytree object”

See Also
phytree | pdist | prune | phytreeviewer | get

1 Alphabetical List

1-1658

seq2regexp
Convert sequence with ambiguous characters to regular expression

Syntax
RegExp = seq2regexp(Seq)

RegExp = seq2regexp(Seq, ...'Alphabet', AlphabetValue, ...)

RegExp = seq2regexp(Seq, ...'Ambiguous', AmbiguousValue, ...)

Input Arguments

Seq Either of the following:

• Character string of codes specifying an amino acid or
nucleotide sequence.

• Structure containing a Sequence field that contains
an amino acid or nucleotide sequence, such as returned
by fastaread, fastqread, getembl, getgenbank,
getgenpept, or getpdb.

AlphabetValue String specifying the sequence alphabet. Choices are:

• 'NT' (default) — Nucleotide
• 'AA' — Amino acid

AmbiguousValue Controls whether ambiguous characters are included in RegExp,
the regular expression return value. Choices are:

• true (default) — Include ambiguous characters in the return
value

• false — Return only unambiguous characters

Output Arguments

RegExp Character string of codes specifying an amino acid or nucleotide
sequence in regular expression format using IUB/IUPAC codes.

 seq2regexp

1-1659

Description

RegExp = seq2regexp(Seq) converts ambiguous amino acid or nucleotide symbols in
a sequence to a regular expression format using IUB/IUPAC codes.

RegExp = seq2regexp(Seq, ...'PropertyName', PropertyValue, ...) calls
seq2regexp with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

RegExp = seq2regexp(Seq, ...'Alphabet', AlphabetValue, ...) specifies
the sequence alphabet. AlphabetValue can be either 'NT' for nucleotide sequences or
'AA' for amino acid sequences. Default is 'NT'.

RegExp = seq2regexp(Seq, ...'Ambiguous', AmbiguousValue, ...) controls
whether ambiguous characters are included in RegExp, the regular expression return
value. Choices are true (default) or false. For example:

• If Seq = 'ACGTK', and AmbiguousValue is true , the MATLAB software returns
ACGT[GTK] with the unambiguous characters G and T and the ambiguous character
K.

• If Seq = 'ACGTK', and AmbiguousValue is false, the MATLAB software returns
ACGT[GT] with only the unambiguous characters.

Nucleotide Conversions

Nucleotide Code Nucleotide Conversion

A Adenosine A

C Cytosine C

G Guanine G

T Thymidine T

U Uridine U

R Purine [AG]

Y Pyrimidine [TC]

K Keto [GT]

M Amino [AC]

1 Alphabetical List

1-1660

Nucleotide Code Nucleotide Conversion

S Strong interaction (3 H bonds) [GC]

W Weak interaction (2 H bonds) [AT]

B Not A [CGT]

D Not C [AGT]

H Not G [ACT]

V Not T or U [ACG]

N Any nucleotide [ACGT]

- Gap of indeterminate length -

? Unknown ?

Amino Acid Conversion

Amino Acid Code Amino Acid Conversion

B Asparagine or
Aspartic acid
(Aspartate)

[DN]

Z Glutamine or
Glutamic acid
(Glutamate)

[EQ]

X Any amino acid [A R N D C Q E G H I L K M F P S T

W Y V]

Examples

1 Convert a nucleotide sequence to a regular expression.

seq2regexp('ACWTMAN')

ans =

AC[ATW]T[ACM]A[ACGTRYKMSWBDHVN]

2 Convert the same nucleotide sequence, but remove ambiguous characters from the
regular expression.

seq2regexp('ACWTMAN', 'ambiguous', false)

 seq2regexp

1-1661

ans =

AC[AT]T[AC]A[ACGT]

See Also
restrict | regexp | seqwordcount | regexpi

1 Alphabetical List

1-1662

seqalignviewer
Visualize and edit multiple sequence alignment

Syntax

seqalignviewer

seqalignviewer(Alignment)

seqalignviewer(Alignment,Name,Value)

seqalignviewer(___ ,'R2012b',true)

seqalignviewer('close')

Description

seqalignviewer opens the Sequence Alignment app, where you can display and
interactively adjust multiple sequence alignments.

seqalignviewer(Alignment) loads a group of previously multiply aligned sequences
into the app, where you can view and interactively adjust the alignment.

seqalignviewer(Alignment,Name,Value) opens the app with additional options
specified by one or more Name,Value pair arguments.

seqalignviewer(___ ,'R2012b',true) runs the previous version of the Sequence
Alignment app, using any of the input arguments in previous syntaxes.

seqalignviewer('close') closes the Sequence Alignment app.

Tip If gaps are available after you have selected a block from aligned sequences, then
there are three regions that you can drag and move horizontally:

• Selected block

• Block on the left of the selection
• Block on the right of the selection

 seqalignviewer

1-1663

Examples

View a Multiple Sequence Alignment File

This example shows how to view a multiple sequence alignment file.

Load and view a multiple sequence alignment file.

seqalignviewer('aagag.aln')

Alternatively, you can click Sequence Alignment on the Apps tab to open the app, and
view the alignment data.

• “View and Align Multiple Sequences”
• “Investigating the Bird Flu Virus”

1 Alphabetical List

1-1664

Input Arguments

Alignment — Multiple sequence alignment (MSA) data
structure | character array | string | 3-by-N character array

Multiple sequence alignment (MSA) data, specified as:

• MATLAB structure containing a Sequence field, such as returned by fastaread,
gethmmalignment, multialign, or multialignread

• MATLAB character array containing MSA data, such as returned by multialign
• String specifying a file or URL containing MSA data
• 3-by-N character array showing the pairwise alignment of two sequences, such as

returned by nwalign or swalign.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alphabet','AA' specifies that the aligned sequences are amino acid
sequences.

'Alphabet' — Type of aligned sequences
'AA' | 'NT'

Type of aligned sequences, specified as 'AA' for amino acid sequences or 'NT' for
nucleotide sequences. If you do not specify the type, seqalignviewer attempts to
determine the correct type. If it cannot, it defaults to 'AA'.

Example: 'Alphabet','AA'

'SeqHeaders' — List of names to label sequences in alignment window
array of structures containing a Header or Name field | cell array of strings

List of names to label the sequences in the alignment window, specified as a MATLAB
array of structures containing a Header or Name field or cell array of strings. The
number of elements in either array must be the same as the number of sequences in the
alignment data Alignment.

 seqalignviewer

1-1665

Example: 'SeqHeaders',names

Alternatives

You can also display a color-coded multiple or pairwise sequence alignment using the
showalignment function. However, the alignment displays in a MATLAB Figure
window, where you cannot interact with it.

See Also
cigar2align | fastaread | gethmmalignment | multialign | multialignread |
multialignwrite | nwalign | seqviewer | showalignment | swalign

1 Alphabetical List

1-1666

seqcomplement

Calculate complementary strand of nucleotide sequence

Syntax

SeqC = seqcomplement(SeqNT)

Arguments

SeqNT Nucleotide sequence specified by any of the following:

• Character string with the characters A, C, G, T, U, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N.

• Row vector of integers from the table Mapping Nucleotide Integers
to Letter Codes.

• MATLAB structure containing a Sequence field that contains a
nucleotide sequence, such as returned by emblread, fastaread,
fastqread, genbankread, getembl, or getgenbank.

Description

SeqC = seqcomplement(SeqNT) calculates the complementary strand of a DNA or
RNA nucleotide sequence. The return sequence, SeqC, is in the same format as SeqNT.
For example, if SeqNT is a vector of integers, then so is SeqC.

Nucleotide in SeqNT Converts to This Nucleotide in SeqC

A T or U
C G

G C

T or U A

 seqcomplement

1-1667

Examples

Return the complement of a DNA nucleotide sequence.

s = 'ATCG';

seqcomplement(s)

ans =

TAGC

See Also
codoncount | palindromes | seqrcomplement | seqreverse | seqviewer

1 Alphabetical List

1-1668

seqconsensus
Calculate consensus sequence

Syntax

CSeq = seqconsensus(Seqs)

[CSeq, Score] = seqconsensus(Seqs)

CSeq = seqconsensus(Profile)

seqconsensus(..., 'PropertyName', PropertyValue,...)

seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)

Arguments

Seqs Set of multiply aligned amino acid or nucleotide sequences.
Enter an array of strings, a cell array of strings, or an
array of structures with the field Sequence.

Profile Sequence profile. Enter a profile from the function
seqprofile. Profile is a matrix of size [20 (or 4) x
Sequence Length] with the frequency or count of amino
acids (or nucleotides) for every position. Profile can also
have 21 (or 5) rows if gaps are included in the consensus.

ScoringMatrixValue Either of the following:

• String specifying the scoring matrix to use for the
alignment. Choices for amino acid sequences are:

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

 seqconsensus

1-1669

• 'BLOSUM50' — When AlphabetValue equals
'AA'

• 'NUC44' — When AlphabetValue equals 'NT'

Note: The above scoring matrices, provided with the
software, also include a structure containing a scale
factor that converts the units of the output score to bits.
You can also use the 'Scale' property to specify an
additional scale factor to convert the output score from
bits to another unit.

• A 21x21, 5x5, 20x20, or 4x4 numeric array.
For the gap-included cases, gap scores (last row/
column) are set to mean(diag(ScoringMatrix))
for a gap matching with another gap, and set to
mean(nodiag(ScoringMatrix)) for a gap matching
with another symbol.

Note: If you use a scoring matrix that you created,
the matrix does not include a scale factor. The output
score will be returned in the same units as the scoring
matrix.

Note: If you need to compile seqconsensus into a
stand-alone application or software component using
MATLAB Compiler, use a matrix instead of a string for
ScoringMatrixValue.

Description

CSeq = seqconsensus(Seqs), for a multiply aligned set of sequences (Seqs), returns
a string with the consensus sequence (CSeq). The frequency of symbols (20 amino acids,
4 nucleotides) in the set of sequences is determined with the function seqprofile. For
ambiguous nucleotide or amino acid symbols, the frequency or count is added to the
standard set of symbols.

1 Alphabetical List

1-1670

[CSeq, Score] = seqconsensus(Seqs) returns the conservation score of the
consensus sequence. Scores are computed with the scoring matrix BLOSUM50 for amino
acids or NUC44 for nucleotides. Scores are the average euclidean distance between the
scored symbol and the M-dimensional consensus value. M is the size of the alphabet. The
consensus value is the profile weighted by the scoring matrix.

CSeq = seqconsensus(Profile) returns a string with the consensus sequence (CSeq)
from a sequence profile (Profile).

seqconsensus(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue) specifies the
scoring matrix.

The following input parameters are analogous to the function seqprofile when the
alphabet is restricted to 'AA' or 'NT'.

seqconsensus(..., 'Alphabet', AlphabetValue)

seqconsensus(..., 'Gaps', GapsValue)

seqconsensus(..., 'Ambiguous', AmbiguousValue)

seqconsensus(..., 'Limits', LimitsValue)

Examples
 seqs = fastaread('pf00002.fa');

 [C,S] = seqconsensus(seqs,'limits',[50 60],'gaps','all')

See Also
fastaread | multialignread | multialignwrite | profalign | seqdisp |
seqprofile

 seqdisp

1-1671

seqdisp
Format long sequence output for easy viewing

Syntax
seqdisp(Seq)

seqdisp(Seq, ...'Row', RowValue, ...)

seqdisp(Seq, ...'Column', ColumnValue, ...)

seqdisp(Seq, ...'ShowNumbers', ShowNumbersValue, ...)

Arguments

Seq Nucleotide or amino acid sequence represented by any of the
following:

• Character array
• FASTA file name
• MATLAB structure with the field Sequence

Multiply aligned sequences are allowed.

FASTA files can have the file extension fa, fasta, fas, fsa,
or fst.

RowValue Integer that specifies the length of each row. Default is 60.
ColumnValue Integer that specifies the column width or number of symbols

before displaying a space. Default is 10.
ShowNumbersValue Controls the display of numbers at the start of each row.

Choices are true (default) to show numbers, or false to hide
numbers.

Description
seqdisp(Seq) displays a sequence in rows, with a default row length of 60 and a
default column width of 10.

1 Alphabetical List

1-1672

seqdisp(Seq, ...'PropertyName', PropertyValue, ...) calls seqdisp with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

seqdisp(Seq, ...'Row', RowValue, ...) specifies the length of each row for the
displayed sequence.

seqdisp(Seq, ...'Column', ColumnValue, ...) specifies the number of letters
to display before adding a space. RowValue must be larger than and evenly divisible by
ColumnValue.

seqdisp(Seq, ...'ShowNumbers', ShowNumbersValue, ...) controls the display
of numbers at the start of each row. Choices are true (default) to show numbers, or
false to hide numbers.

Examples

Read sequence information from the GenBank database. Display the sequence in rows
with 50 letters, and within a row, separate every 10 letters with a space.

mouseHEXA = getgenbank('AK080777');

seqdisp(mouseHEXA, 'Row', 50, 'Column', 10)

Create and save a FASTA file with two sequences, and then display it.

hdr = ['Sequence A'; 'Sequence B'];

seq = ['TAGCTGRCCAAGGCCAAGCGAGCTTN';'ATCGACYGGTTCCGGTTCGCTCGAAN']

fastawrite('local.fa', hdr, seq);

seqdisp('local.fa', 'ShowNumbers', false')

ans =

>Sequence A

 1 TAGCTGRCCA AGGCCAAGCG AGCTTN

>Sequence B

 1 ATCGACYGGT TCCGGTTCGC TCGAAN

See Also
multialignread | multialignwrite | seqconsensus | seqlogo | seqprofile |
seqshoworfs | seqshowwords | seqviewer | getgenbank

 seqdotplot

1-1673

seqdotplot

Create dot plot of two sequences

Syntax

seqdotplot(Seq1, Seq2)

seqdotplot(Seq1,Seq2, Window, Number)

Matches = seqdotplot(...)

[Matches, Matrix] = seqdotplot(...)

Arguments

Seq1, Seq2 Nucleotide or amino acid sequences. Enter two character
strings. Do not enter a vector of integers. You can also enter a
structure with the field Sequence.

Window Enter an integer for the size of a window.
Number Enter an integer for the number of characters within the

window that match.

Description

seqdotplot(Seq1, Seq2) plots a figure that visualizes the match between two
sequences.

seqdotplot(Seq1,Seq2, Window, Number) plots sequence matches when there are
at least Number matches in a window of size Window.

When plotting nucleotide sequences, start with a Window of 11 and Number of 7.

Matches = seqdotplot(...) returns the number of dots in the dot plot matrix.

[Matches, Matrix] = seqdotplot(...) returns the dot plot as a sparse matrix.

1 Alphabetical List

1-1674

Examples

This example shows the similarities between the prion protein (PrP) nucleotide
sequences of two ruminants, the moufflon and the golden takin.

moufflon = getgenbank('AB060288','Sequence',true);

takin = getgenbank('AB060290','Sequence',true);

seqdotplot(moufflon,takin,11,7)

Note: For the correct interpretation of a dot plot, your monitor's display resolution must
be able to contain the sequence lengths. If the resolution is not adequate, seqdotplot
resizes the image and returns a warning.

Matches = seqdotplot(moufflon,takin,11,7)

Matches =

 5552

[Matches, Matrix] = seqdotplot(moufflon,takin,11,7)

 seqdotplot

1-1675

See Also
nwalign | swalign

1 Alphabetical List

1-1676

seqinsertgaps
Insert gaps into nucleotide or amino acid sequence

Syntax

NewSeq = seqinsertgaps(Seq, Positions)

NewSeq = seqinsertgaps(Seq, GappedSeq)

NewSeq = seqinsertgaps(Seq, GappedSeq, Relationship)

Input Arguments

Seq Either of the following:

• String specifying a nucleotide or amino acid sequence
• MATLAB structure containing a Sequence field

Positions Vector of integers to specify the positions in Seq before which to
insert a gap.

GappedSeq Either of the following:

• String specifying a nucleotide or amino acid sequence
• MATLAB structure containing a Sequence field

Relationship Integer specifying the relationship between Seq and GappedSeq.
Choices are:

• 1 — Both sequences use the same alphabet, that is both are
nucleotide sequences or both are amino acid sequences.

• 3 — Seq contains nucleotides representing codons and
GappedSeq contains amino acids (default).

Output Arguments

NewSeq Sequence with gaps inserted, represented by a string specifying a
nucleotide or amino acid sequence.

 seqinsertgaps

1-1677

Description

NewSeq = seqinsertgaps(Seq, Positions) inserts gaps in the sequence Seq before
the positions specified by the integers in the vector Positions.

NewSeq = seqinsertgaps(Seq, GappedSeq) finds the gap positions in the sequence
GappedSeq, then inserts gaps in the corresponding positions in the sequence Seq.

NewSeq = seqinsertgaps(Seq, GappedSeq, Relationship) specifies the
relationship between Seq and GappedSeq. Enter 1 for Relationship when both
sequences use the same alphabet, that is both are nucleotide sequences or both are amino
acid sequences. Enter 3 for Relationship when Seq contains nucleotides representing
codons and GappedSeq contains amino acids. Default is 3.

Examples
1 Retrieve two nucleotide sequences from the GenBank database for the

neuraminidase (NA) protein of two strains of the Influenza A virus (H5N1).

 hk01 = getgenbank('AF509094');

 vt04 = getgenbank('DQ094287');

2 Extract the coding region from the two nucleotide sequences.

hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);

vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);

3 Align the amino acids sequences converted from the nucleotide sequences.

 [sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Use the seqinsertgaps function to copy the gaps from the aligned amino acid
sequences to their corresponding nucleotide sequences, thus codon-aligning them.

 hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))

 vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

5 Once you have code aligned the two sequences, you can use them as input to other
functions such as dnds, which calculates the synonymous and nonsynonymous
substitutions rates of the codon-aligned nucleotide sequences. By setting Verbose
to true, you can also display the codons considered in the computations and their
amino acid translations.

[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)

1 Alphabetical List

1-1678

See Also
dnds | dndsml | int2aa | int2nt

 seqlinkage

1-1679

seqlinkage

Construct phylogenetic tree from pairwise distances

Syntax

PhyloTree = seqlinkage(Distances)

PhyloTree = seqlinkage(Distances, Method)

PhyloTree = seqlinkage(Distances, Method, Names)

Arguments

Distances Matrix or vector of pairwise distances, such as returned by the
seqpdist function.

Method String that specifies a distance method. Choices are:

• 'single'

• 'complete'

• 'average' (default)
• 'weighted'

• 'centroid'

• 'median'

Names Specifies alternative labels for leaf nodes. Choices are:

• Vector of structures, each with a Header or Name field
• Cell array of strings

The elements must be unique. The number of elements must
comply with the number of samples used to generate the pairwise
distances in Dist.

1 Alphabetical List

1-1680

Description

PhyloTree = seqlinkage(Distances) returns a phylogenetic tree object from the
pairwise distances, Distances, between the species or products. Distances is a matrix
or vector of pairwise distances, such as returned by the seqpdist function.

PhyloTree = seqlinkage(Distances, Method) creates a phylogenetic tree object
using a specified patristic distance method. The available methods are:

'single' Nearest distance (single linkage method)
'complete' Furthest distance (complete linkage method)
'average' (default) Unweighted Pair Group Method Average (UPGMA, group

average).
'weighted' Weighted Pair Group Method Average (WPGMA)
'centroid' Unweighted Pair Group Method Centroid (UPGMC)
'median' Weighted Pair Group Method Centroid (WPGMC)

PhyloTree = seqlinkage(Distances, Method, Names) passes a list of unique
names to label the leaf nodes (for example, species or products) in a phylogenetic tree
object.

Examples

Build Phylogenetic Tree from Pairwise Distances

Build a phylogenetic tree from pairwise distances, specifying both a distance-computing
method and leaf names.

Create an array of structures representing a multiple alignment of amino acids:

seqs = fastaread('pf00002.fa');

Measure the Jukes-Cantor pairwise distances between sequences:

distances = seqpdist(seqs,'method','jukes-cantor','indels','pair');

You will use the output argument distances, a vector containing biological distances
between each pair of sequences, as an input argument to seqlinkage.

 seqlinkage

1-1681

Build the phylogenetic tree for the multiple sequence alignment from pairwise distances.
Specify the method to compute the distances of the new nodes to all other nodes. Provide
leaf names:

phylotree = seqlinkage(distances,'single',seqs)

Phylogenetic tree object with 32 leaves (31 branches)

View the phylogenetic tree:

view(phylotree)

1 Alphabetical List

1-1682

See Also
phytree | cluster | view | phytreewrite | seqpdist | seqneighjoin | plot

 seqlogo

1-1683

seqlogo
Display sequence logo for nucleotide or amino acid sequences

Syntax

seqlogo(Seqs)

seqlogo(Profile)

WgtMatrix = seqlogo(...)

[WgtMatrix, Handle] = seqlogo(...)

seqlogo(..., 'Displaylogo', DisplaylogoValue, ...)

seqlogo(..., 'Alphabet', AlphabetValue, ...)

seqlogo(..., 'Startat', StartatValue, ...)

seqlogo(..., 'Endat', EndatValue, ...)

seqlogo(..., 'SSCorrection', SSCorrectionValue, ...)

Input Arguments

Seqs Set of pairwise or multiply aligned nucleotide or amino acid
sequences, represented by any of the following:

• Character array
• Cell array of strings
• Array of structures containing a Sequence field

Profile Sequence profile distribution matrix with the frequency of
nucleotides or amino acids for every column in the multiple
alignment, such as returned by the seqprofile function.

The size of the frequency distribution matrix is:

• For nucleotides — [4 x sequence length]
• For amino acids — [20 x sequence length]

If gaps were included, Profile may have 5 rows (for
nucleotides) or 21 rows (for amino acids), but seqlogo
ignores gaps.

1 Alphabetical List

1-1684

DisplaylogoValue Controls the display of a sequence logo. Choices are true
(default) or false.

AlphabetValue String specifying the type of sequence (nucleotide or amino
acid). Choices are 'NT' (default) or'AA'.

StartatValue Positive integer that specifies the starting position for the
sequences in Seqs. Default starting position is 1.

EndatValue Positive integer that specifies the ending position for
the sequences in Seqs. Default ending position is the
maximum length of the sequences in Seqs.

SSCorrectionValue Controls the use of small sample correction in the
estimation of the number of bits. Choices are true (default)
or false.

Output Arguments
WgtMatrix Cell array containing the symbol list in Seqs or Profile

and the weight matrix used to graphically display the
sequence logo.

Handle Handle to the sequence logo figure.

Description
seqlogo(Seqs) displays a sequence logo for Seqs, a set of aligned sequences. The
logo graphically displays the sequence conservation at a particular position in the
alignment of sequences, measured in bits. The maximum sequence conservation per site
is log2(4) bits for nucleotide sequences and log2(20) bits for amino acid sequences. If
the sequence conservation value is zero or negative, no logo is displayed in that position.

seqlogo(Profile) displays a sequence logo for Profile, a sequence profile
distribution matrix with the frequency of nucleotides or amino acids for every column in
the multiple alignment, such as returned by the seqprofile function.

Color Code for Nucleotides

Nucleotide Color

A Green

 seqlogo

1-1685

Nucleotide Color

C Blue
G Yellow
T, U Red
Other Purple

Color Code for Amino Acids

Amino Acid Chemical Property Color

G S T Y C Q N Polar Green
A V L I P W F M Hydrophobic Orange
D E Acidic Red
K R H Basic Blue
Other — Tan

WgtMatrix = seqlogo(...) returns a cell array of unique symbols in the sequence
Seqs or Profile, and the information weight matrix used to graphically display the
logo.

[WgtMatrix, Handle] = seqlogo(...) returns a handle to the sequence logo figure.

seqlogo(Seqs, ...'PropertyName', PropertyValue, ...) calls seqpdist with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value pairs are as follows:

seqlogo(..., 'Displaylogo', DisplaylogoValue, ...) controls the display of a
sequence logo. Choices are true (default) or false.

seqlogo(..., 'Alphabet', AlphabetValue, ...) specifies the type of sequence
(nucleotide or amino acid). Choices are 'NT' (default) or'AA'.

Note: If you provide amino acid sequences to seqlogo, you must set Alphabet to 'AA'.

seqlogo(..., 'Startat', StartatValue, ...) specifies the starting position for
the sequences in Seqs. Default starting position is 1.

1 Alphabetical List

1-1686

seqlogo(..., 'Endat', EndatValue, ...) specifies the ending position for the
sequences in Seqs. Default ending position is the maximum length of the sequences in
Seqs.

seqlogo(..., 'SSCorrection', SSCorrectionValue, ...) controls the use
of small sample correction in the estimation of the number of bits. Choices are true
(default) or false.

Note: A simple calculation of bits tends to overestimate the conservation at a particular
location. To compensate for this overestimation, when SSCorrection is set to true,
a rough estimate is applied as an approximate correction. This correction works better
when the number of sequences is greater than 50.

Examples

Display a Sequence Logo for Aligned Nucleotide Sequences

This example shows how to display a sequence logo for a set of aligned nucleotide
sequences.

Create a series of aligned nucleotide sequences.

S = {'ATTATAGCAAACTA',...

 'AACATGCCAAAGTA',...

 'ATCATGCAAAAGGA'}

S =

 'ATTATAGCAAACTA' 'AACATGCCAAAGTA' 'ATCATGCAAAAGGA'

Display the sequence logo.

seqlogo(S)

 seqlogo

1-1687

Display a Sequence Logo for Aligned Amino Acid Sequences

This example shows how to display a sequence logo for a set of aligned amino acid
sequences.

Create a series of aligned amino acid sequences.

S2 = {'LSGGQRQRVAIARALAL',...

 'LSGGEKQRVAIARALMN',...

 'LSGGQIQRVLLARALAA',...

 'LSGGERRRLEIACVLAL',...

 'FSGGEKKKNELWQMLAL',...

 'LSGGERRRLEIACVLAL'};

1 Alphabetical List

1-1688

Display the sequence logo, specifying an amino acid sequence and limiting the logo to
sequence positions 2 through 10.

seqlogo(S2, 'alphabet', 'aa', 'startAt', 2, 'endAt', 10)

References

[1] Schneider, T.D., and Stephens, R.M. (1990). Sequence Logos: A new way to display
consensus sequences. Nucleic Acids Research 18, 6097–6100.

 seqlogo

1-1689

See Also
seqconsensus | seqdisp | seqprofile

1 Alphabetical List

1-1690

seqmatch
Find matches for every string in library

Syntax

Index = seqmatch(Strings, Library)

Description

Index = seqmatch(Strings, Library) looks through the elements of Library to
find strings that begin with every string in Strings. Index contains the index to the
first occurrence for every string in the query. Strings and Library must be cell arrays
of strings.

Examples
lib = {'VIPS_HUMAN', 'SCCR_RABIT', 'CALR_PIG' ,'VIPR_RAT', 'PACR_MOUSE'};

query = {'CALR','VIP'};

h = seqmatch(query,lib);

lib(h)

ans =

 'CALR_PIG' 'VIPS_HUMAN'

See Also
regexp | strncmp

 seqneighjoin

1-1691

seqneighjoin

Construct phylogenetic tree using neighbor-joining method

Syntax

PhyloTree = seqneighjoin(Distances)

PhyloTree = seqneighjoin(Distances, Method)

PhyloTree = seqneighjoin(Distances, Method, Names)

PhyloTree = seqneighjoin(..., 'Reroot', RerootValue)

Input Arguments

Distances Matrix or vector containing biological distances between pairs of
sequences, such as returned by the seqpdist function.

Method String specifying a method to compute the distances between nodes.
Choices are 'equivar' (default) or 'firstorder'.

Names Either of the following:

• Vector of structures with the fields Header and Name
• Cell array of strings

The number of elements must equal the number of samples used to
generate the pairwise distances in Distances.

Description

PhyloTree = seqneighjoin(Distances) computes PhyloTree, a phylogenetic tree
object, from Distances, pairwise distances between the species or products, using the
neighbor-joining method.

PhyloTree = seqneighjoin(Distances, Method) specifies Method, a method to
compute the distances of the new nodes to all other nodes at every iteration. The general

1 Alphabetical List

1-1692

expression to calculate the distances between the new node, n, after joining i and j and
all other nodes (k), is given by

D(n,k) = a*D(i,k) + (1-a)*D(j,k) - a*D(n,i) - (1-a)*D(n,j)

This expression is guaranteed to find the correct tree with additive data (minimum
variance reduction).

Choices for Method are:

Method Description

equivar (default) Assumes equal variance and independence of evolutionary distance
estimates (a = 1/2), such as in the original neighbor-joining
algorithm by Saitou and Nei, JMBE (1987) or as in Studier and
Keppler, JMBE (1988).

firstorder Assumes a first-order model of the variances and covariances of
evolutionary distance estimates, with 'a' being adjusted at every
iteration to a value between 0 and 1, such as in Gascuel, JMBE
(1997).

PhyloTree = seqneighjoin(Distances, Method, Names) passes Names, a list
of names (such as species or products), to label the leaf nodes in the phylogenetic tree
object.

PhyloTree = seqneighjoin(..., 'Reroot', RerootValue) specifies whether to
reroot PhyloTree. Choices are true (default) or false. When RerootValue is false,
seqneighjoin excludes rerooting the resulting tree, which is useful for observing the
original linkage order followed by the algorithm. By default seqneighjoin reroots the
resulting tree using the midpoint method.

Examples

Build Phylogenetic Tree using Neighbor Joining Method

Build a phylogenetic tree using the neighbor joining method and specifying both a
distance-computing method and leaf names.

Create an array of structures representing a multiple alignment of amino acids:

 seqneighjoin

1-1693

seqs = fastaread('pf00002.fa');

Measure the Jukes-Cantor pairwise distances between sequences:

distances = seqpdist(seqs,'method','jukes-cantor','indels','pair');

You will use the output argument distances, a vector containing biological distances
between each pair of sequences, as an input argument to seqneighjoin.

Build the phylogenetic tree for the multiple sequence alignment using the neighbor-
joining algorithm. Specify the method to compute the distances of the new nodes to all
other nodes. Provide leaf names:

phylotree = seqneighjoin(distances,'equivar',seqs)

Phylogenetic tree object with 32 leaves (31 branches)

View the phylogenetic tree:

view(phylotree)

1 Alphabetical List

1-1694

References[1] Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–
425.

 seqneighjoin

1-1695

[2] Gascuel, O. (1997). BIONJ: An improved version of the NJ algorithm based on a
simple model of sequence data. Molecular Biology and Evolution 14 685–695.

[3] Studier, J.A., Keppler, K.J. (1988). A note on the neighbor-joining algorithm of Saitou
and Nei. Molecular Biology and Evolution 5(6) 729–731.

See Also
multialign | cluster | reroot | phytree | seqlinkage | seqpdist | plot |
view

1 Alphabetical List

1-1696

seqpdist

Calculate pairwise distance between sequences

Syntax

D = seqpdist(Seqs)

D = seqpdist(Seqs, ...'PropertyName', PropertyValue, ...)

D = seqpdist(Seqs, ...'Method', MethodValue, ...)

D = seqpdist(Seqs, ...'Indels', IndelsValue, ...)

D = seqpdist(Seqs, ...'OptArgs', OptArgsValue, ...)

D = seqpdist(Seqs, ...'PairwiseAlignment',

PairwiseAlignmentValue, ...)

D = seqpdist(Seqs, ...'UseParallel', UseParallelValue, ...)

D = seqpdist(Seqs, ...'SquareForm', SquareFormValue ...)

D = seqpdist(Seqs, ...'Alphabet', AlphabetValue, ...)

D = seqpdist(Seqs, ...'ScoringMatrix', ScoringMatrixValue, ...)

D = seqpdist(Seqs, ...'Scale', ScaleValue, ...)

D = seqpdist(Seqs, ...'GapOpen', GapOpenValue, ...)

D = seqpdist(Seqs, ...'ExtendGap', ExtendGapValue, ...)

Input Arguments

Seqs Any of the following:

• Cell array containing nucleotide or amino acid
sequences

• Vector of structures containing a Sequence field
• Matrix of characters, in which each row

corresponds to a nucleotide or amino acid sequence
MethodValue String that specifies the method to calculate pairwise

distances. Default is 'Jukes-Cantor'.
IndelsValue String that specifies how to treat sites with gaps.

Default is 'score'.

 seqpdist

1-1697

OptArgsValue String or cell array that specifies one or more input
arguments required or accepted by the distance
method specified by the Method property.

PairwiseAlignmentValue Controls the global pairwise alignment of input
sequences (using the nwalign function), while
ignoring the multiple alignment of the input
sequences (if any). Choices are true or false.
Default is:

• true — When all input sequences do not have the
same length.

• false — When all input sequences have the same
length.

Tip If your input sequences are the same length,
seqpdist assumes they are aligned. If they are not
aligned, do one of the following:

• Align the sequences before passing them to
seqpdist, for example, using the multialign
function.

• Set PairwiseAlignment to true when using
seqpdist.

UseParallelValue Controls the calculation of the pairwise distances
using parfor-loops. When true, and Parallel
Computing Toolbox is installed and a parpool is
open, computation occurs in parallel. If there are no
open parpool, but automatic creation is enabled
in the Parallel Preferences, the default pool will
be automatically open and computation occurs in
parallel. If Parallel Computing Toolbox is installed,
but there are no open parpool and automatic
creation is disabled, then computation uses parfor-
loops in serial mode. If Parallel Computing Toolbox is
not installed, then computation uses parfor-loops in
serial mode. Default is false, which uses for-loops in
serial mode.

1 Alphabetical List

1-1698

SquareFormValue Controls the conversion of the output into a square
matrix. Choices are true or false (default).

AlphabetValue String specifying the type of sequence (nucleotide or
amino acid). Choices are 'NT' or 'AA' (default).

 seqpdist

1-1699

ScoringMatrixValue Either of the following:

• String specifying the scoring matrix to use for the
alignment. Choices for amino acid sequences are:

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to
'BLOSUM90'

• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

• 'BLOSUM50' — When AlphabetValue equals
'AA'

• 'NUC44' — When AlphabetValue equals
'NT'

Note: The above scoring matrices, provided with
the software, also include a structure containing
a scale factor that converts the units of the output
score to bits. You can also use the 'Scale'
property to specify an additional scale factor to
convert the output score from bits to another unit.

• Matrix representing the scoring matrix to use for
the alignment, such as returned by the blosum,
pam, dayhoff, gonnet, or nuc44 function.

Note: If you use a scoring matrix that you created
or was created by one of the above functions, the
matrix does not include a scale factor. The output
score will be returned in the same units as the
scoring matrix. You can use the 'Scale' property

1 Alphabetical List

1-1700

to specify a scale factor to convert the output score
to another unit.

Note: If you need to compile seqpdist into a stand-
alone application or software component using
MATLAB Compiler, use a matrix instead of a string
for ScoringMatrixValue.

ScaleValue Positive value that specifies the scale factor used
to return the score in arbitrary units. If the scoring
matrix information also provides a scale factor, then
both are used.

GapOpenValue Positive integer that specifies the penalty for opening
a gap in the alignment. Default is 8.

ExtendedGapValue Positive integer that specifies the penalty for
extending a gap. Default is equal to GapOpenValue.

Output Arguments

D Vector that contains biological distances between each
pair of sequences stored in the M elements of Seqs.

Description

D = seqpdist(Seqs) returns D, a vector containing biological distances between each
pair of sequences stored in the M sequences of Seqs, a cell array of sequences, a vector of
structures, or a matrix or sequences.

D is a 1-by-(M*(M-1)/2) row vector corresponding to the M*(M-1)/2 pairs of sequences
in Seqs. The output D is arranged in the order ((2,1),(3,1),..., (M,1),
(3,2),...(M,2),...(M,M-1)). This is the lower-left triangle of the full M-by-M
distance matrix. To get the distance between the Ith and the Jth sequences for I > J,
use the formula D((J-1)*(M-J/2)+I-J).

D = seqpdist(Seqs, ...'PropertyName', PropertyValue, ...) calls
seqpdist with optional properties that use property name/property value pairs. Specify
one or more properties in any order. Enclose each PropertyName in single quotation

 seqpdist

1-1701

marks. Each PropertyName is case insensitive. These property name/property value
pairs are as follows:

D = seqpdist(Seqs, ...'Method', MethodValue, ...) specifies a method
to compute distances between each sequence pair. Choices are shown in the following
tables.

Methods for Nucleotides and Amino Acids

Method Description

p-distance Proportion of sites at which the two sequences are different. p is
close to 1 for poorly related sequences, and p is close to 0 for similar
sequences.

d = p

Jukes-Cantor (default) Maximum likelihood estimate of the number of substitutions between
two sequences. p is described with the method p-distance.

For nucleotides:

d = -3/4 log(1-p * 4/3)

For amino acids:

d = -19/20 log(1-p * 20/19)

alignment-score Distance (d) between two sequences (1, 2) is computed from the
pairwise alignment score between the two sequences (score12),
and the pairwise alignment score between each sequence and itself
(score11, score22) as follows:

d = (1-score12/score11)* (1-score12/score22)

This option does not imply that prealigned input sequences will be
realigned, it only scores them. Use with care; this distance method
does not comply with the ultrametric condition. In the rare case where
the score between sequences is greater than the score when aligning a
sequence with itself, then d = 0

Methods with No Scoring of Gaps (Nucleotides Only)

Method Description

Tajima-Nei Maximum likelihood estimate considering the background nucleotide
frequencies. It can be computed from the input sequences or given by

1 Alphabetical List

1-1702

Method Description

setting OptArgs to [gA gC gG gT]. gA, gC, gG, gT are scalar values
for the nucleotide frequencies.

Kimura Considers separately the transitional nucleotide substitution and the
transversional nucleotide substitution.

Tamura Considers separately the transitional nucleotide substitution, the
transversional nucleotide substitution, and the GC content. GC
content can be computed from the input sequences or given by setting
OptArgs to the proportion of GC content (scalar value from 0 to 1).

Hasegawa Considers separately the transitional nucleotide substitution, the
transversional nucleotide substitution, and the background nucleotide
frequencies. Background frequencies can be computed from the input
sequences or given by setting the OptArgs property to [gA gC gG
gT].

Nei-Tamura Considers separately the transitional nucleotide substitution between
purines, the transitional nucleotide substitution between pyrimidines,
the transversional nucleotide substitution, and the background
nucleotide frequencies. Background frequencies can be computed from
the input sequences or given by setting the OptArgs property to [gA
gC gG gT].

Methods with No Scoring of Gaps (Amino Acids Only)

Method Description

Poisson Assumes that the number of amino acid substitutions at each site has
a Poisson distribution.

Gamma Assumes that the number of amino acid substitutions at each site has
a Gamma distribution with parameter a. Set a using the OptArgs
property. Default is 2.

You can also specify a user-defined distance function using @, for example, @distfun.
The distance function must have the form:

function D = distfun(S1, S2, OptArgsValue)

The distfun function takes the following arguments:

• S1 , S2 — Two sequences of the same length (nucleotide or amino acid).

 seqpdist

1-1703

• OptArgsValue — Optional problem-dependent arguments.

The distfun function returns a scalar that represents the distance between S1 and S2.

D = seqpdist(Seqs, ...'Indels', IndelsValue, ...) specifies how to treat
sites with gaps. Choices are:

• score (default) — Scores these sites either as a point mutation or with the alignment
parameters, depending on the method selected.

• pairwise-del — For every pairwise comparison, it ignores the sites with gaps.
• complete-del — Ignores all the columns in the multiple alignment that contain a

gap. This option is available only if you provided a multiple alignment as the input
Seqs.

D = seqpdist(Seqs, ...'OptArgs', OptArgsValue, ...) passes one or
more arguments required or accepted by the distance method specified by the Method
property. Use a string or cell array to pass one or more input arguments. For example,
provide the nucleotide frequencies for the Tajima-Nei distance method, instead of
computing them from the input sequences.

D = seqpdist(Seqs, ...'PairwiseAlignment',

PairwiseAlignmentValue, ...) controls the global pairwise alignment of input
sequences (using the nwalign function), while ignoring the multiple alignment of the
input sequences (if any). Default is:

• true — When all input sequences do not have the same length.
• false — When all input sequences have the same length.

Tip If your input sequences have the same length, seqpdist assumes they are aligned. If
they are not aligned, do one of the following:

• Align the sequences before passing them to seqpdist, for example, using the
multialign function.

• Set PairwiseAlignment to true when using seqpdist.

D = seqpdist(Seqs, ...'UseParallel', UseParallelValue, ...) specifies
whether to use parfor-loops when calculating the pairwise distances. When true, and
Parallel Computing Toolbox is installed and a parpool is open, computation occurs in

1 Alphabetical List

1-1704

parallel. If there are no open parpool, but automatic creation is enabled in the Parallel
Preferences, the default pool will be automatically open and computation occurs in
parallel. If Parallel Computing Toolbox is installed, but there are no open parpool and
automatic creation is disabled, then computation uses parfor-loops in serial mode. If
Parallel Computing Toolbox is not installed, then computation uses parfor-loops in
serial mode. Default is false, which uses for-loops in serial mode.

D = seqpdist(Seqs, ...'SquareForm', SquareFormValue ...) controls the
conversion of the output into a square matrix such that D(I,J) denotes the distance
between the Ith and Jth sequences. The square matrix is symmetric and has a zero
diagonal. Choices are true or false (default). Setting Squareform to true is the same
as using the squareform function in Statistics Toolbox .

D = seqpdist(Seqs, ...'Alphabet', AlphabetValue, ...) specifies the type of
sequence (nucleotide or amino acid). Choices are 'NT' or 'AA' (default).

The remaining input properties are available when the Method property equals
'alignment-score' or the PairwiseAlignment property equals true.

D = seqpdist(Seqs, ...'ScoringMatrix', ScoringMatrixValue, ...)

specifies the scoring matrix to use for the global pairwise alignment. Default is:

• 'NUC44' — When AlphabetValue equals 'NT'.
• 'BLOSUM50' — When AlphabetValue equals 'AA'.

D = seqpdist(Seqs, ...'Scale', ScaleValue, ...) specifies the scale factor
used to return the score in arbitrary units. Choices are any positive value. If the scoring
matrix information also provides a scale factor, then both are used.

D = seqpdist(Seqs, ...'GapOpen', GapOpenValue, ...) specifies the penalty
for opening a gap in the alignment. Choices are any positive integer. Default is 8.

D = seqpdist(Seqs, ...'ExtendGap', ExtendGapValue, ...) specifies the
penalty for extending a gap in the alignment. Choices are any positive integer. Default is
equal to GapOpenValue.

Examples

1 Read amino acid alignment data into a MATLAB structure.

 seqpdist

1-1705

seqs = fastaread('pf00002.fa');

2 For every possible pair of sequences in the multiple alignment, ignore sites with gaps
and score with the scoring matrix PAM250.

dist = seqpdist(seqs,'Method','alignment-score',...

 'Indels','pairwise-delete',...

 'ScoringMatrix','pam250');

3 Force the realignment of each sequence pair ignoring the provided multiple
alignment.

dist = seqpdist(seqs,'Method','alignment-score',...

 'Indels','pairwise-delete',...

 'ScoringMatrix','pam250',...

 'PairwiseAlignment',true);

4 Measure the Jukes-Cantor pairwise distances after realigning each sequence pair,
counting the gaps as point mutations.

dist = seqpdist(seqs,'Method','jukes-cantor',...

 'Indels','score',...

 'Scoringmatrix','pam250',...

 'PairwiseAlignment',true);

More About
• phytree object

See Also
fastaread | pdist | dnds | dndsml | multialign | nwalign | phytree |
seqlinkage

1 Alphabetical List

1-1706

seqprofile

Calculate sequence profile from set of multiply aligned sequences

Syntax

Profile = seqprofile(Seqs)

[Profile, Symbols] = seqprofile(Seqs)

seqprofile(Seqs, ...'Alphabet', AlphabetValue, ...)

seqprofile(Seqs, ...'Counts', CountsValue, ...)

seqprofile(Seqs, ...'Gaps', GapsValue, ...)

seqprofile(Seqs, ...'Ambiguous', AmbiguousValue, ...)

seqprofile(Seqs, ...'Limits', LimitsValue, ...)

Arguments

Seqs Set of multiply aligned sequences represented by any of the
following:.

• Array of strings
• Cell array of strings
• Array of structures containing the field Sequence

AlphabetValue String specifying the sequence alphabet. Choices are:

• 'NT' — Nucleotides
• 'AA' — Amino acids (default)
• 'none' — No alphabet

When Alphabet is 'none', the symbol list is based on the
observed symbols. Each character can be any symbol, except for
a hyphen (-) and a period (.), which are reserved for gaps.

CountsValue Controls returning frequency (ratio of counts/total counts) or
counts. Choices are true (counts) or false (frequency). Default
is false.

 seqprofile

1-1707

GapsValue String that controls the counting of gaps in a sequence. Choices
are:

• 'all' — Counts all gaps
• 'noflanks' — Counts all gaps except those at the flanks of

every sequence
• 'none' — Default. Counts no gaps.

AmbiguousValue Controls counting ambiguous symbols. Enter 'Count' to add
partial counts to the standard symbols.

LimitsValue Specifies whether to use part of the sequence. Enter a [1x2]
vector with the first position and the last position to include in
the profile. Default is [1,SeqLength].

Description
Profile = seqprofile(Seqs) returns Profile, a matrix of size [20 (or 4) x
SequenceLength] with the frequency of amino acids (or nucleotides) for every column
in the multiple alignment. The order of the rows is given by

• 4 nucleotides — A C G T/U
• 20 amino acids — A R N D C Q E G H I L K M F P S T W Y V

[Profile, Symbols] = seqprofile(Seqs) returns Symbols, a unique symbol list
where every symbol in the list corresponds to a row in Profile, the profile.

seqprofile(Seqs, ...'PropertyName', PropertyValue, ...) calls
seqprofile with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

seqprofile(Seqs, ...'Alphabet', AlphabetValue, ...) selects a nucleotide
alphabet, amino acid alphabet, or no alphabet.

seqprofile(Seqs, ...'Counts', CountsValue, ...) when Counts is true,
returns the counts instead of the frequency.

seqprofile(Seqs, ...'Gaps', GapsValue, ...) appends a row to the bottom of a
profile (Profile) with the count for gaps.

1 Alphabetical List

1-1708

seqprofile(Seqs, ...'Ambiguous', AmbiguousValue, ...) when Ambiguous
is 'count', counts the ambiguous amino acid symbols (B Z X) and nucleotide symbols
(R Y K M S W B D H V N) with the standard symbols. For example, the amino acid
X adds a 1/20 count to every row while the amino acid B counts as 1/2 at the D and N
rows.

seqprofile(Seqs, ...'Limits', LimitsValue, ...) specifies the start and end
positions for the profile relative to the indices of the multiple alignment.

Examples

Calculate Sequence Profile

Calculate the sequence profile from set of multiply aligned sequences.

Create an array of structures representing a multiple alignment of amino acids:

seqs = fastaread('pf00002.fa');

Return the sequence profile and symbol list from the set of multiply aligned sequences:

[Profile1,Symbols1] = seqprofile(seqs);

Calculate Sequence Profile from Part of Alignment, Counting All Gaps

Calculate the sequence profile from set of multiply aligned sequences. Specify only part of
the alignment and to count all gaps.

Create an array of structures representing a multiple alignment of amino acids:

seqs = fastaread('pf00002.fa');

Return the sequence profile and symbol list from position 50 through 55 of the set of
multiply aligned sequences, counting all gaps:

[Profile2,Symbols2] = seqprofile(seqs,'limits',[50 55],'gaps','all')

Profile2 =

 0.0313 0.0313 0.1563 0.4375 0.1250 0.2188

 0 0 0.3750 0 0 0

 0 0 0.0938 0.1563 0 0

 seqprofile

1-1709

 0 0 0 0.0313 0 0

 0 0.0625 0 0 0.0313 0

 0 0 0 0.0313 0 0

 0 0 0 0.1250 0 0

 0.0313 0 0.0625 0 0 0

 0 0 0 0 0 0

 0.4688 0.0625 0 0 0.3125 0.1563

 0.1250 0.6250 0.0313 0 0.2188 0.1875

 0 0 0.1250 0.0313 0 0

 0.1250 0.0625 0 0 0 0.0313

 0.1563 0.0313 0 0 0.0313 0

 0 0 0 0 0 0

 0 0.0313 0.1250 0.1250 0.0625 0.2500

 0 0 0 0 0.1563 0.0938

 0 0 0 0 0 0

 0 0 0 0 0 0

 0.0625 0.0938 0.0313 0.0625 0.0625 0.0625

 0 0 0 0 0 0

Symbols2 =

ARNDCQEGHILKMFPSTWYV-

See Also
fastaread | multialignread | multialignwrite | seqconsensus | seqdisp |
seqlogo

1 Alphabetical List

1-1710

seqrcomplement
Calculate reverse complementary strand of nucleotide sequence

Syntax

SeqRC = seqrcomplement(SeqNT)

Arguments

SeqNT Nucleotide sequence specified by any of the following:

• Character string with the characters A, C, G, T, U, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N.

• Row vector of integers from the table Mapping Nucleotide Integers to
Letter Codes.

• MATLAB structure containing a Sequence field that contains a
nucleotide sequence, such as returned by emblread, fastaread,
fastqread, genbankread, getembl, or getgenbank.

Description

SeqRC = seqrcomplement(SeqNT) calculates the reverse complementary strand of a
DNA or RNA nucleotide sequence. The return sequence, SeqRC, reads from 3' --> 5' and
is in the same format as SeqNT. For example, if SeqNT is a vector of integers, then so is
SeqRC.

Nucleotide in SeqNT Converts to This Nucleotide in SeqRC

A T or U
C G

G C

T or U A

 seqrcomplement

1-1711

Examples

Return the reverse complement of a DNA nucleotide sequence.

s = 'ATCG'

seqrcomplement(s)

ans =

CGAT

See Also
codoncount | palindromes | seqcomplement | seqreverse | seqviewer

1 Alphabetical List

1-1712

seqreverse
Calculate reverse strand of nucleotide sequence

Syntax

SeqR = seqreverse(SeqNT)

Arguments

SeqNT Nucleotide sequence specified by any of the following:

• Character string with the characters A, C, G, T, U, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N.

• Row vector of integers from the table Mapping Nucleotide Integers
to Letter Codes.

• MATLAB structure containing a Sequence field that contains a
nucleotide sequence, such as returned by emblread, fastaread,
fastqread, genbankread, getembl, or getgenbank.

Description

SeqR = seqreverse(SeqNT) calculates the reverse strand of a DNA or RNA nucleotide
sequence. The return sequence, SeqR, reads from 3' --> 5' and is in the same format as
SeqNT. For example, if SeqNT is a vector of integers, then so is SeqR.

Examples

Return the reverse strand of a DNA nucleotide sequence.

s = 'ATCG'

seqreverse(s)

ans =

GCTA

 seqreverse

1-1713

See Also
codoncount | palindromes | seqcomplement | seqrcomplement | seqviewer |
fliplr

1 Alphabetical List

1-1714

seqshoworfs

Display open reading frames in sequence

Syntax

seqshoworfs(SeqNT)

seqshoworfs(SeqNT, ...'Frames', FramesValue, ...)

seqshoworfs(SeqNT, ...'GeneticCode', GeneticCodeValue, ...)

seqshoworfs(SeqNT, ...'MinimumLength', MinimumLengthValue, ...)

seqshoworfs(SeqNT, ...'AlternativeStartCodons', AlternativeStartCodonsValue, ...)

seqshoworfs(SeqNT, ...'Color', ColorValue, ...)

seqshoworfs(SeqNT, ...'Columns', ColumnsValue, ...)

Arguments

SeqNT Nucleotide sequence. Enter either a character
string with the characters A, T (U), G, C, and
ambiguous characters R, Y, K, M, S, W, B, D, H, V,
N, or a vector of integers. You can also enter a
structure with the field Sequence.

FramesValue Property to select the frame. Enter 1, 2, 3,
-1, -2, -3, enter a vector with integers, or
'all'. The default value is the vector [1 2
3]. Frames -1, -2, and -3 correspond to the
first, second, and third reading frames for the
reverse complement.

GeneticCodeValue Genetic code name. Enter a code number or a
code name from the table Genetic Code.

MinimumLengthValue Property to set the minimum number of codons
in an ORF.

AlternativeStartCodonsValue Property to control using alternative start
codons. Enter either true or false. The
default value is false.

 seqshoworfs

1-1715

ColorValue Color to highlight the reading frame. Specify
one of the following:

• Three-element numeric vector of RGB values
• String containing a predefined single-letter

color code
• String containing a predefined color name

For example, to use cyan, enter [0 1 1], 'c',
or 'cyan'. For more information on specifying
colors, see ColorSpec.

To specify different colors for the three reading
frames, use a 1-by-3 cell array of color values. If
you are displaying reverse complement reading
frames, then use a 1-by-6 cell array of color
values.

The default color scheme is blue for the first
reading frame, red for the second, and green for
the third.

ColumnsValue Property to specify the number of columns in
the output.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear

1 Alphabetical List

1-1716

Code Number Code Name

11 Bacterial and Plant Plastid
12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description

seqshoworfs identifies and highlights all open reading frames using the standard or an
alternative genetic code.

seqshoworfs(SeqNT) displays the sequence with all open reading frames highlighted,
and it returns a structure of start and stop positions for each ORF in each reading
frame. The standard genetic code is used with start codon 'AUG' and stop codons 'UAA',
'UAG', and 'UGA'.

seqshoworfs(SeqNT, ...'PropertyName', PropertyValue, ...) calls
seqshoworfs with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed
in single quotes and is case insensitive. These property name/property value pairs are as
follows:

seqshoworfs(SeqNT, ...'Frames', FramesValue, ...) specifies the reading
frames to display. The default is to display the first, second, and third reading frames
with ORFs highlighted in each frame.

seqshoworfs(SeqNT, ...'GeneticCode', GeneticCodeValue, ...) specifies
the genetic code to use for finding open reading frames.

 seqshoworfs

1-1717

seqshoworfs(SeqNT, ...'MinimumLength', MinimumLengthValue, ...) sets
the minimum number of codons for an ORF to be considered valid. The default value is
10.

seqshoworfs(SeqNT, ...'AlternativeStartCodons', AlternativeStartCodonsValue, ...)

uses alternative start codons if AlternativeStartCodons is set to true. For example,
in the human mitochondrial genetic code, AUA and AUU are known to be alternative start
codons. For more details on alternative start codons, see

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

seqshoworfs(SeqNT, ...'Color', ColorValue, ...) specifies the color used to
highlight the open reading frames in the output display. The default color scheme is blue
for the first reading frame, red for the second, and green for the third.

seqshoworfs(SeqNT, ...'Columns', ColumnsValue, ...) specifies how many
columns per line to use in the output. The default value is 64.

Examples

Display the open reading frames in a random nucleotide sequence.

s = randseq(200, 'alphabet', 'dna');

seqshoworfs(s);

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

1 Alphabetical List

1-1718

Display the open reading frames in a GenBank sequence.

HLA_DQB1 = getgenbank('NM_002123');

seqshoworfs(HLA_DQB1.Sequence);

 seqshoworfs

1-1719

See Also
codoncount | cpgisland | geneticcode | seqdisp | seqshowwords | seqviewer
| seqwordcount | regexp

1 Alphabetical List

1-1720

seqshowwords
Graphically display words in sequence

Syntax
Struct = seqshowwords(Seq, Word)

seqshowwords(Seq, Word, ...'Color', ColorValue, ...)

seqshowwords(Seq, Word, ...'Columns', ColumnsValue, ...)

seqshowwords(Seq, Word, ...'Alphabet', AlphabetValue, ...)

Description
Struct = seqshowwords(Seq, Word) opens a separate window displaying a
sequence with all occurrences of one or more words highlighted. It also returns a
structure containing the start and stop positions for all occurrences of the words in the
sequence.

seqshowwords(Seq, Word, ...'PropertyName', PropertyValue, ...) calls
seqshowwords with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Enclose each PropertyName in
single quotation marks. Each PropertyName is case insensitive. These property name/
property value pairs are as follows:

seqshowwords(Seq, Word, ...'Color', ColorValue, ...) specifies the color to
highlight the words in the output display of the sequence. Default is red.

seqshowwords(Seq, Word, ...'Columns', ColumnsValue, ...) specifies how
many columns or characters per line in the output display of the sequence. Default is 64.

seqshowwords(Seq, Word, ...'Alphabet', AlphabetValue, ...) specifies the
alphabet for the sequence and the word or words. Choices are 'AA' or 'NT' (default).

Input Arguments
Seq

Amino acid or nucleotide sequence specified by any of the following:

 seqshowwords

1-1721

• Character string of letters representing amino acids or nucleotides, such as returned
by int2aa or int2nt.

• MATLAB structure containing a Sequence field, such as returned by fastaread,
fastqread, emblread, getembl, genbankread, getgenbank, getgenpept,
genpeptread, getpdb, pdbread, or sffread.

Default:

Word

One or more short amino acid or nucleotide sequences specified by any of the following:

• Character string of letters
• “Regular expression”
• Cell array of strings or regular expressions

Note: If the search word or words contain amino acid or nucleotide symbols that
represent multiple symbols, then seqshowwords shows all possible matches. For
example, the symbol R represents either G or A (purines). If Word is 'ART', then
seqshowwords shows occurrences of both 'AAT' and 'AGT'.

Tip If Word contains a repeating pattern, such as 'TATA', then seqshowwords does not
highlight overlapping patterns of TA in the sequence. To highlight multiple repeats of
TA in a sequence, use a regular expression, such as 'TA(TA)*TA', for Word. For more
information, see “Examples” on page 1-1722.

Default:

ColorValue

Color to highlight all occurrences of one or more words in the sequence. Specify the color
with one of the following:

• Three-element numeric vector of RGB values
• String containing a predefined single-letter color code
• String containing a predefined color name

1 Alphabetical List

1-1722

For example, to use cyan, enter [0 1 1], 'c', or 'cyan'. For more information on
specifying colors, see ColorSpec.

Default: Red, which is specified by [1 0 0], 'r', or 'red'

ColumnsValue

Positive integer specifying how many columns or characters per line in the output display
of the sequence.

Default: 64

AlphabetValue

String specifying the type of sequences. Choices are 'AA' or 'NT' (default).

Default:

Output Arguments

Struct

MATLAB structure containing the start and stop positions of all occurrences or the word
or words in the sequence. It includes two fields.

Field Description

Start Row vector containing the start position of each occurrence of the search
word or words.

Stop Row vector containing the stop position of each occurrence of the search
word or words.

Examples

Search for a word containing multiple symbols:

% Highlight the word 'BART' which represents 'TAGT' and 'TAAT'

seqshowwords('GCTAGTAACGTATATATAAT','BART')

 seqshowwords

1-1723

ans =

 Start: [3 17]

 Stop: [6 20]

Search for a word that repeats, excluding overlaps:

% Highlight all occurrences of 'TATA', excluding those that are

% already part of another matched word.

seqshowwords('GCTATAACGTATATATATA','TATA')

ans =

 Start: [3 10 14]

 Stop: [6 13 17]

Search for a word that repeats, including overlaps:

% Use the regular expression 'TA(TA)*TA' to highlight all multiple

% repeats of 'TA'

seqshowwords('GCTATAACGTATATATATA','TA(TA)*TA')

ans =

 Start: [3 10]

 Stop: [6 19]

1 Alphabetical List

1-1724

Search for multiple words:

% Use a cell array as input to highlight both the words

% 'CG' and 'GC'

seqshowwords('GCTATAACGTATATATATA',{'CG', 'GC'})

ans =

 Start: [1 8]

 Stop: [2 9]

Alternatives

The seqviewer function opens the Biological Sequence Viewer, where you search for
words in a sequence by selecting Sequence > Find Word. The Biological Sequence
Viewer does not:

• Allow searching for multiple words in one step
• Return a structure containing the start and stop positions for all occurrences of the

word in the sequence

 seqshowwords

1-1725

More About
• “Regular Expressions”

See Also
palindromes | cleave | restrict | seqdisp | seqviewer | seqwordcount |
strfind | regexp | ColorSpec

Tutorials
• “Exploring a Nucleotide Sequence Using the Sequence Viewer App ”

1 Alphabetical List

1-1726

seqviewer

Visualize and interactively explore biological sequences

Syntax

seqviewer

seqviewer(Seq)

seqviewer(Seq,Name,Value)

seqviewer('close')

Description

seqviewer opens the Sequence Viewer app.

seqviewer(Seq) loads a sequence Seq into the app, where you can view and
interactively explore the sequence.

seqviewer(Seq,Name,Value) opens the app with additional options specified by one
or more Name,Value pair arguments.

seqviewer('close') closes the Sequence Viewer app.

Input Arguments

Seq — Amino acid or nucleotide sequence
string of single-letter codes | row vector of integers | structure | string specifying a file
name

Amino acid or nucleotide sequence, specified as:

• String of single-letter codes
• Row vector of integers

 seqviewer

1-1727

• MATLAB structure containing a Sequence field that contains an amino acid or
nucleotide sequence, such as returned by fastaread, fastqread, getgenpept,
genpeptread, getpdb, pdbread, emblread, getembl, genbankread, or
getgenbank

• String specifying a file name with an extension of .gbk, .gpt, .fasta, .fa, or .ebi.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alphabet','AA' specifies that the aligned sequences are amino acid
sequences.

'Alphabet' — Type of aligned sequences
'AA' | 'NT'

Type of aligned sequences, specified as 'AA' for amino acid sequences or 'NT' for
nucleotide sequences.
Example: 'Alphabet','AA'

Examples

Open and View a Biological Sequence

Retrieve a sequence from the GenBank database.

S = getgenbank('M10051');

Load the sequence into the Sequence Viewer app.

seqviewer(S)

Alternatively, you can click Sequence Viewer on the Apps tab to open the app, and view
the biological sequence S.

1 Alphabetical List

1-1728

Close the app.

seqviewer('close')

• “Exploring a Nucleotide Sequence Using the Sequence Viewer App ”

 seqviewer

1-1729

See Also
aa2nt | aacount | | aminolookup | basecount | baselookup | dimercount
| emblread | fastaread | fastawrite | genbankread | geneticcode |
genpeptread | getembl | getgenbank | getgenpept | nt2aa | proteinplot |
seqcomplement | seqdisp | seqrcomplement | seqreverse | seqshoworfs |
seqshowwords | seqwordcount

1 Alphabetical List

1-1730

seqwordcount
Count number of occurrences of word in sequence

Syntax

seqwordcount(Seq, Word)

Arguments

Seq Enter a nucleotide or amino acid sequence of characters. You can also
enter a structure with the field Sequence.

Word Enter a short sequence of characters.

Description

seqwordcount(Seq, Word) counts the number of times that a word appears in a
sequence, and then returns the number of occurrences of that word.

If Word contains nucleotide or amino acid symbols that represent multiple possible
symbols (ambiguous characters), then seqwordcount counts all matches. For example,
the symbol R represents either G or A (purines). For another example, if word equals
'ART', then seqwordcount counts occurrences of both 'AAT' and 'AGT'.

Examples

seqwordcount does not count overlapping patterns multiple times. In the following
example, seqwordcount reports three matches. TATATATA is counted as two distinct
matches, not three overlapping occurrences.

seqwordcount('GCTATAACGTATATATAT','TATA')

ans =

 3

 seqwordcount

1-1731

The following example reports two matches ('TAGT' and 'TAAT'). B is the ambiguous
code for G, T, or C, while R is an ambiguous code for G and A.

seqwordcount('GCTAGTAACGTATATATAAT','BART')

ans =

 2

See Also
codoncount | seqshoworfs | seqshowwords | seqviewer | seq2regexp | strfind

1 Alphabetical List

1-1732

set (biograph)
Set property of biograph object

Syntax

set(BGobj)

set(BGobj, 'PropertyName')

set(BGobj, 'PropertyName', PropertyValue)

set(BGobj, 'Property1Name', Property1Value, 'Property2Name',

Property2Value, ...)

Arguments

BGobj Biograph object created with the function biograph.
PropertyName Property name for a biograph object.
PropertyValue Value of the property specified by PropertyName.

Description

set(BGobj) displays possible values for all properties that have a fixed set of property
values in BGobj, a biograph object.

set(BGobj, 'PropertyName') displays possible values for a specific property that has
a fixed set of property values in BGobj, a biograph object.

set(BGobj, 'PropertyName', PropertyValue) sets the specified property of
BGobj, a biograph object.

set(BGobj, 'Property1Name', Property1Value, 'Property2Name',

Property2Value, ...) sets the specified properties of BGobj, a biograph object.

Properties of a Biograph Object

Property Description

ID String to identify the biograph object. Default is ''.

 set (biograph)

1-1733

Property Description

Label String to label the biograph object. Default is ''.
Description String that describes the biograph object. Default is ''.
LayoutType String that specifies the algorithm for the layout engine.

Choices are:

• 'hierarchical' (default) — Uses a topological order of
the graph to assign levels, and then arranges the nodes
from top to bottom, while minimizing crossing edges.

• 'radial' — Uses a topological order of the graph to
assign levels, and then arranges the nodes from inside to
outside of the circle, while minimizing crossing edges.

• 'equilibrium' — Calculates layout by minimizing the
energy in a dynamic spring system.

EdgeType String that specifies how edges display. Choices are:

• 'straight'

• 'curved' (default)
• 'segmented'

Note: Curved or segmented edges occur only when necessary
to avoid obstruction by nodes. Biograph objects with
LayoutType equal to 'equilibrium' or 'radial' cannot
produce curved or segmented edges.

Scale Positive number that post-scales the node coordinates.
Default is 1.

LayoutScale Positive number that scales the size of the nodes before
calling the layout engine. Default is 1.

EdgeTextColor Three-element numeric vector of RGB values. Default is [0,
0, 0], which defines black.

EdgeFontSize Positive number that sets the size of the edge font in points.
Default is 8.

ShowArrows Controls the display of arrows with the edges. Choices are
'on' (default) or 'off'.

1 Alphabetical List

1-1734

Property Description

ArrowSize Positive number that sets the size of the arrows in points.
Default is 8.

ShowWeights Controls the display of text indicating the weight of the
edges. Choices are 'on' (default) or 'off'.

ShowTextInNodes String that specifies the node property used to label nodes
when you display a biograph object using the view method.
Choices are:

• 'Label' — Uses the Label property of the node object
(default).

• 'ID' — Uses the ID property of the node object.
• 'None'

NodeAutoSize Controls precalculating the node size before calling the layout
engine. Choices are 'on' (default) or 'off'.

NodeCallback User-defined callback for all nodes. Enter the name of a
function, a function handle, or a cell array with multiple
function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click a node to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(node) inspect(node), which displays the
Property Inspector dialog box.

EdgeCallback User-defined callback for all edges. Enter the name of a
function, a function handle, or a cell array with multiple
function handles. After using the view function to display
the biograph object in the Biograph Viewer, you can double-
click an edge to activate the first callback, or right-click
and select a callback to activate. Default is the anonymous
function, @(edge) inspect(edge), which displays the
Property Inspector dialog box.

CustomNodeDrawFcn Function handle to a customized function to draw nodes.
Default is [].

Nodes Read-only column vector with handles to node objects of
a biograph object. The size of the vector is the number of

 set (biograph)

1-1735

Property Description

nodes. For properties of node objects, see Properties of a Node
Object.

Edges Read-only column vector with handles to edge objects of a
biograph object. The size of the vector is the number of edges.
For properties of edge objects, see Properties of an Edge
Object.

Examples

1 Create a biograph object with default node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg = biograph(cm)

Biograph object with 5 nodes and 9 edges.

2 Use the view method to display the biograph object.

view(bg)

1 Alphabetical List

1-1736

3 Use the set method to change the edge lines from curved to straight.

set(bg, 'EdgeType', 'straight')

4 Display the biograph object again.

view(bg)

 set (biograph)

1-1737

More About
• “biograph object”

See Also
biograph | get

1 Alphabetical List

1-1738

set
Class: BioRead

Set property of object

Syntax

NewObj = set(BioObj, 'PropertyName', PropertyValue)

NewObj = set(BioObj, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...)

set(BioObj, 'PropertyName')

PossVal = set(BioObj, 'PropertyName')

set(BioObj)

PropNameVal = set(BioObj)

Description

NewObj = set(BioObj, 'PropertyName', PropertyValue) returns NewObj, a
new object that is a copy of BioObj, but with the specified property set to the specified
value. set accepts a comma-separated property name/value pair for the BioRead or
BioMap class. Specify PropertyName inside single quotes.

NewObj = set(BioObj, 'Property1Name', Property1Value,

'Property2Name', Property2Value, ...) sets multiple property values of a
BioRead or BioMap object in a single statement.

set(BioObj, 'PropertyName') displays all possible values for the specified property
of BioObj, a BioRead or BioMap object.

PossVal = set(BioObj, 'PropertyName') returns PossVal, a cell array
containing all possible values for the specified property of BioObj, a BioRead or BioMap
object. PossVal is a cell array of one or more strings or, if the property does not have a
finite set of possible values, an empty cell array.

set(BioObj) displays all properties and their possible values for BioObj, a BioRead or
BioMap object.

 set

1-1739

PropNameVal = set(BioObj) returns PropNameVal, a structure containing all
properties and their possible values for BioObj, an object. PropNameVal is a structure
whose field names are the property names, and whose values are cell arrays of one or
more possible property values.

Tips

Use the set method to determine the property names and possible values before
setting the properties with the set method or specific set methods such as setHeader,
setSequence, and setQuality. Some of these specific set methods let you set all or a
subset of a property.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
properties (except for the Name and Reference properties).

Default:

PropertyName

Name of a property of the class.

Default:

PropertyValue

Value of a property of the class.

Default:

1 Alphabetical List

1-1740

Output Arguments

NewObj

Object of the BioRead or BioMap class.

PossVal

Cell array containing all possible values for a specified property of BioObj. The cell
array contains one or more strings or, if the property does not have a finite set of possible
values, it is an empty cell array.

PropNameVal

Structure containing all properties and their possible values for BioObj. The structure
has field names that are the property names, and whose values are cell arrays of one or
more possible property values.

Examples

Construct a BioRead object and set the Name property:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Set the Name property of the object

BRObj = set (BRObj, 'Name', 'MyObject')

BRObj =

 BioRead with properties:

 Quality: [50x1 File indexed property]

 Sequence: [50x1 File indexed property]

 Header: [50x1 File indexed property]

 NSeqs: 50

 Name: 'MyObject'

See Also
get | BioRead | BioMap

 set

1-1741

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-1742

set (clustergram)
Set property of clustergram object

Syntax

set(CGobj)

set(CGobj, 'PropertyName')

set(CGobj, 'PropertyName', PropertyValue)

set(CGobj, 'Property1Name', Property1Value, 'Property2Name',

Property2Value, ...)

Arguments

CGobj Clustergram object created with the function clustergram.
PropertyName Property name for a clustergram object.

Description

Note: You cannot set the properties of a clustergram object if you created it using the
Export Group to Workspace command in the Clustergram window.

set(CGobj) displays possible values for all properties that have a fixed set of property
values in CGobj, a clustergram object.

set(CGobj, 'PropertyName') displays possible values for a specific property that has
a fixed set of property values in CGobj, a clustergram object.

set(CGobj, 'PropertyName', PropertyValue) sets the specified property of
CGobj, a clustergram object.

set(CGobj, 'Property1Name', Property1Value, 'Property2Name',

Property2Value, ...) sets the specified properties of CGobj, a clustergram object.

 set (clustergram)

1-1743

Properties of a Clustergram Object

Property Description

RowLabels Vector of numbers or cell array of text strings to label the
rows in the dendrogram and heat map. Default is a vector
of values 1 through M, where M is the number of rows in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

ColumnLabels Vector of numbers or cell array of text strings to label the
columns in the dendrogram and heat map. Default is a vector
of values 1 through N, where N is the number of columns in
Data, the matrix of data used by the clustergram function
to create the clustergram object.

Standardize Numeric value that specifies the dimension for standardizing
the values in Data, the matrix of data used to create the
clustergram object. The standardized values are transformed
so that the mean is 0 and the standard deviation is 1 in the
specified dimension. Choices are:

• 'column' or 1 — Standardize along the columns of data.
• 'row' or 2 — Standardize along the rows of data.
• 'none' or 3 (default) — Do not standardize.

Cluster Numeric value that specifies the dimension for clustering
the values in Data, the matrix of data used to create the
clustergram object. Choices are:

• 1 — Cluster rows of data only.
• 2 — Cluster columns of data only.
• 3 — Cluster rows of data, then cluster columns of row-

clustered data.
RowPdist String that specifies the distance metric to pass to the pdist

function (Statistics Toolbox software) to use to calculate the
pairwise distances between rows. For information on choices,
see the pdist function.

1 Alphabetical List

1-1744

Property Description

Note: If the distance metric requires extra arguments,
then RowPdistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would use
{'minkowski', P}.

ColumnPdist String that specifies the distance metric to pass to the pdist
function (Statistics Toolbox software) to use to calculate the
pairwise distances between columns. For information on
choices, see the pdist function.

Note: If the distance metric requires extra arguments, then
ColumnPdistValue is a cell array. For example, to use
the Minkowski distance with exponent P, you would use
{'minkowski', P}.

Linkage String or two-element cell array of strings that specifies the
linkage method to pass to the linkage function (Statistics
Toolbox software) to use to create the hierarchical cluster
tree for rows and columns. If a two-element cell array of
strings, the first element is used for linkage between rows,
and the second element is used for linkage between columns.
For information on choices, see the linkage function.

Dendrogram Scalar or two-element numeric vector or cell array that
specifies the 'colorthreshold' property to pass to the
dendrogram function (Statistics Toolbox software) to create
the dendrogram plot. If a two-element numeric vector or
cell array, the first element is for the rows, and the second
element is for the columns. For more information, see the
dendrogram function.

OptimalLeafOrder Property to enable or disable the optimal leaf ordering
calculation, which determines the leaf order that maximizes
the similarity between neighboring leaves. Choices are true
(enable) or false (disable).

Tip Disabling the optimal leaf ordering calculation can
be useful when working with large data sets because this

 set (clustergram)

1-1745

Property Description

calculation uses a large amount of memory and can be very
time consuming.

LogTrans Controls the log2 transform of Data, the matrix of data used
to create the clustergram object, from natural scale. Choices
are true or false.

Colormap Either of the following:

• M-by-3 matrix of RGB values
• Name or function handle of a function that returns a

colormap, such as redgreencmap or redbluecmap
DisplayRange Positive scalar that specifies the display range of

standardized values.

For example, if you specify redgreencmap for the
'ColorMap' property, pure red represents values ≥
DisplayRange, and pure green represents values ≤
–DisplayRange.

Symmetric Property to force the color scale of the heat map to be
symmetric around zero. Choices are true or false.

Ratio Either of the following:

• Scalar
• Two-element vector

It specifies the ratio of space that the row and column
dendrograms occupy relative to the heat map. If Ratio is a
scalar, it is used as the ratio for both dendrograms. If Ratio
is a two-element vector, the first element is used for the
ratio of the row dendrogram width to the heat map width,
and the second element is used for the ratio of the column
dendrogram height to the heat map height. The second
element is ignored for one-dimensional clustergrams.

Impute Any of the following:

• Name of a function that imputes missing data.
• Handle to a function that imputes missing data.

1 Alphabetical List

1-1746

Property Description

• Cell array where the first element is the name of or
handle to a function that imputes missing data and the
remaining elements are property name/property value
pairs used as inputs to the function.

RowMarkers Optional structure array for annotating the groups (clusters)
of rows determined by the clustergram function. Each
structure in the array represents a group of rows and
contains the following fields:

• GroupNumber — Number to annotate the row group.
• Annotation — String specifying text to annotate the row

group.
• Color — String or three-element vector of RGB values

specifying a color, which is used to label the row
group. For more information on specifying colors, see
colorspec. If this field is empty, default is 'blue'.

ColumnMarkers Optional structure array for annotating groups (clusters)
of columns determined by the clustergram function.
Each structure in the array represents a group of rows and
contains the following fields:

• GroupNumber — Number to annotate the column group.
• Annotation — String specifying text to annotate the

column group.
• Color — String or three-element vector of RGB values

specifying a color, which is used to label the column
group. For more information on specifying colors, see
colorspec. If this field is empty, default is 'blue'.

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
filtered yeast data. This MAT-file includes three variables: yeastvalues, a matrix
of gene expression data, genes, a cell array of GenBank accession numbers for

 set (clustergram)

1-1747

labeling the rows in yeastvalues, and times, a vector of time values for labeling
the columns in yeastvalues.

load filteredyeastdata

2 Create a clustergram object and display the dendrograms and heat map from
the gene expression data in the first 30 rows of the yeastvalues matrix and
standardize along the rows of data.

cgo = clustergram(yeastvalues(1:30,:),'Standardize','row')

Clustergram object with 30 rows of nodes and 7 column of nodes.

3 Use the set method and the genes and times vectors to add meaningful row and
column labels to the clustergram.

set(cgo,'RowLabels',genes(1:30),'ColumnLabels',times)

1 Alphabetical List

1-1748

4 Reset the colormap of the heat map to redbluecmap.

set(cgo,'Colormap',redbluecmap);

 set (clustergram)

1-1749

More About
• “clustergram object”

See Also
clustergram | plot | view | get

1 Alphabetical List

1-1750

set (DataMatrix)
Set property of DataMatrix object

Syntax

set(DMObj)

set(DMObj, 'PropertyName')

DMObj = set(DMObj, 'PropertyName', PropertyValue)

DMObj = set(DMObj, 'Property1Name', Property1Value, 'Property2Name',

Property2Value, ...)

Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

PropertyName Property name of a DataMatrix object.
PropertyValue Value of the property specified by PropertyName.

Description

set(DMObj) displays possible values for all properties that have a fixed set of property
values in DMObj, a DataMatrix object.

set(DMObj, 'PropertyName') displays possible values for a specific property that has
a fixed set of property values in DMObj, a DataMatrix object.

DMObj = set(DMObj, 'PropertyName', PropertyValue) sets the specified
property of DMObj, a DataMatrix object.

DMObj = set(DMObj, 'Property1Name', Property1Value, 'Property2Name',

Property2Value, ...) sets the specified properties of DMObj, a DataMatrix object.

Properties of a DataMatrix Object

 set (DataMatrix)

1-1751

Property Description

Name String that describes the DataMatrix object. Default is ''.
RowNames Empty array or cell array of strings that specifies the names

for the rows, typically gene names or probe identifiers. The
number of elements in the cell array must equal the number
of rows in the matrix. Default is an empty array.

ColNames Empty array or cell array of strings that specifies the names
for the columns, typically sample identifiers. The number of
elements in the cell array must equal the number of columns
in the matrix.

NRows Positive number that specifies the number of rows in the
matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

NCols Positive number that specifies the number of columns in the
matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

NDims Positive number that specifies the number of dimensions in
the matrix.

Note: You cannot modify this property directly. You can
access it using the get method.

ElementClass String that specifies the class type, such as single or
double.

Note: You cannot modify this property directly. You can
access it using the get method.

1 Alphabetical List

1-1752

Examples

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene
expression data, genes, a cell array of GenBank accession numbers for labeling the
rows in yeastvalues, and times, a vector of time values for labeling the columns
in yeastvalues.

load filteredyeastdata

2 Import the microarray object package so that the DataMatrix constructor function
will be available.

import bioma.data.*

3 Create a DataMatrix object from the gene expression data in the first 30 rows of the
yeastvalues matrix.

dmo = DataMatrix(yeastvalues(1:30,:));

4 Use the get method to display the properties of the DataMatrix object, dmo.

get(dmo)

 Name: ''

 RowNames: []

 ColNames: []

 NRows: 30

 NCols: 7

 NDims: 2

 ElementClass: 'double'

Notice that the RowNames and ColNames fields are empty.
5 Use the set method and the genes and times variables to specify row names and

column names for the DataMatrix object, dmo.

dmo = set(dmo,'RowNames',genes(1:30),'ColNames',times)

6 Use the get method to display the properties of the DataMatrix object, dmo.
get(dmo)

 Name: ''

 RowNames: {30x1 cell}

 ColNames: {' 0' ' 9.5' '11.5' '13.5' '15.5' '18.5' '20.5'}

 NRows: 30

 NCols: 7

 set (DataMatrix)

1-1753

 NDims: 2

 ElementClass: 'double'

More About
• “DataMatrix object”

See Also
DataMatrix | get

1 Alphabetical List

1-1754

setHeader
Class: BioRead

Set sequence headers for object

Syntax

NewObj = setHeader(BioObj, Headers)

NewObj = setHeader(BioObj, Headers, Subset)

Description

NewObj = setHeader(BioObj, Headers) returns NewObj, a new object, created from
BioObj, an existing object, with the Header property set to Headers, a cell array of
strings containing sequence headers.

NewObj = setHeader(BioObj, Headers, Subset) returns NewObj, a new object,
created from BioObj, an existing object, with the Header property of a subset of the
elements set to Headers, a cell array of strings containing sequence headers. setHeader
sets the headers for only the object elements specified by Subset.

Tips

To update headers in an existing object, use the same object as the input BioObj and the
output NewObj.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
Header property.

 setHeader

1-1755

Default:

Headers

Cell array of strings containing sequence headers.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements
in Headers and Subset. If you use a cell array of header strings to specify Subset, be
aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioRead or BioMap class.

Examples

Set the headers of some elements in a BioRead object:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Set the Header property of the first five elements in the object

BRObj = setHeader(BRObj, {'H1', 'H2', 'H3', 'H4', 'H5'}, [1:5]);

1 Alphabetical List

1-1756

Alternatives

An alternative to using the setHeader method to update an existing object is to use dot
indexing with the Header property:

BioObj.Header(Indices) = NewHeaders

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewHeaders is a
cell array of strings containing headers. Indices and NewHeaders must have the same
number and order of elements.

See Also
getHeader | BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 setQuality

1-1757

setQuality
Class: BioRead

Set sequence quality scores for object

Syntax

NewObj = setQuality(BioObj, Quality)

NewObj = setQuality(BioObj, Quality, Subset)

Description

NewObj = setQuality(BioObj, Quality) returns NewObj, a new object, created
from BioObj, an existing object, with the Quality property set to Quality, a cell array
of strings containing the ASCII representations of per-base quality scores for nucleotide
sequences.

NewObj = setQuality(BioObj, Quality, Subset) returns NewObj, a new object,
created from BioObj, an existing object, with the Quality property of a subset of the
elements set to Quality, a cell array of strings containing the ASCII representations of
per-base quality scores for nucleotide sequences. setQuality sets the quality scores for
only the object elements specified by Subset.

Tips

To update quality scores in an existing object, use the same object as the input BioObj
and the output NewObj.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

1 Alphabetical List

1-1758

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
Quality property.

Default:

Quality

Cell array of strings containing the ASCII representations of per-base quality scores for
nucleotide sequences.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements
in Quality and Subset. If you use a cell array of header strings to specify Subset, be
aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioRead or BioMap class.

Examples

Construct a BioRead object, and then set a subset of the quality scores:

 setQuality

1-1759

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Create a new quality score

newValue = {repmat('N', 1, length(BRObj.Quality{2}))};

% Set the Quality property of the second element to the new

% quality score

BRObj = setQuality(BRObj, newValue, 2);

Alternatives

An alternative to using the setQuality method to update an existing object is to use dot
indexing with the Quality property:

BioObj.Quality(Indices) = NewQuality

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequence headers. NewQuality
is a cell array of strings containing ASCII representations of per-base quality scores.
Indices and NewQuality must have the same number and order of elements.

See Also
getQuality | BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-1760

setSequence

Class: BioRead

Set sequences for object

Syntax

NewObj = setSequence(BioObj, Sequences)

NewObj = setSequence(BioObj, Sequences, Subset)

Description

NewObj = setSequence(BioObj, Sequences) returns NewObj, a new object, created
from BioObj, an existing object, with the Sequence property set to Sequences, a cell
array of strings containing the letter representations of nucleotide sequences.

NewObj = setSequence(BioObj, Sequences, Subset) returns NewObj, a new
object, created from BioObj, an existing object, sets the sequences of a subset of the
elements in BioObj with the Sequence property of a subset of the elements set to
Sequences, a cell array of strings containing the letter representations of nucleotide
sequences. setSequence sets the sequences for only the object elements specified by
Subset.

Tips

• To update sequences in an existing object, use the same object as the input BioObj
and the output NewObj.

• If you use the setSequence method to modify the Sequence property, you also may
need to modify the Start and Signature properties accordingly, which you can do
using the setStart and setSignature methods.

 setSequence

1-1761

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot set its
Sequence property.

Default:

Sequences

Cell array of strings containing the letter representations of nucleotide sequences.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Sequences and Subset. If you use a cell array of header strings to specify Subset, be
aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioRead or BioMap class.

1 Alphabetical List

1-1762

Examples

Construct a BioRead object, and then set a subset of the sequences:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Set the Sequence property of the second element to a new sequence

BRObj = setSequence(BRObj, {'NNNNNNN'}, 2);

Alternatives

An alternative to using the setSequence method to update an existing object is to use
dot indexing with the Sequence property:

BioObj.Sequence(Indices) = NewSequences

In the previous syntax, Indices is a vector of positive integers or a logical vector.
Indices cannot be a cell array of strings containing sequences. NewSequences is a cell
array of strings containing sequences. Indices and NewSequences must have the same
number and order of elements.

See Also
getSequence | setSignature | BioRead | BioMap | setStart

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 setSubsequence

1-1763

setSubsequence
Class: BioRead

Set partial sequences for object

Syntax

NewObj = setSubsequence(BioObj, Subsequences, Subset, Positions)

Description

NewObj = setSubsequence(BioObj, Subsequences, Subset, Positions)

returns NewObj, a new object, created from BioObj, an existing object, with the partial
sequences, specified by Positions, of a subset of the elements in BioObj, set to
Subsequences, a cell array of strings containing the letter representations of partial
nucleotide sequences. setSubsequence sets the subsequences for only the object
elements specified by Subset.

Tips

To update subsequences in an existing object, use the same object as the input BioObj
and the output NewObj.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot modify it.

Default:

1 Alphabetical List

1-1764

Subsequences

Cell array of strings containing the letter representations of partial nucleotide sequences.
Each string must be the same length.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements in
Subsequences and Subset. If you use a cell array of header strings to specify Subset,
be aware that a repeated header specifies all elements with that header.

Default:

Positions

Either of the following to indicate positions in the nucleotide sequences:

• Vector of positive integers
• Logical vector

The number of positions specified by Positions must equal the length of the strings in
Subsequences.

Default:

Output Arguments

NewObj

Object of the BioRead or BioMap class.

 setSubsequence

1-1765

Examples

Construct a BioRead object, and then set nucleotide positions in a subset of elements:

% Construct a BioRead object from a FASTQ file

BRObj = BioRead('SRR005164_1_50.fastq');

% Set the first five positions of the second sequence to NNNNN

BRObj = setSubsequence(BRObj, {'NNNNN'}, 2, [1:5]);

BRObj = setSubsequence(BRObj, {'NNNNN'}, 'SRR005164.2', [1:5]);

% Set the 10th position of the first three sequences to X

BRObj = setSubsequence(BRObj, {'X', 'X', 'X'}, 1:3, 10);

See Also
BioRead | BioMap | getSubsequence

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

1 Alphabetical List

1-1766

setSubset

Class: BioRead

Set elements for object

Syntax

NewObj = setSubset(BioObj, Elements, Subset)

Description

NewObj = setSubset(BioObj, Elements, Subset) returns NewObj, a new object,
created from BioObj, an existing object, with a subset of the elements in BioObj set to
Elements, an object containing the appropriate number of elements. setSubset sets
the object elements specified by Subset.

Tips

To update an existing object, use the same object as the input BioObj and the output
NewObj.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Note: If BioObj was constructed from a BioIndexedFile object, you cannot modify it.

Default:

 setSubset

1-1767

Elements

BioRead or BioMap object containing a number of elements equal to the number of
elements specified by Subset.

Default:

Subset

One of the following to specify a subset of the elements in BioObj:

• Vector of positive integers
• Logical vector
• Cell array of strings containing valid sequence headers

Note: A one-to-one relationship must exist between the number and order of elements
in Elements and Subset. If you use a cell array of header strings to specify Subset, be
aware that a repeated header specifies all elements with that header.

Default:

Output Arguments

NewObj

Object of the BioRead or BioMap class.

Examples

Construct a BioRead object, and then set a subset of the elements in the object:

% Construct two BioRead objects, one with 10 elements, and one

% with 2 elements

struct1 = fastqread('SRR005164_1_50.fastq',...

 'blockread', [1 10], 'trimheaders', true);

struct2 = fastqread('SRR005164_1_50.fastq',...

 'blockread', [11 12], 'trimheaders', true);

1 Alphabetical List

1-1768

BRObj1 = BioRead(struct1);

BRObj2 = BioRead(struct2);

% Replace the first two elements in BRObj1 with the elements

% in BRObj2

BRObj1 = setSubset(BRObj1, BRObj2, 1:2);

See Also
getSubset | BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

Related Links
• Sequence Read Archive
• SAM format specification

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://samtools.sourceforge.net/SAM1.pdf

 sffinfo

1-1769

sffinfo
Return information about SFF file

Syntax

InfoStruct = sffinfo(File)

Description

InfoStruct = sffinfo(File) returns a MATLAB structure containing summary
information about a Standard Flowgram Format (SFF) file.

Input Arguments

File

String specifying a file name or path and file name of an SFF file produced by version 1.0
of the Genome Sequencer System data analysis software from 454 Life Sciences®. If you
specify only a file name, that file must be on the MATLAB search path or in the current
folder.

Default:

Output Arguments

InfoStruct

MATLAB structure containing summary information about an SFF file. The structure
contains the following fields.

Field Description

Filename Name of the file.

1 Alphabetical List

1-1770

Field Description

FileModDate Modification date of the file.
FileSize Size of the file in bytes.
Version Version number of the file.
FlowgramCode Code of the format used to encode flowgram

values.
NumberOfReads Number of sequence reads in the file.
NumberOfFlowsPerRead Number of flows for each read.
FlowChars Bases used in each flow.
KeySequence String of bases in the key sequence.

Examples

The SFF file, SRR013472.sff, used in this example is not provided with the
Bioinformatics Toolbox software. You can download sample SFF files from:
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

Return a summary of the contents of an SFF file:

info = sffinfo('SRR013472.sff')

info =

 Filename: 'SRR013472.sff'

 FileModDate: '23-Feb-2009 15:14:36'

 FileSize: 6632392

 Version: [0 0 0 1]

 FlowgramCode: 1

 NumberOfReads: 3546

 NumberOfFlowsPerRead: 440

 FlowChars: [1x440 char]

 KeySequence: 'TCAG'

More About
• http://www.my454.com/

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.my454.com/

 sffinfo

1-1771

• http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?
cmd=show&f=main&m=main&s=main

See Also
fastqread | fastqwrite | fastqinfo | fastainfo | fastaread | fastawrite |
sffread | saminfo | samread

Tutorials
• Working with SFF Files from the 454 Genome Sequencer FLX System

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

1 Alphabetical List

1-1772

sffread
Read data from SFF file

Syntax

SFFStruct = sffread(File)

sffread(..., 'Blockread', BlockreadValue, ...)

sffread(..., 'Feature', FeatureValue, ...)

Description

SFFStruct = sffread(File) reads a Standard Flowgram Format (SFF) file and
returns the data in a MATLAB array of structures.

sffread(..., 'PropertyName', PropertyValue, ...) calls sffread with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:

sffread(..., 'Blockread', BlockreadValue, ...) reads a single sequence
entry or block of sequence entries from an SFF file containing multiple sequences.

sffread(..., 'Feature', FeatureValue, ...) specifies the information to
include in the return structure.

Input Arguments

File

String specifying a file name or path and file name of an SFF file produced by version 1.0
of the Genome Sequencer System data analysis software from 454 Life Sciences. If you
specify only a file name, that file must be on the MATLAB search path or in the current
folder.

Default:

 sffread

1-1773

BlockreadValue

Scalar or vector that controls the reading of a single sequence entry or block of sequence
entries from an SFF file containing multiple sequences. Enter a scalar N, to read the Nth
entry in the file. Enter a 1-by-2 vector [M1, M2], to read a block of entries starting at the
M1 entry and ending at the M2 entry. To read all remaining entries in the file starting at
the M1 entry, enter a positive value for M1 and enter Inf for M2.

Default:

FeatureValue

String specifying the information to include in the output structure. The string includes
letters from the alphabet H, S, Q, C, F, and I, which represent the fields Header,
Sequence, Quality, Clipping, FlowgramValue, and FlowgramIndex, respectively.

Default: 'HSQ'

Output Arguments

SFFStruct

Array of structures containing information from an SFF file. There is one structure for
each read or entry in the file. Each structure contains one or more of the following fields.

Field Description

Header Universal accession number.
Sequence Numeric representation of nucleotide sequence.
Quality Per-base quality scores.
Clipping Clipping boundary positions.
FlowgramValue Sequence of flowgram intensity values.
FlowgramIndex Sequence of flowgram intensity indices.

Examples

The SFF file, SRR013472.sff, used in these examples is not provided with the
Bioinformatics Toolbox software. You can download sample SFF files from:

1 Alphabetical List

1-1774

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

Read an entire SFF file:

% Read the contents of an entire SFF file into an

% array of structures

reads = sffread('SRR013472.sff')

reads =

3546x1 struct array with fields:

 Header

 Sequence

 Quality

Read a block of entries from an SFF file:

% Read only the header and sequence information of the

% first five reads from an SFF file into an array of structures

reads5 = sffread('SRR013472.sff', 'block', [1 5], 'feature', 'hs')

reads5 =

5x1 struct array with fields:

 Header

 Sequence

More About
• http://www.my454.com/
• http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?

cmd=show&f=main&m=main&s=main

See Also
fastqread | fastqwrite | fastqinfo | fastainfo | fastaread | fastawrite |
sffinfo | saminfo | samread

Tutorials
• Working with SFF Files from the 454 Genome Sequencer FLX System

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.my454.com/
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main

 shortestpath (biograph)

1-1775

shortestpath (biograph)
Solve shortest path problem in biograph object

Syntax

[dist, path, pred] = shortestpath(BGObj, S)

[dist, path, pred] = shortestpath(BGObj, S, T)

[...] = shortestpath(..., 'Directed', DirectedValue, ...)

[...] = shortestpath(..., 'Method', MethodValue, ...)

[...] = shortestpath(..., 'Weights', WeightsValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).
S Node in graph represented by an N-by-N adjacency matrix

extracted from a biograph object, BGObj.
T Node in graph represented by an N-by-N adjacency matrix

extracted from a biograph object, BGObj.
DirectedValue Property that indicates whether the graph represented by the N-

by-N adjacency matrix extracted from a biograph object, BGObj, is
directed or undirected. Enter false for an undirected graph. This
results in the upper triangle of the sparse matrix being ignored.
Default is true.

MethodValue String that specifies the algorithm used to find the shortest path.
Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be
nonzero entries in the N-by-N adjacency matrix. Time
complexity is O(N*E), where N and E are the number of nodes
and edges respectively.

• 'BFS' — Breadth-first search. Assumes all weights to be
equal, and nonzero entries in the N-by-N adjacency matrix to
represent edges. Time complexity is O(N+E), where N and E are
the number of nodes and edges respectively.

1 Alphabetical List

1-1776

• 'Acyclic' — Assumes the graph represented by the N-by-
N adjacency matrix extracted from a biograph object, BGObj,
to be a directed acyclic graph and that weights of the edges
are nonzero entries in the N-by-N adjacency matrix. Time
complexity is O(N+E), where N and E are the number of nodes
and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes weights of the
edges to be positive values in the N-by-N adjacency matrix.
Time complexity is O(log(N)*E), where N and E are the
number of nodes and edges respectively.

WeightsValue Column vector that specifies custom weights for the edges in the
N-by-N adjacency matrix extracted from a biograph object, BGObj.
It must have one entry for every nonzero value (edge) in the N-
by-N adjacency matrix. The order of the custom weights in the
vector must match the order of the nonzero values in the N-by-N
adjacency matrix when it is traversed column-wise. This property
lets you use zero-valued weights. By default, shortestpaths
gets weight information from the nonzero entries in the N-by-N
adjacency matrix.

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[dist, path, pred] = shortestpath(BGObj, S) determines the single-source
shortest paths from node S to all other nodes in the graph represented by an N-by-N
adjacency matrix extracted from a biograph object, BGObj. Weights of the edges are
all nonzero entries in the N-by-N adjacency matrix. dist are the N distances from the
source to every node (using Infs for nonreachable nodes and 0 for the source node). path
contains the winning paths to every node. pred contains the predecessor nodes of the
winning paths.

[dist, path, pred] = shortestpath(BGObj, S, T) determines the single
source-single destination shortest path from node S to node T.

 shortestpath (biograph)

1-1777

[...] = shortestpath(..., 'PropertyName', PropertyValue, ...) calls
shortestpath with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotes and is case insensitive. These property name/property value
pairs are as follows:

[...] = shortestpath(..., 'Directed', DirectedValue, ...) indicates
whether the graph represented by the N-by-N adjacency matrix extracted from a
biograph object, BGObj, is directed or undirected. Set DirectedValue to false for an
undirected graph. This results in the upper triangle of the sparse matrix being ignored.
Default is true.

[...] = shortestpath(..., 'Method', MethodValue, ...) lets you specify the
algorithm used to find the shortest path. Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be nonzero entries in the N-
by-N adjacency matrix. Time complexity is O(N*E), where N and E are the number of
nodes and edges respectively.

• 'BFS' — Breadth-first search. Assumes all weights to be equal, and nonzero entries
in the N-by-N adjacency matrix to represent edges. Time complexity is O(N+E), where
N and E are the number of nodes and edges respectively.

• 'Acyclic' — Assumes the graph represented by the N-by-N adjacency matrix
extracted from a biograph object, BGObj, to be a directed acyclic graph and that
weights of the edges are nonzero entries in the N-by-N adjacency matrix. Time
complexity is O(N+E), where N and E are the number of nodes and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes weights of the edges to be positive values
in the N-by-N adjacency matrix. Time complexity is O(log(N)*E), where N and E are
the number of nodes and edges respectively.

[...] = shortestpath(..., 'Weights', WeightsValue, ...) lets you specify
custom weights for the edges. WeightsValue is a column vector having one entry for
every nonzero value (edge) in the N-by-N adjacency matrix extracted from a biograph
object, BGObj. The order of the custom weights in the vector must match the order of
the nonzero values in the N-by-N adjacency matrix when it is traversed column-wise.
This property lets you use zero-valued weights. By default, shortestpath gets weight
information from the nonzero entries in the N-by-N adjacency matrix.

More About
• “biograph object”

1 Alphabetical List

1-1778

References

[1] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271.

[2] Bellman, R. (1958). On a Routing Problem. Quarterly of Applied Mathematics 16(1),
87–90.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | allshortestpaths | isdag | isspantree | minspantree | traverse
| graphshortestpath | conncomp | isomorphism | maxflow | topoorder

 showalignment

1-1779

showalignment
Display color-coded sequence alignment

Syntax

showalignment(Alignment)

showalignment(..., 'MatchColor', MatchColorValue, ...)

showalignment(..., 'SimilarColor' SimilarColorValue, ...)

showalignment(..., 'StartPointers', StartPointersValue, ...)

showalignment(..., 'Columns', ColumnsValue, ...)

showalignment(..., 'TerminalGap', TerminalGapValue, ...)

Description

showalignment(Alignment) displays a color-coded sequence alignment in a MATLAB
Figure window.

showalignment(..., 'PropertyName', PropertyValue, ...) calls
showalignment with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Enclose each PropertyName in
single quotation marks. Each PropertyName is case insensitive. These property name/
property value pairs are as follows:

showalignment(..., 'MatchColor', MatchColorValue, ...) specifies the color
to highlight matching characters in the output display.

showalignment(..., 'SimilarColor' SimilarColorValue, ...) specifies the
color to highlight similar characters in the output display.

showalignment(..., 'StartPointers', StartPointersValue, ...) specifies
the starting indices in the original sequences of a local pairwise alignment.

showalignment(..., 'Columns', ColumnsValue, ...) specifies the number of
characters to display in one row when displaying a pairwise alignment, and labels the
start of each row with the sequence positions.

showalignment(..., 'TerminalGap', TerminalGapValue, ...) controls the
inclusion or exclusion of terminal gaps from the count of matches and similar residues

1 Alphabetical List

1-1780

when displaying a pairwise alignment. TerminalGapValue can be true (default) or
false.

Input Arguments

Alignment

Pairwise or multiple sequence alignment specified by one of the following:

• 3-by-N character array showing the pairwise alignment of two sequences, such as
returned by nwalign or swalign

• MATLAB structure containing a Sequence field, such as returned by fastaread,
gethmmalignment, multialign, or multialignread

• MATLAB character array that contains a multiple sequence alignment, such as
returned by multialign

Default:

MatchColorValue

Color to highlight matching characters in the output display. Specify the color with one of
the following:

• Three-element numeric vector of RGB values
• String containing a predefined single-letter color code
• String containing a predefined color name

For example, to use cyan, enter [0 1 1], 'c', or 'cyan'. For more information on
specifying colors, see ColorSpec.

Default: Red, which is specified by [1 0 0], 'r', or 'red'

SimilarColorValue

Color to highlight similar characters in the output display. Specify the color with one of
the following:

• Three-element numeric vector of RGB values
• String containing a predefined single-letter color code

 showalignment

1-1781

• String containing a predefined color name

For example, to use cyan, enter [0 1 1], 'c', or 'cyan'. For more information on
specifying colors, see ColorSpec.

Default: Magenta, which is specified by [1 0 1], 'm', or 'magenta'

StartPointersValue

Two-element vector that specifies the starting indices in the original sequences of a local
pairwise alignment.

Tip You can use the third output returned by swalign as the StartPointersValue.

Default:

ColumnsValue

Scalar that specifies the number of characters to display in one row when displaying a
pairwise alignment.

Default: 64

TerminalGapValue

Specifies whether to include or exclude terminal gaps from the count of matches and
similar residues when displaying a pairwise alignment. Choices are true (default) or
false.

Default:

Examples

Display a pairwise sequence alignment:

% Globally align two amino acid sequences

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD');

% Display the color-coded alignment

showalignment(Alignment);

1 Alphabetical List

1-1782

Notice that for pairwise sequence alignments, matching and similar characters appear in
red and magenta respectively..

Display a multiple sequence alignment

% Read a multiple-sequence alignment file

gag = multialignread('aagag.aln');

% Display the color-coded alignment

showalignment(gag)

 showalignment

1-1783

Notice that for multiple sequence alignments, highly conserved positions appear in red
and conserved positions appear in magenta.

Tip To view a multiple-sequence alignment and interact with it, use the
seqalignviewer function.

Alternatives

You can also display a multiple or pairwise sequence alignment using the
seqalignviewer function. The alignment displays in the Biological Sequence
Alignment window, where you can view and interactively adjust a sequence alignment.

1 Alphabetical List

1-1784

See Also
multialign | seqalignviewer | nwalign | swalign | ColorSpec |
gethmmalignment | fastaread | multialignread | localalign

Tutorials
• Aligning Pairs of Sequences

 showhmmprof

1-1785

showhmmprof

Plot hidden Markov model (HMM) profile

Syntax

showhmmprof(Model)

showhmmprof(Model, ...'Scale', ScaleValue, ...)

showhmmprof(Model, ...'Order', OrderValue, ...)

Arguments

Model Hidden Markov model created by the function gethmmprof or
pfamhmmread.

ScaleValue Property to select a probability scale. Enter one of the following
values:

• 'logprob' — Log probabilities
• 'prob' — Probabilities
• 'logodds' — Log-odd ratios

OrderValue Property to specify the order of the amino acid alphabet. Enter a
character string with the 20 standard amino acids characters A R N
D C Q E G H I L K M F P S T W Y V. The ambiguous characters
B Z X are not allowed.

Description

showhmmprof(Model) plots a profile hidden Markov model described by the structure
Model.

showhmmprof(..., 'PropertyName', PropertyValue, ...) calls showhmmprof
with optional properties that use property name/property value pairs. You can specify

1 Alphabetical List

1-1786

one or more properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property value pairs are as
follows:

showhmmprof(Model, ...'Scale', ScaleValue, ...) specifies the scale to use.
If log probabilities (ScaleValue='logprob'), probabilities (ScaleValue='prob'), or
log-odd ratios (ScaleValue='logodds'). To compute the log-odd ratios, the null model
probabilities are used for symbol emission and equally distributed transitions are used
for the null transition probabilities. The default ScaleValue is 'logprob'.

showhmmprof(Model, ...'Order', OrderValue, ...) specifies the order in which
the symbols are arranged along the vertical axis. This option allows you reorder the
alphabet and group the symbols according to their properties.

Examples

1 Load a model example.

model = pfamhmmread('pf00002.ls');

2 Plot the profile.

showhmmprof(model, 'Scale', 'logodds')

 showhmmprof

1-1787

3 Order the alphabet by hydrophobicity.

hydrophobic = 'IVLFCMAGTSWYPHNDQEKR';

4 Plot the profile.

1 Alphabetical List

1-1788

showhmmprof(model, 'Order', hydrophobic)

 showhmmprof

1-1789

See Also
gethmmprof | hmmprofalign | hmmprofestimate | hmmprofgenerate |
hmmprofstruct | pfamhmmread

1 Alphabetical List

1-1790

single (DataMatrix)
Convert DataMatrix object to single-precision array

Syntax

B = single(DMObj)

B = single(DMObj, Rows)

B = single(DMObj, Rows, Cols)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Rows, Cols Row(s) or column(s) in DMObj, specified by one of the following:

• Scalar
• Vector of positive integers
• String specifying a row or column name
• Cell array of row or column names
• Logical vector

Output Arguments

B MATLAB numeric array.

Description

B = single(DMObj) converts DMObj, a DataMatrix object, to a single-precision array,
which it returns in B.

B = single(DMObj, Rows) converts a subset of DMObj, a DataMatrix object, specified
by Rows, to a single-precision array, which it returns in B. Rows can be a positive integer,

 single (DataMatrix)

1-1791

vector of positive integers, string specifying a row name, cell array of row names, or a
logical vector.

B = single(DMObj, Rows, Cols) converts a subset of DMObj, a DataMatrix object,
specified by Rows and Cols, to a single-precision array, which it returns inB. Cols can be
a positive integer, vector of positive integers, string specifying a column name, cell array
of column names, or a logical vector.

More About
• “DataMatrix object”

See Also
DataMatrix | double

1 Alphabetical List

1-1792

size
Class: bioma.ExpressionSet
Package: bioma

Return size of ExpressionSet object

Syntax

NFeatSam = size(ESObj)

[NFeatures, NSamples] = size(ESObj)

DimLength = size(ESObj, Dim)

Description

NFeatSam = size(ESObj) returns a two-element row vector containing the number of
features and number of samples in an ExpressionSet object.

[NFeatures, NSamples] = size(ESObj) returns the number of features and
number of samples in an ExpressionSet object as separate variables.

DimLength = size(ESObj, Dim) returns the length of the dimension specified by
Dim.

Input Arguments

ESObj

Object of the bioma.ExpressionSet class.

Default:

Dim

Scalar specifying the dimension of the ExpressionSet object. Choices are:

• 1 — Features

 size

1-1793

• 2 — Samples

Default:

Examples

Construct an ExpressionSet object, ESObj, as described in the “Examples” on page
1- section of the bioma.ExpressionSet class reference page. Determine the
number of features and samples in the ExpressionSet object:
% Retrieve the number of features and samples

NumFeatSam = size(ESObj)

See Also
bioma.ExpressionSet | bioma.data.ExptData | DataMatrix

How To
• “Managing Gene Expression Data in Objects”

1 Alphabetical List

1-1794

size
Class: bioma.data.ExptData
Package: bioma.data

Return size of ExptData object

Syntax

NFeatSam = size(EDObj)

[NFeatures, NSamples] = size(EDObj)

DimLength = size(EDObj, Dim)

Description

NFeatSam = size(EDObj) returns a two-element row vector containing the number of
features and number of samples in an ExptData object.

[NFeatures, NSamples] = size(EDObj) returns the number of features and
number of samples in an ExptData object as separate variables.

DimLength = size(EDObj, Dim) returns the length of the dimension specified by
Dim.

Input Arguments

EDObj

Object of the bioma.data.ExptData class.

Default:

Dim

Scalar specifying the dimension of the ExptData object. Choices are:

• 1 — Features

 size

1-1795

• 2 — Samples

Default:

Examples

Construct an ExptData object, and then determine the number of features and samples
in it:

% Import bioma.data package to make constructor functions

% available

import bioma.data.*

% Create DataMatrix object from .txt file containing

% expression values from microarray experiment

dmObj = DataMatrix('File', 'mouseExprsData.txt');

% Construct ExptData object

EDObj = ExptData(dmObj);

% Retrieve the number of features and samples

NumFeatSam = size(EDObj)

See Also
bioma.data.ExptData

How To
• “Representing Expression Data Values in ExptData Objects”

1 Alphabetical List

1-1796

size
Class: bioma.data.MetaData
Package: bioma.data

Return size of MetaData object

Syntax

NSamVar = size(MDObj)

[NSamples, NVariables] = size(MDObj)

DimLength = size(MDObj, Dim)

Description

NSamVar = size(MDObj) returns a two-element row vector containing the number of
samples or features and number of variables in a MetaData object.

[NSamples, NVariables] = size(MDObj) returns the number of samples or
features and the number of variables in a MetaData object as separate variables.

DimLength = size(MDObj, Dim) returns the length of the dimension specified by
Dim.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

Dim

Scalar specifying the dimension of the MetaData object. Choices are:

• 1 — Samples

 size

1-1797

• 2 — Variables

Default:

Examples

Construct a MetaData object, and then determine the number of samples and variables
in it:
% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Retrieve the number of samples and variables

NumSamVar = size(MDObj2)

See Also
bioma.data.MetaData

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

1 Alphabetical List

1-1798

soapread
Read data from Short Oligonucleotide Analysis Package (SOAP) file

Syntax

SOAPStruct = soapread(File)

SOAPStruct = soapread(File,Name,Value)

Description

SOAPStruct = soapread(File) reads File, a SOAP-formatted file (version 2.15) and
returns the data in SOAPStruct, a MATLAB array of structures.

SOAPStruct = soapread(File,Name,Value) reads a SOAP-formatted file with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

File

Either of the following:

• String specifying a file name or path and file name of a SOAP-formatted file. If you
specify only a file name, that file must be on the MATLAB search path or in the
Current Folder.

• MATLAB string containing the text of a SOAP-formatted file.

The soapread function reads SOAP-formatted files (version 2.15).

Default:

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 soapread

1-1799

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BlockRead'

Scalar or vector that controls the reading of a single sequence entry or block of sequence
entries from a SOAP-formatted file containing multiple sequences. Enter a scalar N, to
read the Nth entry in the file. Enter a 1-by-2 vector [M1, M2], to read a block of entries
starting at the M1 entry and ending at the M2 entry. To read all remaining entries in the
file starting at the M1 entry, enter a positive value for M1 and enter Inf for M2.

Default:

'AlignDetails'

Logical specifying whether or not to include the AlignDetails field in the SOAPStruct
output argument. The AlignDetails field includes information on mismatches,
insertions, and deletions in the alignment. Choices are true (default) or false.

Default: true

Output Arguments

SOAPStruct

An N-by-1 array of structures containing sequence alignment and mapping information
from a SOAP-formatted file, where N is the number of alignment records stored in the
SOAP-formatted file. Each structure contains the following fields.

Field Description

QueryName Name of aligned read sequence.
Sequence String containing the letter representations

of the read sequence. It is the reverse-
complement if the read sequence aligns to the
reverse strand of the reference sequence.

Quality String containing the ASCII representation
of the per-base quality score for the read
sequence. The quality score is reversed if the

1 Alphabetical List

1-1800

Field Description

read sequence aligns to the reverse strand of
the reference sequence.

NumHits The number of total instances where this
read sequence aligned to an identical length
of bases on another area of the reference
sequence.

PairedEndSourceFile Flag (a or b) specifying which source file to
which the read sequence belongs. This field
applies only to read sequences that are paired
in the alignment.

Length Scalar specifying the length of the read
sequence.

Strand + or − specifying direction (forward or reverse)
of reference sequence to which the read
sequence aligns.

ReferenceName Name or numeric ID of the reference sequence
to which the read sequence aligns.

Position Position (one-based offset) of the forward
reference sequence where the left-most base of
the alignment of the read sequence starts.

AlignDetails Information on mismatches, insertions,
and deletions in the alignment. For SOAP-
formatted files v2.15, this field includes CIGAR
strings.

Examples

Read the alignment records (entries) from the sample01.soap file into a MATLAB
array of structures and access some of the data:

% Read the alignment records stored in the file sample01.soap

data = soapread('sample01.soap')

data =

17x1 struct array with fields:

 soapread

1-1801

 QueryName

 Sequence

 Quality

 NumHits

 PairedEndSourceFile

 Length

 Strand

 ReferenceName

 Position

 AlignDetails

% Access the quality score for the 6th entry

data(6).Quality

ans =

<>.>>>8>;:1>>>3>6>

% Determine the strand direction (forward or reverse) of the reference

% sequence to which the 12th entry aligns

data(12).Strand

ans =

-

Read a block of alignment records (entries) from the sample01.soap file into a
MATLAB array of structures:

% Read a block of six entries from a SOAP file

data_5_10 = soapread('sample01.soap','blockread', [5 10])

data_5_10 =

6x1 struct array with fields:

 QueryName

 Sequence

 Quality

 NumHits

 PairedEndSourceFile

 Length

 Strand

 ReferenceName

 Position

 AlignDetails

1 Alphabetical List

1-1802

More About

Tips

If your SOAP-formatted file is too large to read using available memory, try either of the
following:

• Use the BlockRead name-value pair arguments to read a subset of entries.
• Create a BioIndexedFile object from the SOAP-formatted file (using 'TABLE' for

the Format), and then access the entries using methods of the BioIndexedFile
class.

• “Work with Large Multi-Entry Text Files”
• Sequence Read Archive
• SOAP (Short Oligonucleotide Analysis Package)

References

[1] Li, R., Yu, C., Li, Y., Lam, T., Yiu, S., Kristiansen, K., and Wang, J. (2009). SOAP2:
an improved ultrafast tool for short read alignment. Bioinformatics 25, 15, 1966–
1967.

[2] Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008). SOAP: short oligonucleotide
alignment program. Bioinformatics 24(5), 713–714.

See Also
samread | bamread | fastqread | bowtieread

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=main&m=main&s=main
http://soap.genomics.org.cn/

 sortcols (DataMatrix)

1-1803

sortcols (DataMatrix)
Sort columns of DataMatrix object in ascending or descending order

Syntax

DMObjNew = sortcols(DMObj1)

DMObjNew = sortcols(DMObj1, Row)

DMObjNew = sortcols(DMObj1, 'ColName')

DMObjNew = sortcols(DMObj1, ..., Mode)

[DMObjNew, Indices] = sortcols(DMObj1, ...)

Input Arguments

DMObj1 DataMatrix object, such as created by DataMatrix (object
constructor).

Row One or more rows in DMObj1 by which to sort the columns. Choices are:

• Positive integer
• Vector of positive integers
• String specifying a row name
• Cell array of strings specifying multiple row names
• Logical vector

'ColName' String that specifies to sort the columns by the column names.
Mode String specifying the order by which to sort the columns. Choices are

'ascend' (default) or 'descend'.

Output Arguments

DMObjNew DataMatrix object created from sorting the columns of another
DataMatrix object.

Indices Index vector that links DMObj1 to DMObjNew. In other words,
DMObjNew = DMObj1(:,idx).

1 Alphabetical List

1-1804

Description

DMObjNew = sortcols(DMObj1) sorts the columns in DMObj1 in ascending order
based on the elements in the first row. For any columns that have equal elements in a
row, sorting is based on the row immediately below.

DMObjNew = sortcols(DMObj1, Row) sorts the columns in DMObj1 in ascending
order based on the elements in the specified row. Any columns that have equal elements
in the specified row are sorted based on the elements in the next specified row.

DMObjNew = sortcols(DMObj1, 'ColName') sorts the columns in DMObj1 in
ascending order according to the column names.

DMObjNew = sortcols(DMObj1, ..., Mode) specifies the order of the sort. Mode can
be 'ascend' (default) or 'descend'.

[DMObjNew, Indices] = sortcols(DMObj1, ...) returns Indices, an index
vector that links DMObj1 to DMObjNew. In other words, DMObjNew = DMObj1(:,idx).

More About
• “DataMatrix object”

See Also
DataMatrix | sortrows

 sortrows (DataMatrix)

1-1805

sortrows (DataMatrix)
Sort rows of DataMatrix object in ascending or descending order

Syntax

DMObjNew = sortrows(DMObj1)

DMObjNew = sortrows(DMObj1, Column)

DMObjNew = sortrows(DMObj1, 'RowName')

DMObjNew = sortrows(DMObj1, ..., Mode)

[DMObjNew, Indices] = sortrows(DMObj1, ...)

Input Arguments

DMObj1 DataMatrix object, such as created by DataMatrix (object
constructor).

Column One or more columns in DMObj1 by which to sort the rows. Choices are:

• Positive integer
• Vector of positive integers
• String specifying a column name
• Cell array of strings specifying multiple column names
• Logical vector

'RowName' String that specifies to sort the rows by the row names.
Mode String specifying the order by which to sort the rows. Choices are

'ascend' (default) or 'descend'.

Output Arguments

DMObjNew DataMatrix object created from sorting the rows of another DataMatrix
object.

Indices Index vector that links DMObj1 to DMObjNew. In other words,
DMObjNew = DMObj1(idx,:).

1 Alphabetical List

1-1806

Description

DMObjNew = sortrows(DMObj1) sorts the rows in DMObj1 in ascending order based
on the elements in the first column. For any rows that have equal elements in a column,
sorting is based on the column immediately to the right.

DMObjNew = sortrows(DMObj1, Column) sorts the rows in DMObj1 in ascending
order based on the elements in the specified column. Any rows that have equal elements
in the specified column are sorted based on the elements in the next specified column.

DMObjNew = sortrows(DMObj1, 'RowName') sorts the rows in DMObj1 in ascending
order according to the row names.

DMObjNew = sortrows(DMObj1, ..., Mode) specifies the order of the sort. Mode can
be 'ascend' (default) or 'descend'.

[DMObjNew, Indices] = sortrows(DMObj1, ...) returns Indices, an index
vector that links DMObj1 to DMObjNew. In other words, DMObjNew = DMObj1(idx,:).

More About
• “DataMatrix object”

See Also
DataMatrix | sortcols

 sptread

1-1807

sptread
Read data from SPOT file

Syntax

SPOTData = sptread(File)

SPOTData = sptread(File, 'CleanColNames', CleanColNamesValue)

Arguments

File Either of the following:

• String specifying a file name, a path and file name, or
a URL pointing to a file. The referenced file is a SPOT-
formatted file (ASCII text file). If you specify only a file
name, that file must be on the MATLAB search path or
in the MATLAB Current Folder.

• MATLAB character array that contains the text of a
SPOT-formatted file.

CleanColNamesValue Controls the use of valid MATLAB variable names.

Description

SPOTData = sptread(File) reads File, a SPOT-formatted file, and creates
SPOTData, a MATLAB structure containing the following fields:

Header

Data

Blocks

Columns

Rows

IDs

ColumnNames

Indices

Shape

1 Alphabetical List

1-1808

SPOTData = sptread(File, 'CleanColNames', CleanColNamesValue) controls
the use of valid MATLAB variable names. The column names in the SPOT-formatted file
contain periods and some characters that cannot be used in MATLAB variable names. If
you plan to use the column names as variable names in a function, use this option with
CleanColNames set to true and the function will return the field ColumnNames with
valid variable names.

The Indices field of the structure includes the indices that you can use for plotting heat
maps of the data.

Examples

1 Read in a sample SPOT file and plot the median foreground intensity for the 635
nm channel. Note that the example file spotdata.txt is not provided with the
Bioinformatics Toolbox software.

spotStruct = sptread('spotdata.txt')

maimage(spotStruct,'Rmedian');

2 Alternately, create a similar plot using more basic graphics commands.

Rmedian = magetfield(spotStruct,'Rmedian');

imagesc(Rmedian(spotStruct.Indices));

colormap bone

colorbar

See Also
affyread | agferead | celintensityread | geoseriesread | geosoftread |
gprread | ilmnbsread | imageneread | maboxplot | magetfield

 std (DataMatrix)

1-1809

std (DataMatrix)

Return standard deviation values in DataMatrix object

Syntax

S = std(DMObj)

S = std(DMObj, Flag)

S = std(DMObj, Flag, Dim)

S = std(DMObj, Flag, Dim, IgnoreNaN)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Flag Scalar specifying how to normalize the data. Choices are:

• 0 — Default. Normalizes using a sample size of N – 1, unless
N = 1, in which case, normalizes using a sample size of 1.

• 1 — Normalizes using a sample size of N.

N = the number of elements in each column or row, as specified
by Dim. For more information on the normalization equations,
see the MATLAB function std.

Dim Scalar specifying the dimension of DMObj to calculate the
standard deviations. Choices are:

• 1 — Default. Returns standard deviation values for elements
in each column.

• 2 — Returns standard deviation values for elements in each
row.

IgnoreNaN Specifies if NaNs should be ignored. Choices are true (default)
or false.

1 Alphabetical List

1-1810

Output Arguments

S Either of the following:

• Row vector containing the standard deviation values from
elements in each column in DMObj (when Dim = 1)

• Column vector containing the standard deviation values from
elements in each row in DMObj (when Dim = 2)

Description

S = std(DMObj) returns the standard deviation values of the elements in the columns
of a DataMatrix object, treating NaNs as missing values. The data is normalized using a
sample size of N – 1, where N = the number of elements in each column. S is a row vector
containing the standard deviation values for elements in each column in DMObj.

S = std(DMObj, Flag) specifies how to normalize the data. If Flag = 0, normalizes
using a sample size of N – 1. If Flag = 1, normalizes using a sample size of N. N = the
number of elements in each column or row, as specified by Dim. For more information on
the normalization equations, see the MATLAB function std. Default Flag = 0.

S = std(DMObj, Flag, Dim) returns the standard deviation values of the elements
in the columns or rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns
S, a row vector containing the standard deviation values for elements in each column in
DMObj. If Dim = 2, returns S, a column vector containing the standard deviation values
for elements in each row in DMObj. Default Dim = 1.

S = std(DMObj, Flag, Dim, IgnoreNaN) specifies if NaNs should be ignored.
IgnoreNaN can be true (default) or false.

More About
• “DataMatrix object”

See Also
DataMatrix | median | mean | var

 subtree (phytree)

1-1811

subtree (phytree)

Extract phylogenetic subtree

Syntax

Tree2 = subtree(Tree1, Nodes)

Description

Tree2 = subtree(Tree1, Nodes) extracts a new subtree (Tree2) where the new
root is the first common ancestor of the Nodes vector from Tree1. Nodes in the tree
are indexed as [1:NUMLEAVES] for the leaves and as [NUMLEAVES+1:NUMLEAVES
+NUMBRANCHES] for the branches. Nodes can also be a logical array of following sizes
[NUMLEAVES+NUMBRANCHES x 1], [NUMLEAVES x 1] or [NUMBRANCHES x 1].

Examples

1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree');

2 Get the subtree that contains the VIPR2 and GLR human proteins.

sel = getbyname(tr,{'vipr2_human','glr_human'});

sel = any(sel,2);

tr = subtree(tr,sel);

view(tr)

1 Alphabetical List

1-1812

More About
• “phytree object”

 subtree (phytree)

1-1813

See Also
phytree | getbyname | select | get | prune

1 Alphabetical List

1-1814

sum (DataMatrix)

Return sum of elements in DataMatrix object

Syntax

S = sum(DMObj)

S = sum(DMObj, Dim)

S = sum(DMObj, Dim, IgnoreNaN)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Dim Scalar specifying the dimension of DMObj to calculate the sums.
Choices are:

• 1 — Default. Returns sum of elements in each column.
• 2 — Returns sum of elements in each row.

IgnoreNaN Specifies if NaNs should be ignored. Choices are true (default)
or false.

Output Arguments

S Either of the following:

• Row vector containing the sums of the elements in each
column in DMObj (when Dim = 1)

• Column vector containing the sums of the elements in each
row in DMObj (when Dim = 2)

 sum (DataMatrix)

1-1815

Description

S = sum(DMObj) returns the sum of the elements in the columns of a DataMatrix
object, treating NaNs as missing values. S is a row vector containing the sums of the
elements in each column in DMObj. If the values in DMObj are singles, then S is a
single; otherwise, S is a double.

S = sum(DMObj, Dim) returns the sum of the elements in the columns or rows of a
DataMatrix object, as specified by Dim. If Dim = 1, returns S, a row vector containing the
sums of the elements in each column in DMObj. If Dim = 2, returns S, a column vector
containing the sums of the elements in each row in DMObj. Default Dim = 1.

S = sum(DMObj, Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN
can be true (default) or false.

More About
• “DataMatrix object”

See Also
DataMatrix | min | max

1 Alphabetical List

1-1816

swalign
Locally align two sequences using Smith-Waterman algorithm

Syntax

Score = swalign(Seq1, Seq2)

[Score, Alignment] = swalign(Seq1, Seq2)

[Score, Alignment, Start] = swalign(Seq1, Seq2)

... = swalign(Seq1,Seq2, ...'Alphabet', AlphabetValue)

... = swalign(Seq1,Seq2, ...'ScoringMatrix',

ScoringMatrixValue, ...)

... = swalign(Seq1,Seq2, ...'Scale', ScaleValue, ...)

... = swalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...)

... = swalign(Seq1,Seq2, ...'ExtendGap', ExtendGapValue, ...)

... = swalign(Seq1,Seq2, ...'Showscore', ShowscoreValue, ...)

Input Arguments

Seq1, Seq2 Amino acid or nucleotide sequences. Enter any of the
following:

• Character string of letters representing amino acids or
nucleotides, such as returned by int2aa or int2nt

• Vector of integers representing amino acids or
nucleotides, such as returned by aa2int or nt2int

• Structure containing a Sequence field

Tip For help with letter and integer representations of
amino acids and nucleotides, see Amino Acid Lookup or
Nucleotide Lookup.

AlphabetValue String specifying the type of sequence. Choices are 'AA'
(default) or 'NT'.

ScoringMatrixValue Either of the following:

 swalign

1-1817

• String specifying the scoring matrix to use for the local
alignment. Choices for amino acid sequences are:

• 'BLOSUM62'

• 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
• 'BLOSUM100'

• 'PAM10' increasing by 10 up to 'PAM500'
• 'DAYHOFF'

• 'GONNET'

Default is:

• 'BLOSUM50' — When AlphabetValue equals 'AA'
• 'NUC44' — When AlphabetValue equals 'NT'

Note: The above scoring matrices, provided with the
software, also include a structure containing a scale
factor that converts the units of the output score to bits.
You can also use the 'Scale' property to specify an
additional scale factor to convert the output score from
bits to another unit.

• Matrix representing the scoring matrix to use for the
local alignment, such as returned by the blosum, pam,
dayhoff, gonnet, or nuc44 function.

Note: If you use a scoring matrix that you created or
was created by one of the above functions, the matrix
does not include a scale factor. The output score will be
returned in the same units as the scoring matrix. You
can use the 'Scale' property to specify a scale factor to
convert the output score to another unit.

Note: If you need to compile swalign into a stand-
alone application or software component using

1 Alphabetical List

1-1818

MATLAB Compiler, use a matrix instead of a string for
ScoringMatrixValue.

ScaleValue Positive value that specifies a scale factor that is applied to
the output score.

For example, if the output score is initially determined in
bits, and you enter log(2) for ScaleValue, then swalign
returns Score in nats.

Default is 1, which does not change the units of the output
score.

Note: If the 'ScoringMatrix' property also specifies
a scale factor, then swalign uses it first to scale the
output score, then applies the scale factor specified by
ScaleValue to rescale the output score.

Tip Before comparing alignment scores from multiple
alignments, ensure the scores are in the same units. You
can use the 'Scale' property to control the units of the
output scores.

GapOpenValue Positive value specifying the penalty for opening a gap in
the alignment. Default is 8.

ExtendGapValue Positive value specifying the penalty for extending a gap
using the affine gap penalty scheme.

Note: If you specify this value, swalign uses the affine
gap penalty scheme, that is, it scores the first gap using
the GapOpenValue and scores subsequent gaps using
the ExtendGapValue. If you do not specify this value,
swalign scores all gaps equally, using the GapOpenValue
penalty.

ShowscoreValue Controls the display of the scoring space and the winning
path of the alignment. Choices are true or false (default).

 swalign

1-1819

Output Arguments

Score Optimal local alignment score in bits.
Alignment 3-by-N character array showing the two sequences,

Seq1 and Seq2, in the first and third rows, and symbols
representing the optimal local alignment between them in
the second row.

Start 2-by-1 vector of indices indicating the starting point in each
sequence for the alignment.

Description

Score = swalign(Seq1, Seq2) returns the optimal local alignment score in bits. The
scale factor used to calculate the score is provided by the scoring matrix.

[Score, Alignment] = swalign(Seq1, Seq2) returns a 3-by-N character array
showing the two sequences, Seq1 and Seq2, in the first and third rows, and symbols
representing the optimal local alignment between them in the second row. The symbol |
indicates amino acids or nucleotides that match exactly. The symbol : indicates amino
acids or nucleotides that are related as defined by the scoring matrix (nonmatches with a
zero or positive scoring matrix value).

[Score, Alignment, Start] = swalign(Seq1, Seq2) returns a 2-by-1 vector of
indices indicating the starting point in each sequence for the alignment.

... = swalign(Seq1,Seq2, ...'PropertyName', PropertyValue, ...) calls
swalign with optional properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = swalign(Seq1,Seq2, ...'Alphabet', AlphabetValue) specifies the type
of sequences. Choices are 'AA' (default) or 'NT'.

... = swalign(Seq1,Seq2, ...'ScoringMatrix',

ScoringMatrixValue, ...) specifies the scoring matrix to use for the local
alignment. Default is:

1 Alphabetical List

1-1820

• 'BLOSUM50' — When AlphabetValue equals 'AA'
• 'NUC44' — When AlphabetValue equals 'NT'

... = swalign(Seq1,Seq2, ...'Scale', ScaleValue, ...) specifies a scale
factor that is applied to the output score, thereby controlling the units of the output
score. Choices are any positive value.

... = swalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...) specifies the
penalty for opening a gap in the alignment. Choices are any positive value. Default is 8.

... = swalign(Seq1,Seq2, ...'ExtendGap', ExtendGapValue, ...) specifies
the penalty for extending a gap using the affine gap penalty scheme. Choices are any
positive value.

... = swalign(Seq1,Seq2, ...'Showscore', ShowscoreValue, ...) controls
the display of the scoring space and winning path of the alignment. Choices are true or
false (default).

 swalign

1-1821

The scoring space is a heat map displaying the best scores for all the partial alignments
of two sequences. The color of each (n1,n2) coordinate in the scoring space represents the
best score for the pairing of subsequences Seq1(s1:n1) and Seq2(s2:n2), where n1 is
a position in Seq1, n2 is a position in Seq2, s1 is any position in Seq1 between 1:n1,
and s2 is any position in Seq2 between 1:n2. The best score for a pairing of specific
subsequences is determined by scoring all possible alignments of the subsequences by
summing matches and gap penalties.

The winning path is represented by black dots in the scoring space, and it illustrates
the pairing of positions in the optimal local alignment. The color of the last point (lower
right) of the winning path represents the optimal local alignment score for the two
sequences and is the Score output returned by swalign.

1 Alphabetical List

1-1822

Note: The scoring space visually shows tandem repeats, small segments that potentially
align, and partial alignments of domains from rearranged sequences.

Examples

1 Locally align two amino acid sequences using the BLOSUM50 (default) scoring matrix
and the default values for the GapOpen and ExtendGap properties. Return the
optimal local alignment score in bits and the alignment character array.

[Score, Alignment] = swalign('VSPAGMASGYD','IPGKASYD')

Score =

 8.6667

Alignment =

PAGMASGYD

| | || ||

P-GKAS-YD

2 Locally align two amino acid sequences specifying the PAM250 scoring matrix and a
gap open penalty of 5.

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...

 'ScoringMatrix', 'pam250',...

 'GapOpen',5)

Score =

 8

Alignment =

GAWGHE

:|| ||

PAW-HE

3 Locally align two amino acid sequences returning the Score in nat units (nats) by
specifying a scale factor of log(2).
[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE','Scale',log(2))

Score =

 swalign

1-1823

 6.4694

Alignment =

AWGHE

|| ||

AW-HE

References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence
Analysis (Cambridge University Press).

[2] Smith, T., and Waterman, M. (1981). Identification of common molecular
subsequences. Journal of Molecular Biology 147, 195–197.

See Also
aa2int | aminolookup | baselookup | blosum | dayhoff | gonnet | int2aa |
int2nt | localalign | multialign | nt2aa | nt2int | nuc44 | nwalign | pam |
pdbsuperpose | seqdotplot | showalignment

1 Alphabetical List

1-1824

term class

Data structure containing information about Gene Ontology (GO) term

Description

A term object is a data structure containing information about a Gene Ontology (GO)
term. You can explore and traverse Gene Ontology terms using “is_a” and “part_of”
relationships.

Construction

.geneont
Create geneont object and term objects

Properties

definition
Read-only string that defines GO term

id
Read-only numeric value that corresponds
to GO identifier of GO term

is_a
Read-only numeric array containing GO
identifiers of GO terms that have an “is a”
relationship with this GO term

name
Read-only string representing name of GO
term

obsolete
Read-only Boolean value that indicates
whether a GO term is obsolete

 term class

1-1825

ontology
Read-only string describing the ontology of
GO term

part_of
Read-only numeric array containing GO
identifiers of GO terms that have a “part
of” relationship with this GO term

synonym
Read-only array containing GO terms that
are synonyms of this GO term

Instance Hierarchy

A geneont object contains term objects.

Copy Semantics

Handle. To learn how this affects your use of the class, see “Copying Objects” in the
MATLAB Programming Fundamentals documentation.

Indexing

You can use parenthesis () indexing to access the terms in an array of handles to term
objects. See “Examples” on page 1-1825 below.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

1 Alphabetical List

1-1826

Gene Ontology object with 27827 Terms.

2 Use the terms property to create a variable containing an array of handles to the
term objects of the geneont object.

array_of_terms = GeneontObj.terms

27827x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

Note: Although the terms property is an array of handles to term objects, in the
MATLAB Command Window, it displays as a structure array, with one structure for
each GO term in the geneont object.

3 Return the fifth term (term object) of the geneont object.

fifth_term = array_of_terms(5)

 id: 6

 name: [1x60 char]

 ontology: 'molecular function'

 definition: [1x321 char]

 comment: ''

 synonym: []

 is_a: 5385

 part_of: [0x1 double]

 obsolete: 0

See Also
geneont

 tgspcinfo

1-1827

tgspcinfo

Return information about SPC file

Syntax

InfoStruct = tgspcinfo(File)

Description

InfoStruct = tgspcinfo(File) returns a MATLAB structure containing summary
information about a Galactic SPC file from Thermo Scientific®.

Input Arguments

File

String specifying a file name or path and file name of an SPC file. If you specify only a
file name, that file must be on the MATLAB search path or in the current folder.

Default:

Output Arguments

InfoStruct

MATLAB structure containing the following fields:

Field Description

Filename Name of the SPC file.
FileSize Size of the SPC file in bytes.

1 Alphabetical List

1-1828

Field Description

ExperimentType Experimental technique used to create the
data.

NumDataPoints Number of data points (y data values) in the
SPC file.

XFirst First x data value in the SPC file.
XLast Last x data value in the SPC file.
NumScans Number of scans or subfiles in the SPC file.
XLabel Label for the x data values.
YLabel Label for the y data values.
ZLabel Label for the z data values.
CollectionTime Date and time the scans were collected.
CollectionTimeDatenum Date and time the scans were collected

in serial date number format. For more
information, see datenum.

Resolution Instrument resolution.
SourceInstrument Name or model of the instrument used to

collect data.
InterferogramPeakPointNumber Peak point number for interferograms. It is 0

for scans that are not interferograms.
Comment User-provided comments.
CustomAxisUnitLabel User-provided labels for the axis units.
SubScanHeaders Header information for subfiles or scans,

including scan index, next scan index, and w
data value.

ZValues Vector containing the z data values of all scans
in the SPC file.

Examples

The SPC file, sample.spc, used in the following example is not provided with the
Bioinformatics Toolbox software. You can download sample files from:

 tgspcinfo

1-1829

https://ftirsearch.com/default3.htm

Return information about an SPC file:

% Return information about an SPC file named sample.spc

info = tgspcinfo('sample.spc')

Reading header for file: SAMPLE.SPC

File contains 1 scans

info =

 Filename: 'SAMPLE.SPC'

 FileSize: 48380

 ExperimentType: 'General SPC'

 NumDataPoints: 12031

 XFirst: 6.2998e+003

 XLast: 499.9531

 NumScans: 1

 XLabel: 'Wavenumber (cm-1)'

 YLabel: 'Absorbance'

 ZLabel: 'Arbitrary'

 CollectionTime: '08-Mar-1993 15:13:00'

 CollectionTimeDatenum: 7.2800e+005

 Resolution: ' .00 '

 SourceInstrument: ''

 InterferogramPeakPointNumber: 0

 Comment: [1x74 char]

 CustomAxisUnitLabel: ''

 SubScanHeaders: [1x1 struct]

 ZValues: 0

More About
• https://ftirsearch.com/default3.htm
• https://ftirsearch.com/features/converters/SPCFileFormat.htm
• http://www.thermofisher.com/

See Also
tgspcread | datenum

https://ftirsearch.com/default3.htm
https://ftirsearch.com/default3.htm
https://ftirsearch.com/features/converters/SPCFileFormat.htm
http://www.thermofisher.com/

1 Alphabetical List

1-1830

tgspcread
Read data from SPC file

Syntax
SPCStruct = tgspcread(File)

tgspcread(..., 'ZRange', ZRangeValue, ...)

tgspcread(..., 'ScanIndices', ScanIndicesValue, ...)

tgspcread(..., 'Verbose', VerboseValue, ...)

Description
SPCStruct = tgspcread(File) reads a Galactic SPC file from Thermo Scientific, and
returns the data in a MATLAB structure.

tgspcread(..., 'PropertyName', PropertyValue, ...) calls tgspcread with
optional properties that use property name/property value pairs. You can specify one or
more properties in any order. Enclose each PropertyName in single quotation marks.
Each PropertyName is case insensitive. These property name/property value pairs are
as follows:

tgspcread(..., 'ZRange', ZRangeValue, ...) specifies a range of z data values
in the SPC file from which to extract scans.

tgspcread(..., 'ScanIndices', ScanIndicesValue, ...) specifies a scan,
multiple scans, or range of scans in the SPC file to read.

tgspcread(..., 'Verbose', VerboseValue, ...) controls the display of the
progress of the reading of the SPC file. Choices are true or false (default).

Input Arguments
File

String specifying a file name or path and file name of an SPC file that conforms to the
Thermo Scientific Universal Data Format Specification. If you specify only a file name,
that file must be on the MATLAB search path or in the current folder.

https://ftirsearch.com/features/converters/SPCFileFormat.htm

 tgspcread

1-1831

Default:

ZRangeValue

Two-element numeric array [Start End] that specifies the range of z data values in
File to read. Start and End must be positive scalars, and Start must be less than End.
Default is to extract all scans.

Tip For summary information about the z data values in an SPC file, use the tgspcinfo
function.

Note: If you specify a ZRangeValue, you cannot specify a ScanIndicesValue.

Default:

ScanIndicesValue

Positive integer, vector of integers, or a two-element numeric array [Start_Ind:
End_Ind] that specifies a scan, multiple scans, or a range of scans in File to read.
Start_Ind and End_Ind are each positive integers indicating a scan index. Start_Ind
must be less than End_Ind. Default is to read all scans.

Tip For summary information about the scan indices in an SPC file, check the NumScans
field in the structure returned by the tgspcinfo function.

Note: If you specify a ScanIndicesValue, you cannot specify a ZRangeValue.

Default:

VerboseValue

Controls the display of the progress of the reading of File. Choices are true or false
(default).

Default:

1 Alphabetical List

1-1832

Output Arguments

SPCStruct

Structure containing information from an SPC file. The structure contains the following
fields.

Field Description

Header Structure containing the following fields:

• Filename — Name of the SPC file.
• FileSize — Size of the SPC file in bytes.
• ExperimentType — Experimental technique used to create

the data.
• NumDataPoints — Number of data points (y data values) in

the SPC file.
• XFirst — First x data value in the SPC file.
• XLast — Last x data value in the SPC file.
• NumScans — Number of scans or subfiles in the SPC file.
• XLabel — Label for the x data values.
• YLabel — Label for the y data values.
• ZLabel — Label for the z data values.
• CollectionTime — Date and time the scan data were

collected.
• CollectionTimeDatenum — Date and time the scan

data were collected in serial date number format. For more
information, see datenum.

• Resolution — Instrument resolution.
• SourceInstrument — Name or model of instrument used to

collect data.
• InterferogramPeakPointNumber — Peak point number for

interferograms. It is 0 for scans that are not interferograms.
• Comment — User-provided comments.

 tgspcread

1-1833

Field Description

• CustomAxisUnitLabel — User-provided labels for the axis
units.

• SubScanHeaders — Header information for subfiles or scans,
including scan index, next scan index, and w data value.

• ZValues — Vector containing the z data values of all scans in
the SPC file.

X Vector or cell array containing the x data values.

If all scans share the same x data values, then X is a vector. If
scans have different x data values, then X is a cell array.

Y Vector, matrix, or cell array containing the y data values.

If there is only one scan, then Y is a vector. If there are multiple
scans that share the same x data values, then Y is a matrix. If
there are multiple scans having different x data values, then Y is
a cell array.

Z Vector containing the z data values of scans read from the SPC
file

Examples

The SPC file, results.spc, used in the following example is not provided with the
Bioinformatics Toolbox software. You can download sample files from:

https://ftirsearch.com/default3.htm

Read an SPC file:

% Read the contents of an SPC file into a MATLAB structure

out = tgspcread('results.spc')

File contains 1 scans

out =

 Header: [1x1 struct]

 X: [12031x1 single]

 Y: [12031x1 double]

https://ftirsearch.com/default3.htm

1 Alphabetical List

1-1834

 Z: 0

Plot an SPC file:

% Plot the first scan in the SPC file:

plot(out.X,out.Y(:,1));

More About
• https://ftirsearch.com/default3.htm
• https://ftirsearch.com/features/converters/SPCFileFormat.htm
• http://www.thermofisher.com/

See Also
tgspcinfo | jcampread | mzcdfinfo | mzcdf2peaks | mzcdfread | mzxmlread |
mzxml2peaks | mzxmlinfo | datenum

https://ftirsearch.com/default3.htm
https://ftirsearch.com/features/converters/SPCFileFormat.htm
http://www.thermofisher.com/

 times (DataMatrix)

1-1835

times (DataMatrix)
Multiply DataMatrix objects

Syntax

DMObjNew = times(DMObj1, DMObj2)

DMObjNew = DMObj1 .* DMObj2

DMObjNew = times(DMObj1, B)

DMObjNew = DMObj1 .* B

DMObjNew = times(B, DMObj1)

DMObjNew = B .* DMObj1

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by multiplication.

Description

DMObjNew = times(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1
.* DMObj2 performs an element-by-element multiplication of the DataMatrix objects
DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object.
DMObj1 and DMObj2 must have the same size (number of rows and columns), unless
one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row
names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a
scalar; then they are the same as DMObj2.

1 Alphabetical List

1-1836

DMObjNew = times(DMObj1, B) or the equivalent DMObjNew = DMObj1 .* B
performs an element-by-element multiplication of the DataMatrix object DMObj1 and
B, a numeric or logical array, and places the results in DMObjNew, another DataMatrix
object. DMObj1 and B must have the same size (number of rows and columns), unless B
is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

DMObjNew = times(B, DMObj1) or the equivalent DMObjNew = B .* DMObj1
performs an element-by-element multiplication of B, a numeric or logical array, and the
DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix
object. DMObj1 and B must have the same size (number of rows and columns), unless B
is a scalar. The size (number of rows and columns), row names, and column names for
DMObjNew are the same as DMObj1.

Note: Arithmetic operations between a scalar DataMatrix object and a nonscalar array
are not supported.

MATLAB calls DMObjNew = times(X, Y) for the syntax DMObjNew = X .* Y when X
or Y is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | plus | minus | “Arithmetic”

 topoorder (biograph)

1-1837

topoorder (biograph)
Perform topological sort of directed acyclic graph extracted from biograph object

Syntax

order = topoorder(BGObj)

Arguments

BGObj Biograph object created by biograph (object constructor).

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

order = topoorder(BGObj) returns an index vector with the order of the nodes
sorted topologically. In topological order, an edge can exist between a source node u and
a destination node v, if and only if u appears before v in the vector order. BGObj is a
biograph object from which an N-by-N adjacency matrix is extracted and represents a
directed acyclic graph (DAG). In the N-by-N sparse matrix, all nonzero entries indicate
the presence of an edge.

More About
• “biograph object”

References

[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

1 Alphabetical List

1-1838

See Also
biograph | allshortestpaths | isdag | isspantree | minspantree | traverse
| graphtopoorder | conncomp | isomorphism | maxflow | shortestpath

 traceplot

1-1839

traceplot

Draw nucleotide trace plots

Syntax

traceplot(TraceStructure)

traceplot(A, C, G, T)

h = traceplot(...)

Description

traceplot(TraceStructure) creates a trace plot from data in a structure with fields
A, C, G, and T.

traceplot(A, C, G, T) creates a trace plot from data in vectors A, C, G, and T.

h = traceplot(...) returns a structure with the handles of the lines corresponding to
A, C, G, T.

Examples

1 Read trace data from an SCF-formatted file into a MATLAB structure.

tstruct = scfread('sample.scf')

tstruct =

 A: [10827x1 double]

 C: [10827x1 double]

 G: [10827x1 double]

 T: [10827x1 double]

2 Draw a nucleotide trace plot of the data.

traceplot(tstruct)

1 Alphabetical List

1-1840

See Also
scfread

 traverse (biograph)

1-1841

traverse (biograph)

Traverse biograph object by following adjacent nodes

Syntax

[disc, pred, closed] = traverse(BGObj, S)

[...] = traverse(BGObj, S, ...'Depth', DepthValue, ...)

[...] = traverse(BGObj, S, ...'Directed', DirectedValue, ...)

[...] = traverse(BGObj, S, ...'Method', MethodValue, ...)

Arguments

BGObj Biograph object created by biograph (object constructor).
S Integer that indicates the source node in BGObj.
DepthValue Integer that indicates a node in BGObj that specifies the depth of

the search. Default is Inf (infinity).
DirectedValue Property that indicates whether graph represented by an N-by-

N adjacency matrix extracted from a biograph object, BGObj is
directed or undirected. Enter false for an undirected graph.
This results in the upper triangle of the sparse matrix being
ignored. Default is true.

MethodValue String that specifies the algorithm used to traverse the graph.
Choices are:

• 'BFS' — Breadth-first search. Time complexity is O(N+E),
where N and E are number of nodes and edges respectively.

• 'DFS' — Default algorithm. Depth-first search. Time
complexity is O(N+E), where N and E are number of nodes
and edges respectively.

1 Alphabetical List

1-1842

Description

Tip For introductory information on graph theory functions, see “Graph Theory
Functions”.

[disc, pred, closed] = traverse(BGObj, S) traverses the directed graph
represented by an N-by-N adjacency matrix extracted from a biograph object, BGObj,
starting from the node indicated by integer S. In the N-by-N sparse matrix, all nonzero
entries indicate the presence of an edge. disc is a vector of node indices in the order
in which they are discovered. pred is a vector of predecessor node indices (listed in the
order of the node indices) of the resulting spanning tree. closed is a vector of node
indices in the order in which they are closed.

[...] = traverse(BGObj, S, ...'PropertyName', PropertyValue, ...)

calls traverse with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName must be
enclosed in single quotes and is case insensitive. These property name/property value
pairs are as follows:

[...] = traverse(BGObj, S, ...'Depth', DepthValue, ...) specifies
the depth of the search. DepthValue is an integer indicating a node in the graph
represented by the N-by-N adjacency matrix extracted from a biograph object, BGObj.
Default is Inf (infinity).

[...] = traverse(BGObj, S, ...'Directed', DirectedValue, ...) indicates
whether the graph represented by the N-by-N adjacency matrix extracted from a
biograph object, BGObj is directed or undirected. Set DirectedValue to false for an
undirected graph. This results in the upper triangle of the sparse matrix being ignored.
Default is true.

[...] = traverse(BGObj, S, ...'Method', MethodValue, ...) lets you
specify the algorithm used to traverse the graph represented by the N-by-N adjacency
matrix extracted from a biograph object, BGObj. Choices are:

• 'BFS' — Breadth-first search. Time complexity is O(N+E), where N and E are number
of nodes and edges respectively.

• 'DFS' — Default algorithm. Depth-first search. Time complexity is O(N+E), where N
and E are number of nodes and edges respectively.

 traverse (biograph)

1-1843

More About
• “biograph object”

References

[1] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide
and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also
biograph | allshortestpaths | isdag | isspantree | minspantree | topoorder
| graphtraverse | conncomp | isomorphism | maxflow | shortestpath

1 Alphabetical List

1-1844

var (DataMatrix)
Return variance values in DataMatrix object

Syntax

V = var(DMObj)

V = var(DMObj, Flag)

V = var(DMObj, Wgt)

V = var(..., Dim)

V = var(..., Dim, IgnoreNaN)

Input Arguments

DMObj DataMatrix object, such as created by DataMatrix (object
constructor).

Flag Scalar specifying how to normalize the data. Choices are:

• 0 — Default. Normalizes using a sample size of N – 1, unless
N = 1, in which case, normalizes using a sample size of 1.

• 1 — Normalizes using a sample size of N.

N = the number of elements in each column or row, as specified
by Dim. For more information on the normalization equations,
see the MATLAB function std.

Wgt Weight vector equal in length to the dimension over which var
operates (specified by Dim. It is used to compute the variance.

Dim Scalar specifying the dimension of DMObj to calculate the
variances. Choices are:

• 1 — Default. Returns variance values for elements in each
column.

• 2 — Returns variance values for elements in each row.
IgnoreNaN Specifies if NaNs should be ignored. Choices are true (default)

or false.

 var (DataMatrix)

1-1845

Output Arguments
V An unbiased estimator of the variance within the columns or

rows of a DataMatrix object. It can be either of the following:

• Row vector containing the variance values from elements in
each column in DMObj (when Dim = 1)

• Column vector containing the variance values from elements
in each row in DMObj (when Dim = 2)

Description
V = var(DMObj) returns the variance values of the elements in the columns of a
DataMatrix object, treating NaNs as missing values. The data is normalized using a
sample size of N – 1, where N = the number of elements in each column. V is a row vector
containing the variance values for elements in each column in DMObj. The variance is the
square of the standard deviation.

V = var(DMObj, Flag) specifies how to normalize the data. If Flag = 0, normalizes
using a sample size of N – 1. If Flag = 1, normalizes using a sample size of N. N = the
number of elements in each column or row, as specified by Dim. For more information on
the normalization equations, see the MATLAB function std. Default Flag = 0.

V = var(DMObj, Wgt) computes the variance using Wgt, a weight vector whose length
must equal the length of the dimension over which var operates (specified by Dim). All
elements in Wgt must be nonnegative. The var function normalizes Wgt to sum of 1.

V = var(..., Dim) returns the variance values of the elements in the columns or
rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns V, a row vector
containing the variance values for elements in each column in DMObj. If Dim = 2, returns
V, a column vector containing the variance values for elements in each row in DMObj.
Default Dim = 1.

V = var(..., Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN can
be true (default) or false.

More About
• “DataMatrix object”

1 Alphabetical List

1-1846

See Also
DataMatrix | median | mean | std

 variableDesc

1-1847

variableDesc
Class: bioma.data.MetaData
Package: bioma.data

Retrieve or set variable descriptions for samples in MetaData object

Syntax

DSVarDescriptions = variableDesc(MDObj)

NewMDObj = variableDesc(MDObj, NewDSVarDescriptions)

Description

DSVarDescriptions = variableDesc(MDObj) returns a dataset array containing
the variable names and descriptions for samples from a MetaData object.

NewMDObj = variableDesc(MDObj, NewDSVarDescriptions) replaces the sample
variable descriptions in MDObj, a MetaData object, with NewDSVarDescriptions, and
returns NewMDObj, a new MetaData object.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

NewDSVarDescriptions

Descriptions of the sample variable names, specified by one of the following:

• A new “dataset” array containing the variable names and descriptions for samples.
In this dataset array, each row corresponds to a variable. The first column contains
the variable name, and the second column (VariableDescription) contains a
description of the variable. The row names (variable names) must match the row

1 Alphabetical List

1-1848

names (variable names) in DSVarDescriptions, the dataset array being replaced in
the MetaData object, MDObj.

• Cell array of strings containing descriptions of the variables. The number of
elements in VarDesc must equal the number of row names (variable names) in
DSVarDescriptions, the dataset array being replaced in the MetaData object,
MDObj.

Default:

Output Arguments

DSVarDescriptions

A dataset array containing the variable names and descriptions from a MetaData object.
In this dataset array, each row corresponds to a sample variable. The first column
contains the variable name, and the second column (VariableDescription) contains a
description of the variable.

NewMDObj

Object of the bioma.data.MetaData class, returned after replacing the dataset array
containing the sample variable descriptions.

Examples

Construct a MetaData object, and then retrieve the sample variable descriptions from it:
% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Retrieve the sample variable descriptions

VarDescriptions = variableDesc(MDObj2)

See Also
bioma.data.MetaData | sampleNames | variableValues | variableNames

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

 variableNames

1-1849

variableNames
Class: bioma.data.MetaData
Package: bioma.data

Retrieve or set variable names for samples in MetaData object

Syntax

VarNames = variableNames(MDObj)

VarNames = variableNames(MDObj, Subset)

NewMDObj = variableNames(MDObj, Subset, NewVarNames)

Description

VarNames = variableNames(MDObj) returns a cell array of strings specifying all
variable names in a MetaData object.

VarNames = variableNames(MDObj, Subset) returns a cell array of strings
specifying a subset the variable names in a MetaData object.

NewMDObj = variableNames(MDObj, Subset, NewVarNames) replaces the variable
names specified by Subset in MDObj, a MetaData object, with NewVarNames, and
returns NewMDObj, a new MetaData object.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

Subset

One of the following to specify a subset of the variable names in a MetaData object:

• String specifying a variable name

1 Alphabetical List

1-1850

• Cell array of strings specifying variable names
• Positive integer
• Vector of positive integers
• Logical vector

Default:

NewVarNames

New variable names for specific sample or feature variable names within a MetaData
object, specified by one of the following:

• Numeric vector
• String or cell array of strings
• String, which variableNames uses as a prefix for the variable names, with variable

numbers appended to the prefix
• Logical true or false (default). If true, variableNames assigns unique variable

names using the format Var1, Var2, etc.

The number of variable names in NewVarNames must equal the number of variable
names specified by Subset.

Default:

Output Arguments

VarNames

Cell array of strings specifying all variable names in a MetaData object.

NewMDObj

Object of the bioma.data.MetaData class, returned after replacing the variable names.

Examples

Construct a MetaData object, and then retrieve the sample variable names from it:

 variableNames

1-1851

% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Retrieve the sample variable names

VNames = variableNames(MDObj2)

See Also
bioma.data.MetaData | sampleNames | variableValues | variableDesc

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

1 Alphabetical List

1-1852

variableValues
Class: bioma.data.MetaData
Package: bioma.data

Retrieve or set variable values for samples in MetaData object

Syntax

DSVarValues = variableValues(MDObj)

NewMDObj = variableValues(MDObj, NewDSVarValues)

Description

DSVarValues = variableValues(MDObj) returns a dataset array containing the
measured value of each variable per sample from a MetaData object.

NewMDObj = variableValues(MDObj, NewDSVarValues) replaces the sample
variable values in MDObj, a MetaData object, with NewDSVarValues, and returns
NewMDObj, a new MetaData object.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

NewDSVarValues

A new “dataset” array containing a value for each variable per sample. In this dataset
array, the columns correspond to variables and rows correspond to samples. The row
names (sample names) must match the row names (sample names) in DSVarValues, the
dataset array being replaced in the MetaData object, MDObj.

Default:

 variableValues

1-1853

Output Arguments

DSVarValues

A “dataset” array containing the measured value of each variable per sample from a
MetaData object. In this dataset array, the columns correspond to variables and rows
correspond to samples.

NewMDObj

Object of the bioma.data.MetaData class, returned after replacing the dataset array
containing the sample variable values.

Examples

Construct a MetaData object, and then retrieve the sample variable values from it:
% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Retrieve the sample variable values

VarValues = variableValues(MDObj2)

See Also
bioma.data.MetaData | sampleNames | variableNames | variableDesc

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

1 Alphabetical List

1-1854

varValuesTable
Class: bioma.data.MetaData
Package: bioma.data

Create 2-D graphic table GUI of variable values in MetaData object

Syntax

Handle = varValuesTable(MDObj)

Handle = varValuesTable(MDObj, ParentHandle)

Description

Handle = varValuesTable(MDObj) creates a 2-D graphic table containing variable
data from a MetaData object and returns a uitable handle to the table.

Handle = varValuesTable(MDObj, ParentHandle) specifies the parent handle to
the table. The parent can be a figure or uipanel handle.

Input Arguments

MDObj

Object of the bioma.data.MetaData class.

Default:

ParentHandle

Figure or uipanel handle to be the parent handle to the table.

Default:

Examples

Construct a MetaData object, and then create a 2-D table of the variable values from it:

 varValuesTable

1-1855

% Import bioma.data package to make constructor function

% available

import bioma.data.*

% Construct MetaData object from .txt file

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#');

% Retrieve the sample variable values in a table

handle = varValuesTable(MDObj2)

1 Alphabetical List

1-1856

See Also
bioma.data.MetaData

How To
• “Representing Sample and Feature Metadata in MetaData Objects”

 vertcat (DataMatrix)

1-1857

vertcat (DataMatrix)
Concatenate DataMatrix objects vertically

Syntax

DMObjNew = vertcat(DMObj1, DMObj2, ...)

DMObjNew = (DMObj1; DMObj2; ...)

DMObjNew = vertcat(DMObj1, B, ...)

DMObjNew = (DMObj1, B, ...)

Input Arguments

DMObj1, DMObj2 DataMatrix objects, such as created by DataMatrix (object
constructor).

B MATLAB numeric or logical array.

Output Arguments

DMObjNew DataMatrix object created by vertical concatenation.

Description

DMObjNew = vertcat(DMObj1, DMObj2, ...) or the equivalent DMObjNew =
(DMObj1; DMObj2; ...) vertically concatenates the DataMatrix objects DMObj1 and
DMObj2 into DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have the
same number of columns. The column names and the order of columns for DMObjNew
are the same as DMObj1. The column names of DMObj2 and any other DataMatrix object
input arguments are not preserved. The row names for DMObjNew are the row names of
DMObj1, DMObj2, and other DataMatrix object input arguments.

DMObjNew = vertcat(DMObj1, B, ...) or the equivalent DMObjNew = (DMObj1,
B, ...) vertically concatenates the DataMatrix object DMObj1 and a numeric or logical

1 Alphabetical List

1-1858

array B into DMObjNew, another DataMatrix object. DMObj1 and B must have the same
number of columns. The column names for DMObjNew are the same as DMObj1. The
column names of DMObj2 and any other DataMatrix object input arguments are not
preserved. The row names for DMObjNew are the row names of DMObj1 and empty for the
rows from B.

MATLAB calls DMObjNew = vertcat(X1, X2, X3, ...) for the syntax DMObjNew =
[X1; X2; X3; ...] when any one of X1, X2, X3, etc. is a DataMatrix object.

More About
• “DataMatrix object”

See Also
DataMatrix | horzcat

 view (biograph)

1-1859

view (biograph)
Draw figure from biograph object

Syntax

view(BGobj)

BGobjHandle = view(BGobj)

Arguments

BGobj Biograph object created with the function biograph.

Description

view(BGobj) opens a Figure window and draws a graph represented by a biograph
object (BGobj). When the biograph object is already drawn in the Figure window, this
function only updates the graph properties.

BGobjHandle = view(BGobj) returns a handle to a deep copy of the biograph object
(BGobj) in the Figure window. When updating an existing figure, you can use the
returned handle to change object properties programmatically or from the command line.
When you close the Figure window, the handle is no longer valid. The original biograph
object (BGobj) is left unchanged.

Examples

1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];

bg = biograph(cm)

2 Render the biograph object into a Handles Graphic figure and get back a handle.

h = view(bg)

1 Alphabetical List

1-1860

3 Change the color of all nodes and edges.

set(h.Nodes,'Color',[.5 .7 1])

set(h.Edges,'LineColor',[0 0 0])

More About
• “biograph object”

See Also
biograph | get | getdescendants | getnodesbyid | set | view | dolayout |
getancestors | getedgesbynodeid | getrelatives

 view (clustergram)

1-1861

view (clustergram)
View clustergram and dendrograms of clustergram object

Syntax

view(CGObject)

Arguments

CGObject Clustergram object created with the function clustergram.

Description

view(CGObject) opens a Clustergram window and draws a clustergram and
dendrograms representing a clustergram object, CGObject. The clustergram shows
hierarchical clustering using a heat map and dendrograms.

Note: You can further explore the heat map and dendrograms using the mouse, toolbar
buttons, and menu items in the Clustergram window. For more information, see the
Examples section of the clustergram function.

Examples

View the clustergram object created in the first two steps of the “Examples” on page
1-446 section of the clustergram function reference page.

view(cgo)

More About
• “clustergram object”

1 Alphabetical List

1-1862

See Also
clustergram | plot | set | get

 view (HeatMap)

1-1863

view (HeatMap)
View heat map of HeatMap object

Syntax

view(HMObject)

Arguments

HMObject HeatMap object created with the function HeatMap.

Description

view(HMObject) opens a HeatMap window and draws a heat map representing a
HeatMap object, HMObject.

Examples

View the HeatMap object created in the “Examples” on page 1- section of the
HeatMap function reference page.

view(hmo)

More About
• “HeatMap object”

See Also
HeatMap | plot

1 Alphabetical List

1-1864

view (phytree)
View phylogenetic tree

Syntax

view(Tree)

view(Tree, IntNodes)

Arguments

Tree Phylogenetic tree (phytree object) created with the function
phytree.

IntNodes Nodes from the phytree object to initially display in the Tree.

Description

view(Tree) opens the Phylogenetic Tree window and draws a tree from data in a
phytree object (Tree). The significant distances between branches and nodes are in
the horizontal direction. Vertical distances have no significance and are selected only for
display purposes. You can access tools to edit and analyze the tree from the Phylogenetic
Tree menu bar or by using the left and right mouse buttons.

view(Tree, IntNodes) opens the Phylogenetic Tree window with an initial selection
of nodes specified by IntNodes. IntNodes can be a logical array of any of the following
sizes: NumLeaves + NumBranches x 1, NumLeaves x 1, or NumBranches x 1.
IntNodes can also be a list of indices.

Examples

View a Phylogenetic Tree

Load and view a sample phylogenetic tree.

tr = phytreeread('pf00002.tree');

 view (phytree)

1-1865

view(tr)

More About
• “phytree object”

See Also
phytree | cluster | phytreeread | phytreeviewer | seqlinkage |
seqneighjoin | plot

1 Alphabetical List

1-1866

weights (phytree)

Calculate weights for phylogenetic tree

Syntax

W = weights(Tree)

Arguments

Tree Phylogenetic tree (phytree object) created with the function
phytree.

Description

W = weights(Tree) calculates branch proportional weights for every leaf in a tree
(Tree) using the Thompson-Higgins-Gibson method. The distance of every segment of the
tree is adjusted by dividing it by the number of leaves it contains. The sequence weights
are the result of normalizing to unity the new patristic distances between every leaf and
the root.

Examples

1 Create an ultrametric tree with specified branch distances.

bd = [1 2 3]';

tr_1 = phytree([1 2;3 4;5 6],bd)

2 View the tree.

view(tr_1)

 weights (phytree)

1-1867

3 Display the calculated weights.

weights(tr_1)

ans =

 1.0000

 1.0000

 0.8000

 0.8000

More About
• “phytree object”

References

[1] Thompson JD, Higgins DG, Gibson TJ (1994), "CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice," Nucleic
Acids Research, 22(22):4673-4680.

1 Alphabetical List

1-1868

[2] Henikoff S, Henikoff JG (1994), “Position-based sequence weights,” Journal Molecular
Biology, 243(4):574-578.

See Also
multialign | phytree | profalign | seqlinkage

 write

1-1869

write
Class: BioRead

Write contents of BioRead or BioMap object to file

Syntax

write(BioObj,FileName)

write(BioObj,FileName,Name,Value)

Description

write(BioObj,FileName) writes the contents of a BioRead or BioMap object BioObj
to a file called FileName.

write(BioObj,FileName,Name,Value) writes the contents of BioRead or BioMap
object to a file with additional options specified by Name,Value pair arguments.

Input Arguments

BioObj

Object of the BioRead or BioMap class.

Default:

FileName

String containing the name of a file to be written. The file extension is automatically
added depending on the type of data the object contains. If you provide the extension, the
function checks the consistency between the provided extension and the data format of
the object. The file name can be prefixed by a file path. If the path is missing, the file is
written to the same folder where the source file is located or to the current folder if the
data is in memory.

Default:

1 Alphabetical List

1-1870

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Format'

String specifying the type of file format. Available formats are 'FASTA', 'FASTQ',
'SAM', and 'BAM' for BioMap objects, and'FASTA' and 'FASTQ' for BioRead objects.
Default format for BioRead objects is 'FASTA' when the objects do not contain qualities,
i.e., the Quality property of the object is empty. Otherwise, the default is 'FASTQ'.
Default format for BioMap objects is 'BAM'.

Default:

'Overwrite'

Boolean indicator specifying whether an existing file can be overwritten. Default is
false. If true, the method overwrites the file and deletes any respective index file
(*.idx,*.bai,*.linearindex) or ordered file (*.ordered.bam, *.ordered.sam)
that has become stale.

Default: false

Tip

Note: When you have an object that contains a subset of information from the source
file, use this method to save the object in a separate file. Having a compact file only
for the object can be more efficient and helpful in processing data or sharing among
collaborators.

Examples

Write the Contents of BioRead Object to a File

 write

1-1871

Create a BioRead object from a FASTQ file.

BRObj = BioRead('SRR005164_1_50.fastq');

Extract the first 10 elements from BRObj and store them in a new BioRead object.

subsetBRObj = getSubset(BRObj, [1:10]);

Write the contents of the subset object subsetBRObj to a file named
subsetBRObj.fastq in a project folder (or any other folder) on a local C (or any other)
drive.

write(subsetBRObj, 'C:\project\subsetBRObj');

See Also
BioRead | BioMap

How To
• “Manage Short-Read Sequence Data in Objects”

1 Alphabetical List

1-1872

zonebackadj
Perform background adjustment on Affymetrix microarray probe-level data using zone-
based method

Syntax

BackAdjustedData = zonebackadj(Data)

[BackAdjustedData, ZoneStruct] = zonebackadj(Data)

[BackAdjustedData, ZoneStruct, Background] = zonebackadj(Data)

... = zonebackadj(Data, ...'NumZones', NumZonesValue, ...)

... = zonebackadj(Data, ...'Percent', PercentValue, ...)

... = zonebackadj(Data, ...'SmoothFactor', SmoothFactorValue, ...)

... = zonebackadj(Data, ...'NoiseFrac', NoiseFracValue, ...)

... = zonebackadj(Data, ...'CDF', CDFValue, ...)

... = zonebackadj(Data, ...'Mask', MaskValue, ...)

... = zonebackadj(Data, ...'Showplot', ShowplotValue, ...)

Input Arguments

Data Either of the following:

• MATLAB structure containing probe intensities from an
Affymetrix CEL file, such as returned by affyread when
used to read a CEL file.

• Array of MATLAB structures containing probe intensities
from multiple Affymetrix CEL files.

NumZonesValue Scalar or two-element vector that specifies the number of
zones to use in the background adjustment. If a scalar, it
must be a square number. If a two-element vector, the first
element specifies the number of rows and the second element
specifies the number of columns in a nonsquare grid. Default
is 16.

PercentValue Value that specifies a percentage, P, such that the lowest P
percent of ranked intensity values from each zone is used to
estimate the background for that zone. Default is 2.

 zonebackadj

1-1873

SmoothFactorValue Value that specifies the smoothing factor used in the
calculation of the weighted average of the contributions of
each zone to the background of a point. Default is 100.

NoiseFracValue Value that specifies the noise fraction, NF, such that the
background-adjusted value is given by max((Intensity
- WeightedBackground), NF*LocalNoiseEstimate).
Default is 0.5.

CDFValue Either of the following:

• String specifying a file name or path and file name of
an Affymetrix CDF library file. If you specify only a file
name, the file must be on the MATLAB search path or in
the current folder.

• MATLAB structure containing information from
an Affymetrix CDF library file, such as returned by
affyread when used to read a CDF file.

The CDF library file or structure specifies control cells, which
are not used in the background estimates.

MaskValue Logical vector that specifies which cells to mask and not
use in the background estimates. In the vector, 0 = not
masked and 1 = masked. Defaults are the values in the
Masked column of the Probes field of the CEL file.

ShowplotValue Controls the plotting of an image of the background
estimates. Choices are true or false (default).

Output Arguments

BackAdjustedData Matrix or cell array of vectors containing background-
adjusted probe intensity values.

ZoneStruct MATLAB structure containing the centers of the zones
used to perform the background adjustment and the
estimates of the background values at the center of each
zone.

Background Matrix or cell array of vectors containing the estimated
background values for each probe.

1 Alphabetical List

1-1874

Description

BackAdjustedData = zonebackadj(Data) returns the background-adjusted probe
intensities from Data, which contains probe intensities from Affymetrix CEL files.
Details of the background adjustment are described in Statistical Algorithms Description
Document.

[BackAdjustedData, ZoneStruct] = zonebackadj(Data) also returns a structure
containing the centers of the zones used to perform the background adjustment and the
estimates of the background values at the center of each zone.

[BackAdjustedData, ZoneStruct, Background] = zonebackadj(Data) also
returns a matrix or cell array of vectors containing the estimated background values for
each probe.

... = zonebackadj(Data, ...'PropertyName', PropertyValue, ...) calls
zonebackadj with optional properties that use property name/property value pairs. You
can specify one or more properties in any order. Each PropertyName must be enclosed in
single quotation marks and is case insensitive. These property name/property value pairs
are as follows:

... = zonebackadj(Data, ...'NumZones', NumZonesValue, ...) specifies
the number of zones to use in the background adjustment. NumZonesValue can be
either a scalar that is a square number or a two-element array in which the first element
specifies the number of rows and the second element specifies the number of columns in a
nonsquare grid. Default is 16.

... = zonebackadj(Data, ...'Percent', PercentValue, ...) specifies a
percentage, P, such that the lowest P percent of ranked intensity values from each zone is
used to estimate the background for that zone. Default is 2.

... = zonebackadj(Data, ...'SmoothFactor', SmoothFactorValue, ...)

specifies the smoothing factor used in the calculation of the weighted average of the
contributions of each zone to the background of a point, thus providing a smooth
transition between zones. Default is 100.

... = zonebackadj(Data, ...'NoiseFrac', NoiseFracValue, ...)

specifies the noise fraction, such that the background-adjusted value is given by
max((Intensity - WeightedBackground), NF*LocalNoiseEstimate), where NF
is NoiseFracValue. Default is 0.5.

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

 zonebackadj

1-1875

... = zonebackadj(Data, ...'CDF', CDFValue, ...) specifies an Affymetrix
CDF library file or structure, which specifies control cells, which are not used in the
background estimates.

... = zonebackadj(Data, ...'Mask', MaskValue, ...) specifies a logical
vector of that specifies which cells to mask and not use in the background estimates. In
the vector, 0 = not masked and 1 = masked. Defaults are the values in the Masked
column of the Probes field of the CEL file.

... = zonebackadj(Data, ...'Showplot', ShowplotValue, ...) plots an
image of the background estimates. Choices are true or false (default).

1 Alphabetical List

1-1876

Examples

The following example uses a sample CEL file and CDF library file from the E. coli
Antisense Genome array, which you can download from:
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the sample data, you will need the Affymetrix Data Transfer Tool
to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer
Tool from:

http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav

The following example assumes that the Ecoli-antisense-121502.CEL file is stored
on the MATLAB search path or in the current folder. It also assumes that the associated
CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Use the affyread function to read an Affymetrix CEL file and create celStruct, a
MATLAB structure containing probe intensities for a single Affymetrix GeneChip.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Perform background adjustment on the probe intensities in the structure, excluding
the probe intensities from the control cells on the chip.

 BackAdjMatrix = zonebackadj(celStruct, 'cdf',...

 'D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

References

[1] Statistical Algorithms Description Document, http://www.affymetrix.com/support/
technical/whitepapers/ sadd_whitepaper.pdf

See Also
affyinvarsetnorm | affyread | celintensityread | gcrma | gcrmabackadj
| probelibraryinfo | probesetlink | probesetlookup | probesetvalues |
quantilenorm | rmabackadj | rmasummary

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/browse/products.jsp?productId=131431&navMode=34000&navAction=jump&aId=productsNav
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

 date property

1-1877

date property
Class: geneont

Read-only string containing date and time OBO file was last updated

Description

date is a read-only property of the geneont class. date is a string containing the date
and time the OBO file was last updated. The OBO file is the Open Biomedical Ontology
file from which the geneont object was created.

Values

Possible values are any date and time the OBO file was updated. Use this date
information to compare the dates associated with ontologies used to create various
geneont objects.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the date and time associated with the OBO file used to create the geneont
object.

GeneontObj.date

ans =

02:12:2008 19:30

1 Alphabetical List

1-1878

See Also
geneont.format_version

 default_namespace property

1-1879

default_namespace property
Class: geneont

Read-only string containing namespace to which GO terms are assigned

Description

default_namespace is a read-only property of the geneont class. default_namespace
is a string containing the ontology namespace to which the GO terms are assigned.

Values

Currently, gene_ontology is the only possible namespace. However, other namespaces
may be used in the future. Use this namespace information to determine the ontology
namespace to which the GO terms in a geneont object are assigned.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the namespace associated with the GO terms of the geneont object.

GeneontObj.default_namespace

ans =

gene_ontology

1 Alphabetical List

1-1880

format_version property
Class: geneont

Read-only string containing version of encoding of OBO file

Description

format_version is a read-only property of the geneont class. format_version is a
string containing the version of the encoding of the OBO file. The OBO file is the Open
Biomedical Ontology file from which the geneont object was created.

Values

Possible values are the current or previous versions of the OBO file. Use this version
information to compare the version associated with OBO file used to create various
geneont objects.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the version of the OBO file used to create the geneont object.

GeneontObj.format_version

ans =

1.0

 terms property

1-1881

terms property
Class: geneont

Read-only column vector with handles to term objects of geneont object

Description

terms is a read-only property of the geneont class. terms is a column vector with
handles to the term objects of a geneont object.

Note: Although terms is a column vector with handles to term objects, in the MATLAB
Command Window, it displays as a structure array, with one structure for each GO term
in the geneont object.

Values

Use the information in this structure to access (by GO ID) the terms of a geneont object
and to view the properties of individual terms.

Examples

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27786 Terms.

2 Use the terms property to display the MATLAB structure array containing 27,786
term objects associated with the geneont object.

GeneontObj.terms

1 Alphabetical List

1-1882

27786x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

Note: Although the terms property is an array of handles to term objects, in the
MATLAB Command Window, it displays as a structure array, with one structure for
each GO term in the geneont object.

3 Use the terms property to view the properties of the term object in the 14,723rd
position in the geneont object.

GeneontObj.terms(14723)

 id: 31655

 name: 'negative regulation of heat dissipation'

 ontology: 'biological process'

 definition: [1x113 char]

 comment: ''

 synonym: {4x2 cell}

 is_a: [3x1 double]

 part_of: 31653

 obsolete: 0

4 Create a cell array of strings that list the ontology property for each term in the
geneont object.

ontologies = get(GeneontObj.terms,'ontology');

5 Create a logical mask that identifies all the terms with an ontology property of
cellular component.

mask = strcmp(ontologies,'cellular component');

6 Apply the logical mask to all the terms in the GeneontObj geneont object to return
a MATLAB structure array of term objects, containing only terms with an ontology
property of cellular component.

cell_comp_terms = GeneontObj.terms(mask)

 terms property

1-1883

2362x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

There are 2,362 terms with an ontology property of cellular component.
7 Create a subontology of all the cellular component terms by indexing into the

GeneontObj geneont object with the masked term objects.

subontology = GeneontObj(cell_comp_terms)

Gene Ontology object with 2367 Terms.

See Also
term

1 Alphabetical List

1-1884

definition property
Class: term

Read-only string that defines GO term

Description

definition is a read-only property of the term class. definition is a string that
defines the GO term.

Values

Possible values are any definition used for a term in the Gene Ontology database. Use
the definition property to determine definitions of term objects, or to access or filter
term objects by definition.

Examples

Using the definition Property to Determine the Definition of a term Object

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the definition of the term object in the 287th position in the geneont object,
GeneontObj.
GeneontObj.terms(287).name

ans =

"The smaller of the two subunits of an organellar ribosome." [GOC:mcc]

 definition property

1-1885

Tip If you know the GO identifier (for example, 314) of a term object, instead of its index
or position number (for example, 287), you can use the following syntax to display the
definition of a term object:

GeneontObj(314).terms.definition

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

Filtering term Objects by Text in Their Definitions

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the structure array containing 27,786 term objects associated with the
geneont object.

GeneontObj.terms

27786x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

3 Find term objects whose definitions include the phrase “ceramide oligosaccharides”
by first creating a cell array of strings that list the definition property for each
term in the geneont object.

definitions = get(GeneontObj.terms,'definition');

4 Use the regexpi function to search these strings for 'ceramide
oligosaccharides'.

1 Alphabetical List

1-1886

matches = regexpi(definitions,'ceramide oligosaccharides','once');

5 Create a logical mask that identifies all the terms with a definition property that
includes the phrase “ceramide oligosaccharides.”

mask = ~cellfun(@isempty,matches);

6 Apply the logical mask to all the terms in the GeneontObj geneont object to return
a structure containing the GO identifiers of terms with a definition that includes the
phrase “ceramide oligosaccharides.”

get(GO.terms(mask),'id')

ans =

 [1573]

 [1574]

7 Apply the logical mask to all the terms in the GeneontObj geneont object to return
a structure containing the full definitions of terms with a definition that includes the
phrase “ceramide oligosaccharides.”

char(get(GO.terms(mask),'definition'))

 id property

1-1887

id property

Class: term

Read-only numeric value that corresponds to GO identifier of GO term

Description

id is a property of the term class. id is a read-only numeric value that corresponds to the
GO identifier of the GO term.

Tip You can use the num2goid function to convert id to a GO ID string formatted as
a 7-digit number preceded by the prefix GO:, which is the standard used by the Gene
Ontology database.

Values

Any value from 1 to N, where N is the largest value for an identifier of a term object in
a geneont object. Use the id property to determine GO identifiers of term objects, or to
access term objects by their GO identifier.

Tip You can use the id property for a GO term as input to methods of a geneont
object, such as geneont.getancestors, geneont.getdescendants, and
geneont.getrelatives.

Examples

Displaying and Formatting the GO Identifier of a term Object

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

1 Alphabetical List

1-1888

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the GO identifier of the term object in the 183rd position in the geneont
object, GeneontObj.

GeneontObj.terms(183).id

ans =

 207

Note: The index or position (183 in this example) of the term object in the geneont
object is not the same as the GO identifier (207 in this example) for the term object.
This is because there are many terms that are obsolete and are not included as term
objects in the geneont object.

3 Format the GO identifier into a character array.

num2goid(GeneontObj.terms(183).id)

ans =

 'GO:0000207'

Using the GO Identifier with Methods of a geneont Object

1 Find the index or position number of the term object whose name property is
'membrane'.
membrane_index = find(strcmp(get(GeneontObj.terms,'name'),'membrane'))

membrane_index =

 9556

2 Use this index or position number and the id property to determine the GO
identifier of the term object.

membrane_goid = GeneontObj.terms(membrane_index).id

membrane_goid =

 id property

1-1889

 16020

3 Use this GO identifier as input to the getrelatives method to find the GO
identifiers of other term objects that are immediate relatives of the term object
whose name property is 'membrane'.

relative_ids = getrelatives(GeneontObj,membrane_goid)

relative_ids =

 5628

 5886

 16020

 19867

 30673

 31090

 34045

 34357

 42175

 42622

 42734

 44464

 45211

 48475

 60342

4 List the name properties of these term objects.

get(GeneontObj(relative_ids).terms,'name')

ans =

 'prospore membrane'

 'plasma membrane'

 'membrane'

 'outer membrane'

 'axolemma'

 'organelle membrane'

 'pre-autophagosomal structure membrane'

 'photosynthetic membrane'

 'nuclear envelope-endoplasmic reticulum network'

 'photoreceptor outer segment membrane'

 'presynaptic membrane'

 'cell part'

 'postsynaptic membrane'

1 Alphabetical List

1-1890

 'coated membrane'

 'photoreceptor inner segment membrane'

See Also
num2goid | geneont.getdescendants | geneont.getrelatives |
geneont.getancestors

 is_a property

1-1891

is_a property
Class: term

Read-only numeric array containing GO identifiers of GO terms that have an “is a”
relationship with this GO term

Description

is_a is a read-only property of the term class. is_a is a column vector containing GO
identifiers. These GO identifiers specify other term objects to which the term object has
an “is a” relationship. The term object is an example of the term objects specified by its
is_a property.

Values

Possible values are identifiers of GO terms from the Gene Ontology database. Use the
is_a property to determine GO identifiers of GO terms that have an “is a” relationship
with a specific GO term.

Examples

Using the is_a Property to Determine term Objects with an “is a” Relationship

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the term objects to which the term object in the 18,703rd position has an “is
a” relationship.

GeneontObj.terms(18703).is_a

1 Alphabetical List

1-1892

ans =

 42754

 45187

 48521

 51241

Tip You can also use the getancestors method of a geneont object with the
'Relationtype' property set to 'is_a' to determine term objects with an “is a”
relationship.

Tip If you know the GO identifier (for example, 42321) of a term object, instead of its
index or position number (for example, 18703), you can use the following syntax to
display the is_a property of a term object:

GeneontObj(42321).terms.is_a

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

See Also
geneont.getdescendants | geneont.getrelatives | geneont.getancestors

 name property

1-1893

name property
Class: term

Read-only string representing name of GO term

Description

name is a read-only property of the term class. name is a string representing the name of
the GO term.

Values

Possible values are any name used for a term in the Gene Ontology database. Use the
name property to determine names of term objects, or to access or filter term objects by
name.

Examples

Using the name Property to Determine the Name of a term Object

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the name of the term object in the 157th position in the geneont object,
GeneontObj.

GeneontObj.terms(157).name

ans =

 cytosolic small ribosomal subunit

1 Alphabetical List

1-1894

Tip If you know the GO identifier (for example, 181) of a term object, instead of its index
or position number (for example, 157), you can use the following syntax to display the
name of a term object:

GeneontObj(181).terms.name

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

Using the name Property to Find and Display Specific term Objects

1 Find the index or position number of the term object whose name property is
'membrane'.

membrane_index = find(strcmp(get(GeneontObj.terms,'name'),'membrane'))

membrane_index =

 9556

2 Use this index or position number and the id property to determine the GO
identifier of the term object.

membrane_goid = GeneontObj.terms(membrane_index).id

membrane_goid =

 16020

3 Use this GO identifier as input to the getrelatives method to find the GO
identifiers of other term objects that are immediate relatives of the term object
whose name property is 'membrane'.

relative_ids = getrelatives(GeneontObj,membrane_goid)

relative_ids =

 5628

 5886

 16020

 19867

 30673

 31090

 34045

 name property

1-1895

 34357

 42175

 42622

 42734

 44464

 45211

 48475

 60342

4 List the name properties of these term objects.

get(GeneontObj(relative_ids).terms,'name')

ans =

 'prospore membrane'

 'plasma membrane'

 'membrane'

 'outer membrane'

 'axolemma'

 'organelle membrane'

 'pre-autophagosomal structure membrane'

 'photosynthetic membrane'

 'nuclear envelope-endoplasmic reticulum network'

 'photoreceptor outer segment membrane'

 'presynaptic membrane'

 'cell part'

 'postsynaptic membrane'

 'coated membrane'

 'photoreceptor inner segment membrane'

1 Alphabetical List

1-1896

obsolete property
Class: term

Read-only Boolean value that indicates whether a GO term is obsolete

Description

obsolete is a read-only property of the term class. obsolete is a Boolean value that
indicates if the GO term is obsolete (1) or not obsolete (0).

Values
1 — Obsolete
0 — Not obsolete

Use the obsolete property to determine whether a term object is obsolete, or to access
or filter term objects by obsolete value.

Examples

Using the obsolete Property to Determine the Obsolete Status of a term Object

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the obsolete status of the term object in the third and seventh positions in
the geneont object, GO

GeneontObj.terms(3).obsolete

ans =

 obsolete property

1-1897

 0

GeneontObj.terms(7).obsolete

ans =

 1

Tip If you know the GO identifier (for example, 8) of a term object, instead of its index or
position number (for example, 7), you can use the following syntax to display the obsolete
status of a term object:

GeneontObj(8).terms.obsolete

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

Filtering term Objects by Obsolete Status

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the structure array containing 27,786 term objects associated with the
geneont object.

GeneontObj.terms

27786x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

1 Alphabetical List

1-1898

 part_of

 obsolete

3 Create a cell array of logicals that list the obsolete property for each term in the
geneont object.

obsolescence = get(GeneontObj.terms,'obsolete');

4 Create a logical mask from the cell array that identifies all the nonobsolete terms.

mask = ~cell2mat(obsolescence);

5 Apply the logical mask to all the terms in the GeneontObj geneont object to return a
structure containing only terms that are not obsolete.

nonobsolete_terms = GeneontObj.terms(mask)

26424x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

There are 26,424 terms that are not obsolete.

 ontology property

1-1899

ontology property
Class: term

Read-only string describing the ontology of GO term

Description

ontology is a read-only property of the term class. ontology is a string describing the
ontology of the GO term.

Values
'molecular function'

'biological process'

'cellular component'

Use the ontology property to determine the ontology of term objects, or to access or
filter term objects by ontology.

Examples

Using the ontology Property to Determine the Ontology of a term Object

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the ontology of the term object in the 155th position in the geneont object,
GeneontObj.

GeneontObj.terms(155).ontology

1 Alphabetical List

1-1900

ans =

molecular function

Tip If you know the GO identifier (for example, 179) of a term object, instead of its index
or position number (for example, 155), you can use the following syntax to display the
ontology of a term object:

GeneontObj(179).terms.ontology

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

Filtering term Objects by Cellular Component Ontology

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the structure array containing 27,786 term objects associated with the
geneont object.

GeneontObj.terms

27786x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

3 View the properties of the term object in the 14,723rd position in the geneont object.

GeneontObj.terms(14723)

 ontology property

1-1901

 id: 31655

 name: 'negative regulation of heat dissipation'

 ontology: 'biological process'

 definition: [1x113 char]

 comment: ''

 synonym: {4x2 cell}

 is_a: [3x1 double]

 part_of: 31653

 obsolete: 0

4 Create a cell array of strings that list the ontology property for each term in the
geneont object.

ontologies = get(GeneontObj.terms,'ontology');

5 Create a logical mask that identifies all the terms with an ontology property of
cellular component.

mask = strcmp(ontologies,'cellular component');

6 Apply the logical mask to all the terms in the GeneontObj geneont object to
return a structure containing only terms with an ontology property of cellular
component.

cell_comp_terms = GeneontObj.terms(mask)

2362x1 struct array with fields:

 id

 name

 ontology

 definition

 comment

 synonym

 is_a

 part_of

 obsolete

There are 2,362 terms with an ontology property of cellular component.

1 Alphabetical List

1-1902

part_of property
Class: term

Read-only numeric array containing GO identifiers of GO terms that have a “part of”
relationship with this GO term

Description

part_of is a read-only property of the term class. part_of is a column vector
containing GO identifiers. These GO identifiers specify other term objects to which the
term object has a “part_of” relationship. The term object is a subset of the term objects
specified by its part_of property.

Values

Possible values are identifiers of GO terms from the Gene Ontology database. Use
the part_of property to determine GO identifiers of GO terms that have a “part of”
relationship with a specific GO term.

Examples

Using the part_of Property to Determine term Objects with a “part of” Relationship

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the term objects to which the term object in the 18,703rd position has a “part
of” relationship.

GeneontObj.terms(18703).part_of

 part_of property

1-1903

ans =

 50802

Tip You can also use the getancestors method of a geneont object with the
'Relationtype' property set to 'part_of' to determine term objects with a “part of”
relationship.

Tip If you know the GO identifier (for example, 42321) of a term object, instead of its
index or position number (for example, 18703), you can use the following syntax to
display the part_of property of a term object:

GeneontObj(42321).terms.part_of

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

See Also
geneont.getdescendants | geneont.getrelatives | geneont.getancestors

1 Alphabetical List

1-1904

synonym property
Class: term

Read-only array containing GO terms that are synonyms of this GO term

Description

synonym is a read-only property of the term class. synonym is a two-column cell
array containing GO terms that are synonyms of this GO term. The first column
contains a string specifying the type of synonym, such as 'exact_synonym',
'related_synonym', 'broad_synonym', 'narrow_synonym', or 'alt_id'. The
second column contains the GO identifier of the synonymous term or a string describing
the synonymous term.

Values

Possible values are identifiers of GO terms from the Gene Ontology database. Use the
synonym property to determine GO identifiers of synonymous term objects.

Examples

Using the synonym Property to Determine Synonymous term Objects

1 Download the current version of the Gene Ontology database from the Web into a
geneont object in the MATLAB software.

GeneontObj = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of term
objects associated with the geneont object.

Gene Ontology object with 27769 Terms.

2 Display the term objects that are synonymous to the term object in the third position
in the geneont object, GeneontObj.

synonyms = GeneontObj.terms(3).synonym

 synonym property

1-1905

synonyms =

 'alt_id' 'GO:0019952'

 'alt_id' 'GO:0050876'

 'exact_synonym' [1x39 char]

3 Because the exact synonym does not have a GO identifier listed, display the text of
this synonym.

synonyms(3,2)

ans =

 '"reproductive physiological process" []'

4 Display the term objects that are synonymous to the term object in the 352nd
position in the geneont object, GeneontObj.

GeneontObj.terms(352).synonym

ans =

 'alt_id' 'GO:0006374'

 'alt_id' 'GO:0006375'

 'related_synonym' [1x26 char]

 'related_synonym' [1x26 char]

 'narrow_synonym' [1x51 char]

 'narrow_synonym' [1x50 char]

 'broad_synonym' '"mRNA splicing" []'

 'broad_synonym' [1x22 char]

Tip If you know the GO identifier (for example, 398) of a term object, instead of its index
or position number (for example, 352), you can use the following syntax to display the
synonym of a term object:

GeneontObj(398).terms.synonym

For help converting the index or position number of a term object to its GO identifier, see
the term.id property.

1-1906

